1
|
Muratori L, Crosio A, Ronchi G, Molinaro D, Tos P, Lovati AB, Raimondo S. Exploring an innovative decellularization protocol for porcine nerve grafts: a translational approach to peripheral nerve repair. Front Neuroanat 2024; 18:1380520. [PMID: 38567289 PMCID: PMC10985228 DOI: 10.3389/fnana.2024.1380520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Peripheral nerves are frequently affected by lesions caused by traumatic or iatrogenic damages, resulting in loss of motor and sensory function, crucial in orthopedic outcomes and with a significant impact on patients' quality of life. Many strategies have been proposed over years to repair nerve injuries with substance loss, to achieve musculoskeletal reinnervation and functional recovery. Allograft have been tested as an alternative to the gold standard, the autograft technique, but nerves from donors frequently cause immunogenic response. For this reason, several studies are focusing to find the best way to decellularize nerves preserving either the extracellular matrix, either the basal lamina, as the key elements used by Schwann cells and axons during the regenerative process. Methods This study focuses on a novel decellularization protocol for porcine nerves, aimed at reducing immunogenicity while preserving essential elements like the extracellular matrix and basal lamina, vital for nerve regeneration. To investigate the efficacy of the decellularization protocol to remove immunogenic cellular components of the nerve tissue and to preserve the basal lamina and extracellular matrix, morphological analysis was performed through Masson's Trichrome staining, immunofluorescence, high resolution light microscopy and transmission electron microscopy. Decellularized porcine nerve graft were then employed in vivo to repair a rat median nerve lesion. Morphological analysis was also used to study the ability of the porcine decellularized graft to support the nerve regeneration. Results and Discussion The decellularization method was effective in preparing porcine superficial peroneal nerves for grafting as evidenced by the removal of immunogenic components and preservation of the ECM. Morphological analysis demonstrated that four weeks after injury, regenerating fibers colonized the graft suggesting a promising use to repair severe nerve lesions. The idea of using a porcine nerve graft arises from a translational perspective. This approach offers a promising direction in the orthopedic field for nerve repair, especially in severe cases where conventional methods are limited.
Collapse
Affiliation(s)
- Luisa Muratori
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| | - Alessandro Crosio
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
- UOC Traumatology-Reconstructive Microsurgery, Department of Orthopedics and Traumatology, CTO Hospital, Turin, Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| | - Debora Molinaro
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| | - Pierluigi Tos
- Reconstructive Microsurgery and Hand Surgery Unit, ASST Pini-CTO, Milan, Italy
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Turin, Italy
| |
Collapse
|
2
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
3
|
Poulis N, Martin M, Hoerstrup SP, Emmert MY, Fioretta ES. Macrophage-extracellular matrix interactions: Perspectives for tissue engineered heart valve remodeling. Front Cardiovasc Med 2022; 9:952178. [PMID: 36176991 PMCID: PMC9513146 DOI: 10.3389/fcvm.2022.952178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
In situ heart valve tissue engineering approaches have been proposed as promising strategies to overcome the limitations of current heart valve replacements. Tissue engineered heart valves (TEHVs) generated from in vitro grown tissue engineered matrices (TEMs) aim at mimicking the microenvironmental cues from the extracellular matrix (ECM) to favor integration and remodeling of the implant. A key role of the ECM is to provide mechanical support to and attract host cells into the construct. Additionally, each ECM component plays a critical role in regulating cell adhesion, growth, migration, and differentiation potential. Importantly, the immune response to the implanted TEHV is also modulated biophysically via macrophage-ECM protein interactions. Therefore, the aim of this review is to summarize what is currently known about the interactions and signaling networks occurring between ECM proteins and macrophages, and how these interactions may impact the long-term in situ remodeling outcomes of TEMs. First, we provide an overview of in situ tissue engineering approaches and their clinical relevance, followed by a discussion on the fundamentals of the remodeling cascades. We then focus on the role of circulation-derived and resident tissue macrophages, with particular emphasis on the ramifications that ECM proteins and peptides may have in regulating the host immune response. Finally, the relevance of these findings for heart valve tissue engineering applications is discussed.
Collapse
Affiliation(s)
- Nikolaos Poulis
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Wyss Zurich, University and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Wyss Zurich, University and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- *Correspondence: Maximilian Y. Emmert, ,
| | - Emanuela S. Fioretta
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Emanuela S. Fioretta,
| |
Collapse
|
4
|
Strategies for development of decellularized heart valve scaffolds for tissue engineering. Biomaterials 2022; 288:121675. [DOI: 10.1016/j.biomaterials.2022.121675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023]
|
5
|
Naso F, Gandaglia A. Can Heart Valve Decellularization Be Standardized? A Review of the Parameters Used for the Quality Control of Decellularization Processes. Front Bioeng Biotechnol 2022; 10:830899. [PMID: 35252139 PMCID: PMC8891751 DOI: 10.3389/fbioe.2022.830899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
When a tissue or an organ is considered, the attention inevitably falls on the complex and delicate mechanisms regulating the correct interaction of billions of cells that populate it. However, the most critical component for the functionality of specific tissue or organ is not the cell, but the cell-secreted three-dimensional structure known as the extracellular matrix (ECM). Without the presence of an adequate ECM, there would be no optimal support and stimuli for the cellular component to replicate, communicate and interact properly, thus compromising cell dynamics and behaviour and contributing to the loss of tissue-specific cellular phenotype and functions. The limitations of the current bioprosthetic implantable medical devices have led researchers to explore tissue engineering constructs, predominantly using animal tissues as a potentially unlimited source of materials. The high homology of the protein sequences that compose the mammalian ECM, can be exploited to convert a soft animal tissue into a human autologous functional and long-lasting prosthesis ensuring the viability of the cells and maintaining the proper biomechanical function. Decellularization has been shown to be a highly promising technique to generate tissue-specific ECM-derived products for multiple applications, although it might comprise very complex processes that involve the simultaneous use of chemical, biochemical, physical and enzymatic protocols. Several different approaches have been reported in the literature for the treatment of bone, cartilage, adipose, dermal, neural and cardiovascular tissues, as well as skeletal muscle, tendons and gastrointestinal tract matrices. However, most of these reports refer to experimental data. This paper reviews the most common and latest decellularization approaches that have been adopted in cardiovascular tissue engineering. The efficacy of cells removal was specifically reviewed and discussed, together with the parameters that could be used as quality control markers for the evaluation of the effectiveness of decellularization and tissue biocompatibility. The purpose was to provide a panel of parameters that can be shared and taken into consideration by the scientific community to achieve more efficient, comparable, and reliable experimental research results and a faster technology transfer to the market.
Collapse
|
6
|
Uiterwijk M, van der Valk DC, van Vliet R, de Brouwer IJ, Hooijmans CR, Kluin J. Pulmonary valve tissue engineering strategies in large animal models. PLoS One 2021; 16:e0258046. [PMID: 34610023 PMCID: PMC8491907 DOI: 10.1371/journal.pone.0258046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023] Open
Abstract
In the last 25 years, numerous tissue engineered heart valve (TEHV) strategies have been studied in large animal models. To evaluate, qualify and summarize all available publications, we conducted a systematic review and meta-analysis. We identified 80 reports that studied TEHVs of synthetic or natural scaffolds in pulmonary position (n = 693 animals). We identified substantial heterogeneity in study designs, methods and outcomes. Most importantly, the quality assessment showed poor reporting in randomization and blinding strategies. Meta-analysis showed no differences in mortality and rate of valve regurgitation between different scaffolds or strategies. However, it revealed a higher transvalvular pressure gradient in synthetic scaffolds (11.6 mmHg; 95% CI, [7.31-15.89]) compared to natural scaffolds (4,67 mmHg; 95% CI, [3,94-5.39]; p = 0.003). These results should be interpreted with caution due to lack of a standardized control group, substantial study heterogeneity, and relatively low number of comparable studies in subgroup analyses. Based on this review, the most adequate scaffold model is still undefined. This review endorses that, to move the TEHV field forward and enable reliable comparisons, it is essential to define standardized methods and ways of reporting. This would greatly enhance the value of individual large animal studies.
Collapse
Affiliation(s)
- M. Uiterwijk
- Heart Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - D. C. van der Valk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - R. van Vliet
- Faculty of medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - I. J. de Brouwer
- Faculty of medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - C. R. Hooijmans
- Department for Health Evidence Unit SYRCLE, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J. Kluin
- Heart Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Shamsollahi HR, Kharrazi S, Jahanbin B, Rafieian S, Dehghani MH, Yunesian M. Development of a new method for isolation of urban air particulates deposited in the human lung tissue. CHEMOSPHERE 2021; 280:130585. [PMID: 33975238 DOI: 10.1016/j.chemosphere.2021.130585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Particulate matters (PMs) are important pollutants in urban air pollution because of their variable composition. The pulmonary clearance of PMs is critical to prevent long-term immunological responses. This study established a new method for the isolation of probably deposited urban air particulates from the human lung tissue, to investigate the features of uncleared particulates. The lung samples were acellularized with SDS solution of various concentrations ranging from 1 to 10%to lyse cells and release the PMs. In addition, the extracellular matrix (ECM) that remained was digested by proteinase K enzyme. The results of this study demonstrated that an SDS solution of 4% is the optimum concentration for the isolation of settled PMs from the lung tissue. Moreover, the used enzymatic method could separate settled PMs from the lung ECM appropriately. The results exhibited that epithelial cells form 46% of the samples' weight on average, whereas just 20% of isolated PMs were found in this part of the tissue. Both groups of separated PMs tend to agglomerate, but it is significantly higher in cellular isolated PMs. The particles separated from ECM have an agglomeration tendency, which is observable only by FE-SEM imaging. Moreover, we found a major part of urban air PMs deposited in ECM. The established method in this study can be used in future investigations to isolate other types of PMs settled in the lung, such as occupationally inhaled carbonaceous particulates.
Collapse
Affiliation(s)
- Hamid Reza Shamsollahi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, 14177-55469, Tehran, Iran.
| | - Behnaz Jahanbin
- Department of Pathology, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Shahab Rafieian
- General Thoracic Surgery Ward, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bellani C, Yue K, Flaig F, Hébraud A, Ray P, Annabi N, Selistre de Araújo HS, Branciforti MC, Minarelli Gaspar AM, Shin SR, Khademhosseini A, Schlatter G. Suturable elastomeric tubular grafts with patterned porosity for rapid vascularization of 3D constructs. Biofabrication 2021; 13. [PMID: 33482658 DOI: 10.1088/1758-5090/abdf1d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Vascularization is considered to be one of the key challenges in engineering functional 3D tissues. Engineering suturable vascular grafts containing pores with diameter of several tens of microns in tissue engineered constructs may provide an instantaneous blood perfusion through the grafts improving cell infiltration and thus, allowing rapid vascularization and vascular branching. The aim of this work was to develop suturable tubular scaffolds to be integrated in biofabricated constructs, enabling the direct connection of the biofabricated construct with the host blood stream, providing an immediate blood flow inside the construct. Here, tubular grafts with customizable shapes (tubes, Y-shape capillaries) and controlled diameter ranging from several hundreds of microns to few mm are fabricated based on poly(glycerol sebacate) (PGS) / poly(vinyl alcohol) (PVA) electrospun scaffolds. Furthermore, a network of pore channels of diameter in the order of 100 µm was machined by laser femtosecond ablation in the tube wall. Both non-machined and laser machined tubular scaffolds elongated more than 100% of their original size have shown suture retention, being 5.85 and 3.96 N/mm2 respectively. To demonstrate the potential of application, the laser machined porous grafts were embedded in gelatin methacryloyl (GelMA) hydrogels, resulting in elastomeric porous tubular graft/GelMA 3D constructs. These constructs were then co-seeded with osteoblast-like cells (MG-63) at the external side of the graft and endothelial cells (HUVEC) inside, forming a bone osteon model. The laser machined pore network allowed an immediate endothelial cell flow towards the osteoblasts enabling the osteoblasts and endothelial cells to interact and form 3D structures. This rapid vascularization approach could be applied, not only for bone tissue regeneration, but also for a variety of tissues and organs.
Collapse
Affiliation(s)
- Caroline Bellani
- University of Sao Paulo, AVENIDA TRABALHADOR SÃO-CARLENSE, 400, Sao Carlos, São Paulo, 13566-590, BRAZIL
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, 381 Wushan Rd, Guangzhou, Guangdong, 510641, CHINA
| | - Florence Flaig
- ICPEES, University of Strasbourg, 25 rue Bécquerel, Strasbourg, 67087, FRANCE
| | - Anne Hébraud
- ICPEES, 25 rue Bécquerel, Strasbourg, 67087, FRANCE
| | - Pengfei Ray
- Division of Health Sciences and Technology, MIT, 45 Carleton Street, Cambridge, Massachusetts, 02142, UNITED STATES
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, UCLA, 5531 Boelter Hall, Los Angeles, California, CA 90095, UNITED STATES
| | | | - Marcia Cristina Branciforti
- Depatament of Materials Engineering, University of Sao Paulo, AVENIDA TRABALHADOR SÃO-CARLENSE, 400, ARNOLD SCHMITED, SAO CARLOS, Sao Paulo, SAO PAULO, 13566-590, BRAZIL
| | - Ana Maria Minarelli Gaspar
- Department of Morphology, School of Dentistry at Araraquara, Sao Paulo State University Julio de Mesquita Filho, R. Humaitá, 1680, Araraquara, SP, 14801-385, BRAZIL
| | - Su Ryon Shin
- Medicine, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts, MA 02115, UNITED STATES
| | - Ali Khademhosseini
- Department of Chemical and Biomolecular Engineering, UCLA, 5531 Boelter Hall, Los Angeles, California, CA 90095, UNITED STATES
| | - Guy Schlatter
- ICPEES, University of Strasbourg, 25 rue Bécquerel, Strasbourg, 67087, FRANCE
| |
Collapse
|
9
|
Badria AF, Koutsoukos PG, Mavrilas D. Decellularized tissue-engineered heart valves calcification: what do animal and clinical studies tell us? JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:132. [PMID: 33278023 PMCID: PMC7719105 DOI: 10.1007/s10856-020-06462-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases are the first cause of death worldwide. Among different heart malfunctions, heart valve failure due to calcification is still a challenging problem. While drug-dependent treatment for the early stage calcification could slow down its progression, heart valve replacement is inevitable in the late stages. Currently, heart valve replacements involve mainly two types of substitutes: mechanical and biological heart valves. Despite their significant advantages in restoring the cardiac function, both types of valves suffered from serious drawbacks in the long term. On the one hand, the mechanical one showed non-physiological hemodynamics and the need for the chronic anticoagulation therapy. On the other hand, the biological one showed stenosis and/or regurgitation due to calcification. Nowadays, new promising heart valve substitutes have emerged, known as decellularized tissue-engineered heart valves (dTEHV). Decellularized tissues of different types have been widely tested in bioprosthetic and tissue-engineered valves because of their superior biomechanics, biocompatibility, and biomimetic material composition. Such advantages allow successful cell attachment, growth and function leading finally to a living regenerative valvular tissue in vivo. Yet, there are no comprehensive studies that are covering the performance of dTEHV scaffolds in terms of their efficiency for the calcification problem. In this review article, we sought to answer the question of whether decellularized heart valves calcify or not. Also, which factors make them calcify and which ones lower and/or prevent their calcification. In addition, the review discussed the possible mechanisms for dTEHV calcification in comparison to the calcification in the native and bioprosthetic heart valves. For this purpose, we did a retrospective study for all the published work of decellularized heart valves. Only animal and clinical studies were included in this review. Those animal and clinical studies were further subcategorized into 4 categories for each depending on the effect of decellularization on calcification. Due to the complex nature of calcification in heart valves, other in vitro and in silico studies were not included. Finally, we compared the different results and summed up all the solid findings of whether decellularized heart valves calcify or not. Based on our review, the selection of the proper heart valve tissue sources (no immunological provoking residues), decellularization technique (no damaged exposed residues of the decellularized tissues, no remnants of dead cells, no remnants of decellularizing agents) and implantation techniques (avoiding suturing during the surgical implantation) could provide a perfect anticalcification potential even without in vitro cell seeding or additional scaffold treatment.
Collapse
Affiliation(s)
- Adel F Badria
- Department of Fiber and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
- Department of Mechanical Engineering and Aeronautics, Division of Applied Mechanics, Technology of Materials and Biomechanics, University of Patras, Patras, Greece.
| | - Petros G Koutsoukos
- Department of Chemical Engineering, University of Patras, Patras University Campus, 26504, Patras, Greece
| | - Dimosthenis Mavrilas
- Department of Mechanical Engineering and Aeronautics, Division of Applied Mechanics, Technology of Materials and Biomechanics, University of Patras, Patras, Greece
| |
Collapse
|
10
|
Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol 2020; 18:92-116. [PMID: 32908285 DOI: 10.1038/s41569-020-0422-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Valvular heart disease is a major cause of morbidity and mortality worldwide. Surgical valve repair or replacement has been the standard of care for patients with valvular heart disease for many decades, but transcatheter heart valve therapy has revolutionized the field in the past 15 years. However, despite the tremendous technical evolution of transcatheter heart valves, to date, the clinically available heart valve prostheses for surgical and transcatheter replacement have considerable limitations. The design of next-generation tissue-engineered heart valves (TEHVs) with repair, remodelling and regenerative capacity can address these limitations, and TEHVs could become a promising therapeutic alternative for patients with valvular disease. In this Review, we present a comprehensive overview of current clinically adopted heart valve replacement options, with a focus on transcatheter prostheses. We discuss the various concepts of heart valve tissue engineering underlying the design of next-generation TEHVs, focusing on off-the-shelf technologies. We also summarize the latest preclinical and clinical evidence for the use of these TEHVs and describe the current scientific, regulatory and clinical challenges associated with the safe and broad clinical translation of this technology.
Collapse
|
11
|
Macroporous Dual-compartment Hydrogels for Minimally Invasive Transplantation of Primary Human Hepatocytes. Transplantation 2019; 102:e373-e381. [PMID: 29916986 DOI: 10.1097/tp.0000000000002330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Given the shortage of available organs for whole or partial liver transplantation, hepatocyte cell transplantation has long been considered a potential strategy to treat patients suffering from various liver diseases. Some of the earliest approaches that attempted to deliver hepatocytes via portal vein or spleen achieved little success due to poor engraftment. More recent efforts include transplantation of cell sheets or thin hepatocyte-laden synthetic hydrogels. However, these implants must remain sufficiently thin to ensure that nutrients can diffuse into the implant. METHODS To circumvent these limitations, we investigated the use of a vascularizable dual-compartment hydrogel system for minimally invasive transplantation of primary hepatocytes. The dual-compartment system features a macroporous outer polyethylene glycol diacrylate/hyaluronic acid methacrylate hydrogel compartment for seeding supportive cells and facilitating host cell infiltration and vascularization and a hollow inner core to house the primary human hepatocytes. RESULTS We show that the subcutaneous implantation of these cell-loaded devices in NOD/SCID mice facilitated vascular formation while supporting viability of the transplanted cells. Furthermore, the presence of human serum albumin in peripheral blood and the immunostaining of excised implants indicated that the hepatocytes maintained function in vivo for at least 1 month, the longest assayed time point. CONCLUSIONS Cell transplantation devices that assist the anastomosis of grafts with the host can be potentially used as a minimally invasive ectopic liver accessory to augment liver-specific functions as well as potentially treat various pathologies associated with compromised functions of liver, such as hemophilia B or alpha-1 antitrypsin deficiency.
Collapse
|
12
|
Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. Stem Cells 2017; 35:42-50. [PMID: 27641427 PMCID: PMC5529050 DOI: 10.1002/stem.2500] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Donor organ shortage is the main limitation to liver transplantation as a treatment for end-stage liver disease and acute liver failure. Liver regenerative medicine may in the future offer an alternative form of therapy for these diseases, be it through cell transplantation, bioartificial liver (BAL) devices, or bioengineered whole organ liver transplantation. All three strategies have shown promising results in the past decade. However, before they are incorporated into widespread clinical practice, the ideal cell type for each treatment modality must be found, and an adequate amount of metabolically active, functional cells must be able to be produced. Research is ongoing in hepatocyte expansion techniques, use of xenogeneic cells, and differentiation of stem cell-derived hepatocyte-like cells (HLCs). HLCs are a few steps away from clinical application, but may be very useful in individualized drug development and toxicity testing, as well as disease modeling. Finally, safety concerns including tumorigenicity and xenozoonosis must also be addressed before cell transplantation, BAL devices, and bioengineered livers occupy their clinical niche. This review aims to highlight the most recent advances and provide an updated view of the current state of affairs in the field of liver regenerative medicine. Stem Cells 2017;35:42-50.
Collapse
Affiliation(s)
- Clara T Nicolas
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymond D Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Harvey S Chen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Manuela Lopera Higuita
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujia Wang
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott L Nyberg
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Zhang J, Hu ZQ, Turner NJ, Teng SF, Cheng WY, Zhou HY, Zhang L, Hu HW, Wang Q, Badylak SF. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template. Biomaterials 2016; 89:114-26. [PMID: 26963901 DOI: 10.1016/j.biomaterials.2016.02.040] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/07/2016] [Accepted: 02/23/2016] [Indexed: 11/25/2022]
Abstract
There exists a great need for repair grafts with similar volume to human skeletal muscle that can promote the innate ability of muscle to regenerate following volumetric muscle loss. Perfusion decellularization is an attractive technique for extracellular matrix (ECM) scaffold from intact mammalian organ or tissue which has been successfully used in tissue reconstruction. The perfusion-decellularization of skeletal muscle has been poorly assessed and characterized, but the bioactivity and functional capacity of the obtained perfusion skeletal muscle ECM (pM-ECM) to remodel in vivo is unknown. In the present study, pM-ECM was prepared from porcine rectus abdominis (RA). Perfusion-decellularization of porcine RA effectively removed cellular and nuclear material while retaining the intricate three-dimensional microarchitecture and vasculature networks of the native RA, and many of the bioactive ECM components and mechanical properties. In vivo, partial-thickness abdominal wall defects in rats repaired with pM-ECM showed improved neovascularization, myogenesis and functional recellularization compared to porcine-derived small intestinal submucosa (SIS). These findings show the biologic potential of RA pM-ECM as a scaffold for supporting site appropriate, tissue reconstruction, and provide a better understanding of the importance maintaining the tissue-specific complex three-dimensional architecture of ECM during decellularization and regeneration.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, PR China; Department of Regenerative Medicine, Shanghai Zhabei District Central Hospital, Shanghai 200072, PR China
| | - Zhi Qian Hu
- Department of Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Neill J Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Shi Feng Teng
- Department of Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Wen Yue Cheng
- Department of Regenerative Medicine, Shanghai Zhabei District Central Hospital, Shanghai 200072, PR China
| | - Hai Yang Zhou
- Department of Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Li Zhang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hong Wei Hu
- Department of General Surgery, Shanghai Zhabei District Central Hospital, Shanghai 200072, PR China
| | - Qiang Wang
- Department of Surgery, Shanghai Chang Zheng Hospital, Second Military Medical University, Shanghai 200003, PR China; Department of Regenerative Medicine, Shanghai Zhabei District Central Hospital, Shanghai 200072, PR China; Department of General Surgery, Shanghai Zhabei District Central Hospital, Shanghai 200072, PR China.
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
14
|
Bühler NEM, Schulze-Osthoff K, Königsrainer A, Schenk M. Controlled processing of a full-sized porcine liver to a decellularized matrix in 24 h. J Biosci Bioeng 2015; 119:609-13. [DOI: 10.1016/j.jbiosc.2014.10.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/28/2022]
|
15
|
G N, Tan A, Gundogan B, Farhatnia Y, Nayyer L, Mahdibeiraghdar S, Rajadas J, De Coppi P, Davies AH, Seifalian AM. Tissue engineering vascular grafts a fortiori: looking back and going forward. Expert Opin Biol Ther 2014; 15:231-44. [PMID: 25427995 DOI: 10.1517/14712598.2015.980234] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cardiovascular diseases such as coronary heart disease often necessitate the surgical repair using conduits. Although autografts still remain the gold standard, the inconvenience of harvesting and/or insufficient availability in patients with atherosclerotic disease has given impetus to look into alternative sources for vascular grafts. AREAS COVERED There are four main techniques to produce tissue-engineered vascular grafts (TEVGs): i) biodegradable synthetic scaffolds; ii) gel-based scaffolds; iii) decellularised scaffolds and iv) self-assembled cell-sheet-based techniques. The first three techniques can be grouped together as scaffold-guided approach as it involves the use of a construct to function as a supportive framework for the vascular graft. The most significant advantages of TEVGs are that it possesses the ability to grow, remodel and respond to environmental factors. Cell sources for TEVGs include mature somatic cells, stem cells, adult progenitor cells and pluripotent stem cells. EXPERT OPINION TEVG holds great promise with advances in nanotechnology, coupled with important refinements in tissue engineering and decellularisation techniques. This will undoubtedly be an important milestone for cardiovascular medicine when it is eventually translated to clinical use.
Collapse
Affiliation(s)
- Natasha G
- University College London (UCL), Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, Research Department of Nanotechnology , London NW3 2QG , UK +44 207 830 2901 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bioengineering Strategies for Polymeric Scaffold for Tissue Engineering an Aortic Heart Valve: An Update. Int J Artif Organs 2014; 37:651-67. [DOI: 10.5301/ijao.5000339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2014] [Indexed: 12/17/2022]
Abstract
The occurrence of dysfunctional aortic valves is increasing every year, and current replacement heart valves, although having been shown to be clinically successful, are only short-term solutions and suffer from many agonizing long-term drawbacks. The tissue engineering of heart valves is recognized as one of the most promising answers for aortic valve disease therapy, but overcoming current shortcomings will require multidisciplinary efforts. The use of a polymeric scaffold to guide the growth of the tissue is the most common approach to generate a new tissue for an aortic heart valve. However, optimizing the design of the scaffold, in terms of biocompatibility, surface morphology for cell attachments and the correct rate of degradation is critical in creating a viable tissue-engineered aortic heart valve. This paper highlights the bioengineering strategies that need to be followed to construct a polymeric scaffold of sufficient mechanical integrity, with superior surface morphologies, that is capable of mimicking the valve dynamics in vivo. The current challenges and future directions of research for creating tissue-engineered aortic heart valves are also discussed.
Collapse
|
17
|
Tremblay C, Ruel J, Bourget JM, Laterreur V, Vallières K, Tondreau MY, Lacroix D, Germain L, Auger FA. A new construction technique for tissue-engineered heart valves using the self-assembly method. Tissue Eng Part C Methods 2014; 20:905-15. [PMID: 24576074 DOI: 10.1089/ten.tec.2013.0698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tissue engineering appears as a promising option to create new heart valve substitutes able to overcome the serious drawbacks encountered with mechanical substitutes or tissue valves. The objective of this article is to present the construction method of a new entirely biological stentless aortic valve using the self-assembly method and also a first assessment of its behavior in a bioreactor when exposed to a pulsatile flow. A thick tissue was created by stacking several fibroblast sheets produced with the self-assembly technique. Different sets of custom-made templates were designed to confer to the thick tissue a three-dimensional (3D) shape similar to that of a native aortic valve. The construction of the valve was divided in two sequential steps. The first step was the installation of the thick tissue in a flat preshaping template followed by a 4-week maturation period. The second step was the actual cylindrical 3D forming of the valve. The microscopic tissue structure was assessed using histological cross sections stained with Masson's Trichrome and Picrosirius Red. The thick tissue remained uniformly populated with cells throughout the construction steps and the dense extracellular matrix presented corrugated fibers of collagen. This first prototype of tissue-engineered heart valve was installed in a bioreactor to assess its capacity to sustain a light pulsatile flow at a frequency of 0.5 Hz. Under the light pulsed flow, it was observed that the leaflets opened and closed according to the flow variations. This study demonstrates that the self-assembly method is a viable option for the construction of complex 3D shapes, such as heart valves, with an entirely biological material.
Collapse
Affiliation(s)
- Catherine Tremblay
- 1 Département de génie mécanique, Faculté des sciences et de génie, Université Laval , Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Navone SE, Pascucci L, Dossena M, Ferri A, Invernici G, Acerbi F, Cristini S, Bedini G, Tosetti V, Ceserani V, Bonomi A, Pessina A, Freddi G, Alessandrino A, Ceccarelli P, Campanella R, Marfia G, Alessandri G, Parati EA. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther 2014; 5:7. [PMID: 24423450 PMCID: PMC4055150 DOI: 10.1186/scrt396] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/21/2013] [Accepted: 01/06/2014] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Silk fibroin (SF) scaffolds have been shown to be a suitable substrate for tissue engineering and to improve tissue regeneration when cellularized with mesenchymal stromal cells (MSCs). We here demonstrate, for the first time, that electrospun nanofibrous SF patches cellularized with human adipose-derived MSCs (Ad-MSCs-SF), or decellularized (D-Ad-MSCs-SF), are effective in the treatment of skin wounds, improving skin regeneration in db/db diabetic mice. METHODS The conformational and structural analyses of SF and D-Ad-MSCs-SF patches were performed by scanning electron microscopy, confocal microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Wounds were performed by a 5 mm punch biopsy tool on the mouse's back. Ad-MSCs-SF and D-Ad-MSCs-SF patches were transplanted and the efficacy of treatments was assessed by measuring the wound closure area, by histological examination and by gene expression profile. We further investigated the in vitro angiogenic properties of Ad-MSCs-SF and D-Ad-MSCs-SF patches by affecting migration of human umbilical vein endothelial cells (HUVECs), keratinocytes (KCs) and dermal fibroblasts (DFs), through the aortic ring assay and, finally, by evaluating the release of angiogenic factors. RESULTS We found that Ad-MSCs adhere and grow on SF, maintaining their phenotypic mesenchymal profile and differentiation capacity. Conformational and structural analyses on SF and D-Ad-MSCs-SF samples, showed that sterilization, decellularization, freezing and storing did not affect the SF structure. When grafted in wounds of diabetic mice, both Ad-MSCs-SF and D-Ad-MSCs-SF significantly improved tissue regeneration, reducing the wound area respectively by 40% and 35%, within three days, completing the process in around 10 days compared to 15-17 days of controls. RT2 gene profile analysis of the wounds treated with Ad-MSCs-SF and D-Ad-MSCs-SF showed an increment of genes involved in angiogenesis and matrix remodeling. Finally, Ad-MSCs-SF and D-Ad-MSCs-SF co-cultured with HUVECs, DFs and KCs, preferentially enhanced the HUVECs' migration and the release of angiogenic factors stimulating microvessel outgrowth in the aortic ring assay. CONCLUSIONS Our results highlight for the first time that D-Ad-MSCs-SF patches are almost as effective as Ad-MSCs-SF patches in the treatment of diabetic wounds, acting through a complex mechanism that involves stimulation of angiogenesis. Our data suggest a potential use of D-Ad-MSCs-SF patches in chronic diabetic ulcers in humans.
Collapse
Affiliation(s)
- Stefania Elena Navone
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
- Current address: Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, via Francesco Sforza, 28 20122 Milan, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Marta Dossena
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Anna Ferri
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Gloria Invernici
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Francesco Acerbi
- Neurosurgery Department, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Silvia Cristini
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Gloria Bedini
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Valentina Tosetti
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Valentina Ceserani
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Arianna Bonomi
- Department of Public Health, Microbiology, Virology, University of Milan, Milan, Italy
| | - Augusto Pessina
- Department of Public Health, Microbiology, Virology, University of Milan, Milan, Italy
| | - Giuliano Freddi
- Innovhub-SSI, Div. Stazione Sperimentale per la Seta, Milan, Italy
| | | | - Piero Ceccarelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Giulio Alessandri
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| | - Eugenio Agostino Parati
- The Cellular Neurobiology Laboratory, Cerebrovascular Diseases Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
| |
Collapse
|
19
|
Abstract
Vascular occlusion remains the leading cause of death in Western countries, despite advances made in balloon angioplasty and conventional surgical intervention. Vascular surgery, such as CABG surgery, arteriovenous shunts, and the treatment of congenital anomalies of the coronary artery and pulmonary tracts, requires biologically responsive vascular substitutes. Autografts, particularly saphenous vein and internal mammary artery, are the gold-standard grafts used to treat vascular occlusions. Prosthetic grafts have been developed as alternatives to autografts, but their low patency owing to short-term and intermediate-term thrombosis still limits their clinical application. Advances in vascular tissue engineering technology-such as self-assembling cell sheets, as well as scaffold-guided and decellularized-matrix approaches-promise to produce responsive, living conduits with properties similar to those of native tissue. Over the past decade, vascular tissue engineering has become one of the fastest-growing areas of research, and is now showing some success in the clinic.
Collapse
Affiliation(s)
- Dawit G Seifu
- Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering and Quebec University Hospital Center, Laval University, Quebec City, QC G1V 0A6, Canada
| | | | | | | |
Collapse
|
20
|
Cao Q, Tao L, Liu M, Yin M, Sun K. The effect of vacuum freeze-drying and radiation on allogeneic aorta grafts. Mol Med Rep 2012; 7:144-8. [PMID: 23128779 DOI: 10.3892/mmr.2012.1146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/10/2012] [Indexed: 11/06/2022] Open
Abstract
Vacuum freeze-dried aorta is a satisfactory material for blood vessel grafting. Previous studies have focused on immunity, however, vacuum freeze-drying is a complicated process of heat and mass transfer, and adopting a programmed cooling process may more completely preserve the mechanical properties of the blood vessels. Irradiation, as a method of removing pathogens, lowers the antigenic activity of the blood vessels. In our study, vacuum freeze-drying combined with radiation was used as a treatment for porcine aorta prior to grafting, aimed at deactivating endogenous retrovirus, shielding masses of endothelial cells and lowering the immunogenicity of the blood vessels. As for the mechanical properties, compared with normal aorta, the maximum axial tensile stress (ATS) decreased by 20%, the maximum circumferential tensile stress (CTS) increased by 30% and the maximum puncture stress (PT) decreased by 20%. Our results revealed that 2 months after of grafting, the host cells had migrated into the graft tissue and propagated to initiate endothelialization, the inflammatory reaction was abated and the PT had returned to normal levels.
Collapse
Affiliation(s)
- Qing Cao
- Department of Pediatrics, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University, Shanghai 200127, PR China.
| | | | | | | | | |
Collapse
|
21
|
Preparation of immunogen-reduced and biocompatible extracellular matrices from porcine liver. J Biosci Bioeng 2012; 115:207-15. [PMID: 23068617 DOI: 10.1016/j.jbiosc.2012.08.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/16/2012] [Accepted: 08/27/2012] [Indexed: 01/19/2023]
Abstract
Decellularized biologic matrices are plausible biomedical materials for the bioengineering in liver transplantation. However, one of the concerns for safe medical application is the lack of objective assessment of the immunogen within the materials and the in vivo immune responses to the matrices. The purpose of this study was the production of immunogen-reduced and biocompatible matrices from porcine liver. In the present study, 0.1% SDS solution was effective for removing DNA fragments and sequences encoding possible immunogenic and viral antigens within the matrices. The PCR analysis showed that galactose-α-1,3 galactose β-1,4-N-acetylglucosamine (1,3 gal), swine leukocyte antigen (SLA), and porcine endogenous retrovirus (PERV) were completely removed in the matrices. Collagen and glycosaminoglycans (GAGs) were preserved over 63%-71%, respectively, compared to those of native liver. The implanted decellularized tissues showed minimal host responses and naturally degraded within 10 weeks. In this study, we produced immunogen-reduced and biocompatible extracellular matrices from porcine liver. Although future investigations would be required to determine the mechanism of the host reaction, this study could provide useful information of porcine liver-derived biologic matrices for liver researches.
Collapse
|
22
|
Degradation Effect of Diepoxide Fixation on Porcine Endogenous Retrovirus DNA in Heart Valves: Molecular Aspects. Int J Artif Organs 2012; 35:25-33. [DOI: 10.5301/ijao.5000071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2011] [Indexed: 11/20/2022]
Abstract
Purpose Xenotransplantations of porcine cells, tissues, and organs involve a risk of zoonotic viral infections in recipients, including by porcine endogenous retroviruses (PERVs), which are embedded the genome of all pigs. An appropriate preparation of porcine heart valves for transplantation can prevent retroviral infection. Therefore, the present study focuses on the effect of epoxy compounds and glutaraldehyde on the PERV presence in porcine heart valves prepared for clinical use. Methods Porcine aortic heart valves were fixed with ethylene glycol diglycidyl ether (EDGE) at 5°C and 25°C as well as with glutaraldehyde (GA) for 4 weeks. Salting out was used to isolate genomic DNA from native as well as EDGE- and GA-fixed fragments of valves every week. Quantification of PERV-A, PERV-B, and PERV-C DNA was performed by real-time quantitative polymerase chain reaction (QPCR). Results All subtypes of PERVs were detected in native porcine aortic heart valves. The reduction of the PERV-A, PERV-B, and PERV-C DNA copy numbers was observed in the heart valves which were EDGE-fixed at both temperatures, and in GA-fixed ones in the following weeks. After 7 and 14 days of EDGE cross-linking, significant differences between the investigated temperatures were found for the number of PERV-A and PERV-B copies. PERV DNA was completely degraded within the first week of EDGE fixation at 25°C. Conclusions EDGE fixation induces complete PERV genetic material degradation in porcine aortic heart valves. This suggests that epoxy compounds may be alternatively used in the preparation of bioprosthetic heart valves in future.
Collapse
|
23
|
Tan J, Chua C, Leong K, Chian K, Leong W, Tan L. Esophageal tissue engineering: An in-depth review on scaffold design. Biotechnol Bioeng 2011; 109:1-15. [DOI: 10.1002/bit.23323] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 01/29/2023]
|
24
|
Abstract
With the introduction of heart valve prostheses cardiac valvular disease has become much more accessible to therapeutic options. However, currently available prostheses display significant limitations, such as limited long-term durability (biological prostheses) and a long-term necessity for anticoagulation therapy. Hence, alternative prosthesis types have been extensively explored in recent years particularly aiming at the development of vital and regenerative prostheses by means of tissue engineering. In the scientific field, different competing concepts have been introduced, including biological or synthetic scaffolds which can be further enhanced by cellular or extracellular components to promote further in vivo development of the prosthesis after implantation. Nowadays, decellularized donor heart valves are among the most advanced prosthesis types experiencing growing clinical attention and widespread use.
Collapse
Affiliation(s)
- P Akhyari
- Klinik für Kardiovaskuläre Chirurgie, Universitätsklinik Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 2011; 63:300-11. [PMID: 21396416 DOI: 10.1016/j.addr.2011.03.004] [Citation(s) in RCA: 718] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/09/2011] [Accepted: 03/02/2011] [Indexed: 12/11/2022]
Abstract
The main limitation in engineering in vitro tissues is the lack of a sufficient blood vessel system - the vascularization. In vivo almost all tissues are supplied by these endothelial cell coated tubular networks. Current strategies to create vascularized tissues are discussed in this review. The first strategy is based on the endothelial cells and their ability to form new vessels known as neoangiogenesis. Herein prevascularization techniques are compared to approaches in which biomolecules, such as growth factors, cytokines, peptides and proteins as well as cells are applied to generate new vessels. The second strategy is focused on scaffold-based techniques. Naturally-derived scaffolds, which contain vessels, are distinguished from synthetically manufactured matrices. Advantages and pitfalls of the approaches to create vascularized tissues in vitro are outlined and feasible future strategies are discussed.
Collapse
|
26
|
Weymann A, Loganathan S, Takahashi H, Schies C, Claus B, Hirschberg K, Soós P, Korkmaz S, Schmack B, Karck M, Szabó G. Development and evaluation of a perfusion decellularization porcine heart model--generation of 3-dimensional myocardial neoscaffolds. Circ J 2011; 75:852-60. [PMID: 21301134 DOI: 10.1253/circj.cj-10-0717] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Reports about the generation of 3-dimensional neoscaffolds for myocardial tissue engineering are limited. The architecture provided by perfusion decellularization of whole hearts would support the production of human-sized 3-dimensional living tissues from an acellular matrix. The aim of this study was to evaluate the potential of a perfusion decellularization model for whole heart tissue engineering. METHODS AND RESULTS Hearts were obtained from 12 German Landrace pigs from a selected abattoir. After preparation, the hearts were mounted and perfused on a modified Langendorff decellularization model specifically constructed for this reason. Decellularization was achieved by an ionic detergent-based perfusion protocol. The quality of the decellularization process was quantified by histology and fluorescence microscopy. Data regarding the presence of residual DNA within the decellularized hearts was measured with spectrophotometric quantification and compared to controls. After histological examination, all hearts lacked intracellular components but retained various types of collagen, proteoglycan and elastin. Quantitative DNA analysis demonstrated a significant reduction of DNA in decellularized hearts compared to controls (84.32±3.99 ng DNA/mg tissue vs. 470.13±18.77 ng DNA/mg tissue (P<0.05)). CONCLUSIONS The modified Langendorff perfusion decellularization model described here is applicable for whole porcine hearts by removing cellular content and DNA. The resulting 3-dimensional matrix provides an interesting tool for further studies in the field of whole heart tissue engineering.
Collapse
Affiliation(s)
- Alexander Weymann
- Department of Cardiac Surgery, University of Heidelberg, Im Neuenheimer Feld 326/ OG 2, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Berry JL, Steen JA, Koudy Williams J, Jordan JE, Atala A, Yoo JJ. Bioreactors for Development of Tissue Engineered Heart Valves. Ann Biomed Eng 2010; 38:3272-9. [DOI: 10.1007/s10439-010-0148-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 12/30/2009] [Indexed: 01/14/2023]
|
28
|
Abstract
Surgical replacement of diseased heart valves by mechanical and tissue valve substitutes is now commonplace and enhances survival and quality of life for many patients. However, repairs of congenital deformities require very small valve sizes not commercially available. Further, a fundamental problem inherent to the use of existing mechanical and biological prostheses in the pediatric population is their failure to grow, repair, and remodel. It is believed that a tissue engineered heart valve can accommodate many of these requirements, especially those pertaining to somatic growth. This review provides an overview of the field of heart valve tissue engineering, including recent trends, with a focus on the bioengineering challenges unique to heart valves. We believe that, currently, the key bioengineering challenge is to determine how biological, structural, and mechanical factors affect extracellular matrix (ECM) formation and in vivo functionality. These factors are fundamental to any approach toward developing a clinically viable tissue engineered heart valve (TEHV), regardless of the particular approach. Critical to the current approaches to TEHVs is scaffold design, which must simultaneously provide function (valves must function from the time of implant) as well as stress transfer to the new ECM. From a bioengineering point of view, a hierarchy of approaches will be necessary to connect the organ-tissue relationships with underpinning cell and sub-cellular events. Overall, such approaches need to be structured to address these fundamental issues to lay the basis for TEHVs that can be developed and designed according to truly sound scientific and engineering principles.
Collapse
Affiliation(s)
- Michael S Sacks
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pennsylvania 15219, USA.
| | | | | |
Collapse
|
29
|
Narita Y, Kagami H, Matsunuma H, Murase Y, Ueda M, Ueda Y. Decellularized ureter for tissue-engineered small-caliber vascular graft. J Artif Organs 2008; 11:91-9. [PMID: 18604613 DOI: 10.1007/s10047-008-0407-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 02/23/2008] [Indexed: 11/25/2022]
Abstract
Previous attempts to create small-caliber vascular prostheses have been limited. The aim of this study was to generate tissue-engineered small-diameter vascular grafts using decellularized ureters (DUs). Canine ureters were decellularized using one of four different chemical agents [Triton-X 100 (Tx), deoxycholate (DCA), trypsin, or sodium dodecyl sulfate (SDS)] and the histology, residual DNA contents, and immunogenicity of the resulting DUs were compared. The mechanical properties of the DUs were evaluated in terms of water permeability, burst strength, tensile strength, and compliance. Cultured canine endothelial cells (ECs) and myofibroblasts were seeded onto DUs and evaluated histologically. Canine carotid arteries were replaced with the EC-seeded DUs (n = 4). As controls, nonseeded DUs (n = 5) and PTFE prostheses (n = 4) were also used to replace carotid arteries. The degree of decellularization and the maintenance of the matrix were best in the Tx-treated DUs. Tx-treated and DCA-treated DUs had lower remnant DNA contents and immunogenicity than the others. The burst strength of the DUs was more than 500 mmHg and the maximum tensile strength of the DUs was not different to that of native ureters. DU compliance was similar to that of native carotid artery. The cell seeding test resulted in monolayered ECs and multilayered alpha-smooth muscle actin-positive cells on the DUs. The animal implantation model showed that the EC-seeded DUs were patent for at least 6 months after the operation, whereas the nonseeded DUs and PTFE grafts become occluded within a week. These results suggest that tissue-engineered DUs may be a potential alternative conduit for bypass surgery.
Collapse
Affiliation(s)
- Yuji Narita
- Department of Clinical Cell Therapy and Tissue Engineering, Nagoya University School of Medicine, Nagoya, 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Brody S, Pandit A. Approaches to heart valve tissue engineering scaffold design. J Biomed Mater Res B Appl Biomater 2008; 83:16-43. [PMID: 17318822 DOI: 10.1002/jbm.b.30763] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heart valve disease is a significant cause of mortality worldwide. However, to date, a nonthrombogenic, noncalcific prosthetic, which maintains normal valve mechanical properties and hemodynamic flow, and exhibits sufficient fatigue properties has not been designed. Current prosthetic designs have not been optimized and are unsuitable treatment for congenital heart defects. Research is therefore moving towards the development of a tissue engineered heart valve equivalent. Two approaches may be used in the creation of a tissue engineered heart valve, the traditional approach, which involves seeding a scaffold in vitro, in the presence of specific signals prior to implantation, and the guided tissue regeneration approach, which relies on autologous reseeding in vivo. Regardless of the approach taken, the design of a scaffold capable of supporting the growth of cells and extracellular matrix generation and capable of withstanding the unrelenting cardiovascular environment while forming a tight seal during closure, is critical to the success of the tissue engineered construct. This paper focuses on the quest to design, such a scaffold.
Collapse
Affiliation(s)
- Sarah Brody
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
31
|
Young EWK, Wheeler AR, Simmons CA. Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. LAB ON A CHIP 2007; 7:1759-66. [PMID: 18030398 DOI: 10.1039/b712486d] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The interactions between endothelial cells and the underlying extracellular matrix regulate adhesion and cellular responses to microenvironmental stimuli, including flow-induced shear stress. In this study, we investigated the adhesion properties of primary porcine aortic endothelial cells (PAECs) and valve endothelial cells (PAVECs) in a microfluidic network. Taking advantage of the parallel arrangement of the microchannels, we compared adhesion of PAECs and PAVECs to fibronectin and type I collagen, two prominent extracellular matrix proteins, over a broad range of concentrations. Cell spreading was measured morphologically, based on cytoplasmic staining with a vital dye, while adhesion strength was characterized by the number of cells attached after application of shear stresses of 11, 110, and 220 dyn cm(-2). Results showed that PAVECs were more well spread on fibronectin than on type I collagen (P < 0.0001), particularly for coating concentrations of 100, 200, and 500 microg mL(-1). PAVECs also withstood shear significantly better on fibronectin than on collagen for 500 microg mL(-1). PAECs were more well spread on collagen compared to PAVECs (P < 0.0001), but did not have significantly better adhesion strength. These results demonstrate that cell adhesion is both cell-type and matrix dependent. Furthermore, they reveal important phenotypic differences between vascular and valvular endothelium, with implications for endothelial mechanobiology and the design of microdevices and engineered tissues.
Collapse
Affiliation(s)
- Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8
| | | | | |
Collapse
|
32
|
Ozeki M, Narita Y, Kagami H, Ohmiya N, Itoh A, Hirooka Y, Niwa Y, Ueda M, Goto H. Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. J Biomed Mater Res A 2007; 79:771-8. [PMID: 16871513 DOI: 10.1002/jbm.a.30885] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, decellularized tissue has been reported to have the potential to regenerate a variety of tissues. However, the optimal protocol for a decellularized esophagus has not been studied. Here, we investigated the effect of different decellularization protocols on the histology and biocompatibility of decellularized esophagi in view of future applications to tissue engineering. The esophageal mucosal epithelium (EP) from 4-week-old Wistar rats was enzymatically dissociated and cultured with growth-arrested feeder cells. Two methods for decellularization using deoxycholic acid (DEOX) or Triton X-100 (TRITON) were compared on esophagi from adult Wistar rats. Those treated with DEOX showed superior mechanical properties, maintenance of extracellular matrix, and lower DNA content than those treated with TRITON. To evaluate the biocompatibility of the scaffold, cultured (passage 3) esophageal epithelial cells were seeded inside the decellularized esophagus and cultured for 7 days. The cells seeded onto the decellularized esophagus were examined histologically and immunocytochemically. Esophageal epithelial cells were stratified into three to four cellular layers in vitro inside the decellularized esophagus, to show polarity. The results from immunocytochemistry indicated that the seeded epithelial cells expressed characteristic marker proteins for native esophageal EP. Decellularized esophagus showed suitable compatibility as a scaffold material for esophageal tissue engineering.
Collapse
Affiliation(s)
- Masayasu Ozeki
- Division of Gastroenterology, Department of Therapeutic Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Matsunuma H, Kagami H, Narita Y, Hata KI, Ono Y, Ohshima S, Ueda M. Constructing a Tissue-Engineered Ureter Using a Decellularized Matrix with Cultured Uroepithelial Cells and Bone Marrow-Derived Mononuclear Cells. ACTA ACUST UNITED AC 2006; 12:509-18. [PMID: 16579684 DOI: 10.1089/ten.2006.12.509] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigated the efficacy of the ureteral decellularized matrix (UDM) as a scaffold material for a tissue-engineered ureter, and the effect of bone marrow-derived mononuclear cells (BM-MNC) on the neovascularization of the scaffold. Canine ureters were treated with deoxycholic acid to remove all cells. Uroepithelial cells (UEC) were obtained from canine bladders, cultured, and then seeded onto the inner surface of the UDM before transplantation into the subcutaneous space of nude mice or the omentum of nude rats. The cultured UECs began showing vacuolar degeneration 3 days after transplantation and gradually disappeared thereafter. To facilitate neovascularization in the implant, BM-MNCs were seeded around the UDM before transplantation. This facilitated the survival of the UECs, which formed three to five cellular layers after 14 days. The mean microvessel density was significantly increased in tissues seeded with BM-MNCs. However, cell-tracking experiments revealed that the increased number of capillaries in the experimental group was not due to the direct differentiation of transplanted endothelial progenitor cells. Our results demonstrate that the UDM is a useful scaffold for a tissue-engineered ureter, especially when seeded with BM-MNCs to enhance angiogenesis.
Collapse
Affiliation(s)
- Hiroshi Matsunuma
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
A huge variety of graft materials and transplantation approaches have been applied for decades in order to generate a clinically applicable tracheal substitute; so far, without success. Today, tissue engineering, the creation of man-made functional biological organs or tissue replacements from biodegradable carrier structures and autologous cells, may represent an alternative to the shortage of suitable grafts for reconstructive airway surgery. Partial success has been obtained by numerous groups following different concepts and strategies. In this article, tissue engineering approaches towards the bioartificial airway prosthesis are discussed, focusing primarily on recent developments in the field.
Collapse
Affiliation(s)
- Thorsten Walles
- Hannover Medical School, Tissue Engineering Network, Podbielskistrasse 380, 30659 Hannover, Germany.
| |
Collapse
|
35
|
Lohfeld S, Barron V, McHugh PE. Biomodels of Bone: A Review. Ann Biomed Eng 2005; 33:1295-311. [PMID: 16240079 DOI: 10.1007/s10439-005-5873-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
In this paper, a definition of a biomodel is presented, based on which different specific types of biomodels are identified, viz., virtual biomodels, computational biomodels, and physical biomodels. The paper then focuses on both physical and virtual biomodels of bone, and presents a review of model generation methodologies, giving examples of typical biomodel applications. The use of macroscale biomodels for such issues as the design and preclinical testing of surgical implants and preoperative planning is discussed. At the microscale, biomodels of trabecular bone are examined and the link with scaffolds for tissue engineering is established. Conclusions are drawn on the state of the art, and the major developments necessary for the continued expansion of the field are identified. Finally, arguments are given on the benefits of integrating the use of the different types of biomodels reviewed in this paper, for the benefit of future research in biomechanics and biomaterials.
Collapse
Affiliation(s)
- S Lohfeld
- National Centre for Biomedical Engineering Science and Department of Mechanical and Biomedical Engineering, National University of Ireland, Galway, Ireland.
| | | | | |
Collapse
|