1
|
Wills PR. Interactions between the prion protein and nucleic acids. Biochem Biophys Rep 2018; 15:68. [PMID: 30073205 PMCID: PMC6068085 DOI: 10.1016/j.bbrep.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- Peter R Wills
- Department of Physics, University of Auckland, PB 92019, Auckland 1142, New Zealand
| |
Collapse
|
2
|
Bera A, Biring S. A quantitative characterization of interaction between prion protein with nucleic acids. Biochem Biophys Rep 2018; 14:114-124. [PMID: 29872743 PMCID: PMC5986701 DOI: 10.1016/j.bbrep.2018.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
Binding of recombinant prion protein with small highly structured RNAs, prokaryotic and eukaryotic prion protein mRNA pseudoknots, tRNA and polyA has been studied by the change in fluorescence anisotropy of the intrinsic tryptophan groups of the protein. The affinities of these RNAs to the prion protein and the number of sites where the protein binds to the nucleic acids do not vary appreciably although the RNAs have very different compositions and structures. The binding parameters do not depend upon pH of the solution and show a poor co-operativity. The reactants form larger nucleoprotein complexes at pH 5 compared to that at neutral pH. The electrostatic force between the protein and nucleic acids dominates the binding interaction at neutral pH. In contrast, nucleic acid interaction with the incipient nonpolar groups exposed from the structured region of the prion protein dominates the reaction at pH 5. Prion protein of a particular species forms larger complexes with prion protein mRNA pseudoknots of the same species. The structure of the pseudoknots and not their base sequences probably dominates their interaction with prion protein. Possibilities of the conversion of the prion protein to its infectious form in the cytoplasm by nucleic acids have been discussed.
Collapse
Affiliation(s)
- Alakesh Bera
- Infectiologie Animale et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - Sajal Biring
- Department of Electronic Engineering and Organic Electronics Research Center, Ming-Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan
| |
Collapse
|
3
|
Olsthoorn RCL. G-quadruplexes within prion mRNA: the missing link in prion disease? Nucleic Acids Res 2014; 42:9327-33. [PMID: 25030900 PMCID: PMC4132711 DOI: 10.1093/nar/gku559] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cellular ribonucleic acid (RNA) plays a crucial role in the initial conversion of cellular prion protein PrP(C) to infectious PrP(Sc) or scrapie. The nature of this RNA remains elusive. Previously, RNA aptamers against PrP(C) have been isolated and found to form G-quadruplexes (G4s). PrP(C) binding to G4 RNAs destabilizes its structure and is thought to trigger its conversion to PrP(Sc). Here it is shown that PrP messenger RNA (mRNA) itself contains several G4 motifs, located in the octarepeat region. Investigation of the RNA structure in one of these repeats by circular dichroism, nuclear magnetic resonance and ultraviolet melting studies shows evidence of G4 formation. In vitro translation of full-length PrP mRNA, naturally harboring five consecutive G4 motifs, was specifically affected by G4-binding ligands, lending support to G4 formation in PrP mRNA. A possible role of PrP binding to its own mRNA and the role of anti-prion drugs, many of which are G4-binding ligands, in prion disease are discussed.
Collapse
Affiliation(s)
- René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
4
|
Lorenz R, Bernhart SH, Qin J, Höner zu Siederdissen C, Tanzer A, Amman F, Hofacker IL, Stadler PF. 2D meets 4G: G-quadruplexes in RNA secondary structure prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:832-844. [PMID: 24334379 DOI: 10.1109/tcbb.2013.7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
G-quadruplexes are abundant locally stable structural elements in nucleic acids. The combinatorial theory of RNA structures and the dynamic programming algorithms for RNA secondary structure prediction are extended here to incorporate G-quadruplexes using a simple but plausible energy model. With preliminary energy parameters, we find that the overwhelming majority of putative quadruplex-forming sequences in the human genome are likely to fold into canonical secondary structures instead. Stable G-quadruplexes are strongly enriched, however, in the 5'UTR of protein coding mRNAs.
Collapse
Affiliation(s)
| | | | - Jing Qin
- Max Planck Institute for Mathematics in the Sciences, Leipzig and University of Leipzig, Leipzig
| | | | - Andrea Tanzer
- University of Vienna, Vienna and Center for Genomic Regulation (CRG), Barcelona
| | | | - Ivo L Hofacker
- University of Vienna, Vienna and University of Copenhagen
| | - Peter F Stadler
- University of Leipzig, Leipzig, Max Planck Institute for Mathematics in the Sciences, Leipzig, Fraunhofer Institute for CellTherapy and Immunology and University of Copenhagen
| |
Collapse
|
5
|
Wills PR. Frameshifted prion proteins as pathological agents: quantitative considerations. J Theor Biol 2013; 325:52-61. [PMID: 23454079 DOI: 10.1016/j.jtbi.2013.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 11/17/2022]
Abstract
A quantitatively consistent explanation for the titres of infectivity found in a variety of prion-containing preparations is provided on the basis that the ætiological agents of transmissible spongiform encephalopathy comprise a very small population fraction of prion protein (PrP) variants, which contain frameshifted elements in their N-terminal octapeptide-repeat regions. A mechanism for the replication of frameshifted prions is described and calculations are performed to obtain estimates of the concentration of these PrP variants in normal and infected brain, as well as their enrichment in products of protein misfolding cyclic amplification. These calculations resolve the lack of proper quantitative correlation between measures of infectivity and the presence of conformationally-altered, protease-resistant variants of PrP. Experiments, which could confirm or eventually exclude the role of frameshifted variants in the ætiology of prion disease, are suggested.
Collapse
Affiliation(s)
- Peter R Wills
- Integrative Transcriptomics, Center for Bioinformatics Tübingen, University of Tübingen, Sand 14, Tübingen 72076, Germany.
| |
Collapse
|
6
|
|
7
|
Rechavi O, Kloog Y. Prion and anti-codon usage: does infectious PrP alter tRNA abundance to induce misfolding of PrP? Med Hypotheses 2008; 72:193-5. [PMID: 18809261 DOI: 10.1016/j.mehy.2008.07.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 11/18/2022]
Abstract
The "protein-only" hypothesis of prion diseases views the infectious agent as devoid of nucleic acids and consisting of misfolded prion proteins (PrP(Sc)) which, upon infiltration into host cells, act as a template that induces transformation of wild-type protein (PrP(C)) to the pathological form by unknown mechanisms. The two isoforms are identical in amino-acid composition. By analogy to reported "silent" mutations in which utilization of relatively rare tRNAs alter protein folding pattern, we postulate that misfolded PrP(Sc) alters tRNAs abundance in prion-infected cells and results in different rates of co-translational folding of PrP, leading to the formation of additional misfolded PrP(Sc). We analyze experiments that might link tRNAs to prions. This concept of "PrP-seed and tRNA-soil" envisages a vicious cycle in which PrP(Sc) levels govern specific tRNA usage, whose alteration subsequently transforms resident PrP(C) to PrP(Sc), causing the cycle to repeat itself ad infinitum.
Collapse
Affiliation(s)
- Oded Rechavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel-Aviv, Israel.
| | | |
Collapse
|
8
|
Drisaldi B, Coomaraswamy J, Mastrangelo P, Strome B, Yang J, Watts JC, Chishti MA, Marvi M, Windl O, Ahrens R, Major F, Sy MS, Kretzschmar H, Fraser PE, Mount HTJ, Westaway D. Genetic Mapping of Activity Determinants within Cellular Prion Proteins. J Biol Chem 2004; 279:55443-54. [PMID: 15459186 DOI: 10.1074/jbc.m404794200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PrP-like Doppel (Dpl) protein causes apoptotic death of cerebellar neurons in transgenic mice, a process prevented by expression of the wild type (wt) cellular prion protein, PrP(C). Internally deleted forms of PrP(C) resembling Dpl such as PrPDelta32-121 produce a similar PrP(C)-sensitive pro-apoptotic phenotype in transgenic mice. Here we demonstrate that these phenotypic attributes of wt Dpl, wt PrP(C), and PrPDelta132-121 can be accurately recapitulated by transfected mouse cerebellar granule cell cultures. This system was then explored by mutagenesis of the co-expressed prion proteins to reveal functional determinants. By this means, neuroprotective activity of wt PrP(C) was shown to be nullified by a deletion of the N-terminal charged region implicated in endocytosis and retrograde axonal transport (PrPDelta23-28), by deletion of all five octarepeats (PrPDelta51-90), or by glycine replacement of four octarepeat histidine residues required for selective binding of copper ions (Prnp"H/G"). In the case of Dpl, overlapping deletions defined a requirement for the gene interval encoding helices B and B' (DplDelta101-125). These data suggest contributions of copper binding and neuronal trafficking to wt PrP(C) function in vivo and place constraints upon current hypotheses to explain Dpl/PrP(C) antagonism by competitive ligand binding. Further implementation of this assay should provide a fuller understanding of the attributes and subcellular localizations required for activity of these enigmatic proteins.
Collapse
Affiliation(s)
- Bettina Drisaldi
- Centre for Research in Neurodegenerative Diseases, Tanz Neuroscience Building, 6 Queen's Park Crescent West, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Barrette I, Poisson G, Gendron P, Major F. Pseudoknots in prion protein mRNAs confirmed by comparative sequence analysis and pattern searching. Nucleic Acids Res 2001; 29:753-8. [PMID: 11160898 PMCID: PMC30388 DOI: 10.1093/nar/29.3.753] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human prion gene contains five copies of a 24 nt repeat that is highly conserved among species. An analysis of folding free energies of the human prion mRNA, in particular in the repeat region, suggested biased codon selection and the presence of RNA patterns. In particular, pseudoknots, similar to the one predicted by Wills in the human prion mRNA, were identified in the repeat region of all available prion mRNAs available in GenBank, but not those of birds and the red slider turtle. An alignment of these mRNAs, which share low sequence homology, shows several co-variations that maintain the pseudoknot pattern. The presence of pseudoknots in yeast Sup35p and Rnq1 suggests acquisition in the prokaryotic era. Computer generated three-dimensional structures of the human prion pseudoknot highlight protein and RNA interaction domains, which suggest a possible effect in prion protein translation. The role of pseudoknots in prion diseases is discussed as individuals with extra copies of the 24 nt repeat develop the familial form of Creutzfeldt-Jakob disease.
Collapse
Affiliation(s)
- I Barrette
- Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, CP 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
10
|
Neibergs HL, Ryan AM, Womack JE, Spooner RL, Williams JL. Polymorphism analysis of the prion gene in BSE-affected and unaffected cattle. Anim Genet 1994; 25:313-7. [PMID: 7818165 DOI: 10.1111/j.1365-2052.1994.tb00364.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polymerase chain reaction (PCR) primers designed to amplify the octapeptide repeat region of the bovine prion gene were used to test the association of genotypes with bovine spongiform encephalitis (BSE) in 56 BSE-affected and 177 unaffected animals. Three alleles (A,B,C) were detected as single-strand conformation polymorphisms (SSCPs) and two alleles (1,2--representing six or five copies of the octapeptide repeat respectively) were detected as amplified double-strand fragment length polymorphisms (AMFLPs). Observed genotypes of SSCPs and AMFLPs were analysed by chi-square. The SSCP genotypes of nuclear family members of animals with BSE and BSE-affected animals were different (P < 0.001, P < 0.01) from unrelated animals of the same breed without BSE. No genotypic differences were found between the BSE-affected animals and their relatives (P > 0.469). No AMFLP genotypic differences were detected between BSE-affected animals, their relatives, unrelated animals of the same breed or animals of different breeds (P > 0.05). These data suggest that BSE-affected animals and their relatives are more likely to have the AA SSCP genotype than unrelated animals of the same breed or animals of different breeds.
Collapse
Affiliation(s)
- H L Neibergs
- Department of Veterinary Pathobiology, Texas A&M University, College Station 77843
| | | | | | | | | |
Collapse
|