Hariri A, Weber B, Olmsted J. On the validity of Shannon-information calculations for molecular biological sequences.
J Theor Biol 1990;
147:235-54. [PMID:
2277507 DOI:
10.1016/s0022-5193(05)80054-2]
[Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The usefulness of information-theoretic measures of the Shannon-Weaver type, when applied to molecular biological systems such as DNA or protein sequences, has been critically evaluated. It is shown that entropy can be re-expressed in dimensionless terms, thereby making it commensurate with information. Further, we have identified processes in which entropy S and information H change in opposite directions. These processes of opposing signs for delta S and delta H demonstrate that while the Second Law of Thermodynamics mandates that entropy always increases, it places no such restrictions on changes in information. Additionally, we have developed equations permitting information calculations, incorporating conditional occurrence probabilities, on DNA and protein sequences. When the results of such calculations are compared for sequences of various general types, there are no informational content patterns. We conclude that information-theoretic calculations of the present level of sophistication do not provide any useful insights into molecular biological sequences.
Collapse