1
|
Guerrero-Orriach JL, Carmona-Luque MD, Rodriguez-Capitan MJ, Quesada-Muñoz G. MicroRNA-197-3p Transfection: Variations in Cardiomyocyte Gene Expression with Anaesthetics Drugs in a Model of Hypoxia/Reperfusion. Pharmaceuticals (Basel) 2025; 18:146. [PMID: 40005961 PMCID: PMC11858145 DOI: 10.3390/ph18020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Our research team analyzed the microRNA (miRNA)-197-3p involved in cardioprotection, and we demonstrated that the overexpression of miRNA-197-3p could be linked to a higher risk of cardiac damage. Recent research indicated that miRNA-197-3p inhibits the effector proteins of the anaesthetic preconditioning mechanism of halogenated drugs. In this scenario, we proposed to determine the role of miRNA-197-3p in cardiac injury and its effects on myocardial conditioning under halogenated exposure. Hypothesis: Patients having myocardial revascularization surgery have increased heart damage due to postoperative miRNA-197-3p upregulation. Methods: Human cardiac myocytes (HCMs) were used in an in vitro hypoxia/reperfusion (H/R) model. The miRNA-197-3p-MIMIC was transfected into the HCMs. Three H/R-induced HCM groups were performed: negative MIMIC-control transfected, MIMIC transfected, and non-transfected. Each H/R cell group was exposed to Propofol (P), Sevoflurane (S), or non-exposed. Healthy cell cultures were the control group. ELISA assays were used to assess the Akt1 and p53 cell secretion capacity, and the Next Generation Sequencing assay was used to measure the differential expression of miRNA targets. Results: The secretion capacity of H/R-induced HCMs transfected with the MIMIC was higher under sevoflurane exposure regarding Akt-1 cytokine (I/R + S: 0.80 ± 0.06 ng/mL; I/R + P: 0.45 ± 0.28 ng/mL; p > 0.05), and lower regarding p53 cytokine (I/R + S: 38.62 ± 6.93 ng/mL; I/R + P: 43.34 ± 15.20 ng/mL; p > 0.05) compared to propofol. In addition, a significant gene overexpression of five miRNAs, in the sevoflurane group, was linked to cardioprotection: miRNA-29-3p, 24-3p, 21-3p, 532, and miRNA-335-5p. Conclusions: miRNA-197-3p inhibits the cardioprotection induced by halogenated exposure and can be considered a biomarker of cardiac damage. Additional research is required to validate our findings in other clinical settings.
Collapse
Affiliation(s)
- Jose Luis Guerrero-Orriach
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain;
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | | | | | - Guillermo Quesada-Muñoz
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain;
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
| |
Collapse
|
2
|
Guerrero-Orriach JL, Carmona-Luque MD, Quesada Muñoz G, Rodriguez Capitán MJ. miRNA Expression: I/R Cardiomyocyte and Sevoflurane. Biomolecules 2024; 14:1554. [PMID: 39766261 PMCID: PMC11673230 DOI: 10.3390/biom14121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The effects of anesthetic drugs on myocardial cells have been a subject of research for the last 50 years. The clinical benefits of halogenated agents, particularly sevoflurane, have been demonstrated in cardiac surgery patients. These benefits are due to the action of different enzymes and a variety of molecular pathways mediated by the action of small noncoding RNAs (sRNA) such as microRNAs (miRNAs). However, the modulation potential induced by anesthetic drugs on the miRNA expression and their cardioprotective effects is unknown. OBJECTIVE To analyze the variation in the expression of a panel of miRNAs induced by halogenated agents to identify their cardioprotective effects. AIMS Variations in the expression of specific miRNAs induce the potential cardioprotective effects of halogenated agents. METHODS An ischemia/reperfusion (I/R) in vitro model of primary human cardiac myocytes (HCMs) was performed. Four study groups were performed: control group (standard culture conditions), I/R group (without hypnotic drugs exposition), I/R-propofol group (I/R-P), and I/R-sevoflurane group (I/R-S). The secretion of p53 and Akt1 cytokines was quantified in the different cell study groups using an Enzyme-Linked ImmunoSorbent Assay, and the differentially expressed miRNAs were identified carrying out a complete genomic sequencing using the Next Generation Sequencing (NGS). RESULTS HCMs subjected to the I/R procedure and exposed to sevoflurane showed lower secretion levels of p53 factor and higher levels of Akt-1 cytokine compared to HCMs exposed to propofol (p53: I/R-S: 10.43 ± 0.91 ng/mL; I/R-P: 137.92 ± 7.53 ng/mL; p > 0.05); (Akt1: I/R-S: 0.62 ± 0.12 ng/mL; I/R-P: 0.23 ± 0.05 ng/mL; p > 0.05). The miRNA gene expression analysis (NGS) showed significantly increased expression of the hsa-miR-140-5p and hsa-miR-455-5p, both miRNAs associated with cardiac function; the hsa-miR-98-5p and hsa-miR-193a-5p, both related to apoptosis inhibition; and the hsa-let-7d-5p associated with myocardial protection. This increase was observed in the HCMs group exposed to sevoflurane in comparison to the propofol group. CONCLUSIONS Sevoflurane-induced miRNAs overexpression confers cardioprotection through various mechanisms at the DNA level and the different signaling pathways levels, such as Akt/ERK.
Collapse
Affiliation(s)
- José Luis Guerrero-Orriach
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain;
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | | | - Guillermo Quesada Muñoz
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain;
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
| | | |
Collapse
|
3
|
Zalewski J, Szajna M, Stępień K, Nowak K, Karcińska A, Yika ADC, Krawczyk K, Karwat K, Zalewska M, Pierzchalski P. Endothelial Cell Apoptosis but Not Necrosis Is Inhibited by Ischemic Preconditioning. Int J Mol Sci 2024; 25:1238. [PMID: 38279236 PMCID: PMC10816637 DOI: 10.3390/ijms25021238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
This study aimed to assess the influence of ischemic preconditioning (IP) on hypoxia/reoxygenation (HR)-induced endothelial cell (EC) death. Human umbilical vein endothelial cells (HUVECs) were subjected to 2 or 6 h hypoxia with subsequent reoxygenation. IP was induced by 20 min of hypoxia followed by 20 min of reoxygenation. Necrosis was assessed by the release of lactate dehydrogenase (LDH) and apoptosis by double staining with propidium iodide/annexin V (PI/AV), using TUNEL test, and Bcl-2 and Bax gene expression measured using RT-PCR. In PI/AV staining, after 24 h of reoxygenation, 30-33% of EC were necrotic and 16-21% were apoptotic. In comparison to HR cells, IP reduced membrane apoptosis after 24 h of reoxygenation by 50% but did not influence EC necrosis. Nuclear EC apoptosis affected about 15-17% of EC after 24 h of reoxygenation and was reduced with IP by 55-60%. IP was associated with a significantly higher Bcl-2/Bax ratio, at 8 h 2-4 times and at 24 h 2-3 times as compared to HR. Longer hypoxia was associated with lower values of Bcl-2/Bax ratio in EC subjected to HR or IP. IP delays, without reducing, the extent of HR-induced EC necrosis but significantly inhibits their multi-level evaluated apoptosis.
Collapse
Affiliation(s)
- Jarosław Zalewski
- Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, 31-202 Krakow, Poland; (K.S.); (K.N.); (K.K.)
| | | | - Konrad Stępień
- Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, 31-202 Krakow, Poland; (K.S.); (K.N.); (K.K.)
- Department of Thromboembolic Disorders, Jagiellonian University Medical College, 31-202 Krakow, Poland
| | - Karol Nowak
- Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, 31-202 Krakow, Poland; (K.S.); (K.N.); (K.K.)
- Department of Thromboembolic Disorders, Jagiellonian University Medical College, 31-202 Krakow, Poland
| | - Aleksandra Karcińska
- Student Research Group, Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, 31-202 Krakow, Poland; (A.K.); (A.d.C.Y.); (K.K.)
| | - Alicia del Carmen Yika
- Student Research Group, Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, 31-202 Krakow, Poland; (A.K.); (A.d.C.Y.); (K.K.)
| | - Kornelia Krawczyk
- Student Research Group, Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, 31-202 Krakow, Poland; (A.K.); (A.d.C.Y.); (K.K.)
| | - Krzysztof Karwat
- Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, 31-202 Krakow, Poland; (K.S.); (K.N.); (K.K.)
| | - Magdalena Zalewska
- Department of Emergency Medicine, Faculty of Health Science, Jagiellonian University Medical College, 31-126 Krakow, Poland;
| | - Piotr Pierzchalski
- Faculty of Health Science, Jagiellonian University Medical College, 31-126 Krakow, Poland;
| |
Collapse
|
4
|
Samat AA, Hamid ZAA, Yahaya BH. Tissue Engineering for Tracheal Replacement: Strategies and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:137-163. [PMID: 35389199 DOI: 10.1007/5584_2022_707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The critical feature in trachea replacement is to provide a hollow cylindrical framework that is laterally stable and longitudinally flexible, facilitating cartilage and epithelial tissue formation. Despite advanced techniques and sources of materials used, most inherent challenges are related to the complexity of its anatomy. Limited blood supply leads to insufficient regenerative capacity for cartilage and epithelium. Natural and synthetic scaffolds, different types of cells, and growth factors are part of tissue engineering approaches with varying outcomes. Pre-vascularization remains one of the crucial factors to expedite the regenerative process in tracheal reconstruction. This review discusses the challenges and strategies used in tracheal tissue engineering, focusing on scaffold implantation in clinical and preclinical studies conducted in recent decades.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
- Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
5
|
Rahman MM, Islam MR, Islam MT, Harun-Or-Rashid M, Islam M, Abdullah S, Uddin MB, Das S, Rahaman MS, Ahmed M, Alhumaydhi FA, Emran TB, Mohamed AAR, Faruque MRI, Khandaker MU, Mostafa-Hedeab G. Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. BIOLOGY 2022; 11:147. [PMID: 35053145 PMCID: PMC8772847 DOI: 10.3390/biology11010147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial cells can lead to the development of several neurological diseases, including Parkinson's disease, stroke, and multiple sclerosis. In recent years, neurons and glial cells have successfully been generated from stem cells in the laboratory utilizing cell culture technologies, fueling efforts to develop stem cell-based transplantation therapies for human patients. When a stem cell divides, each new cell has the potential to either remain a stem cell or differentiate into a germ cell with specialized characteristics, such as muscle cells, red blood cells, or brain cells. Although several obstacles remain before stem cells can be used for clinical applications, including some potential disadvantages that must be overcome, this cellular development represents a potential pathway through which patients may eventually achieve the ability to live more normal lives. In this review, we summarize the stem cell-based therapies that have been explored for various neurological disorders, discuss the potential advantages and drawbacks of these therapies, and examine future directions for this field.
Collapse
Affiliation(s)
- Mohammad Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sabirin Abdullah
- Space Science Center, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sumit Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | | | | | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Sciences Research Unit, Medical College, Jouf University, Sakaka 72446, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
6
|
Fukunaga N, Kawajiri H, Badiwala MV, Butany J, Li RK, Billia F, Rao V. Protective role of Nrf2 against ischemia reperfusion injury and cardiac allograft vasculopathy. Am J Transplant 2020; 20:1262-1271. [PMID: 31769924 DOI: 10.1111/ajt.15724] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) and cardiac allograft vasculopathy (CAV) remain unsolved complications post-heart transplant (Tx). The antioxidant transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) has been suggested to inhibit reactive oxygen species-mediated NF-κB activation. We hypothesized that Nrf2 inhibits NF-κB activation post-Tx and suppresses IRI and the subsequent development of CAV. IRI and CAV were investigated in murine heterotopic Tx models, respectively. Nrf2 wild-type (WT) and KO mice were used as donors. Sulforaphane was used as an Nrf2 agonist. In saline-treated animals following 24 hours of reperfusion in isogenic grafts, Nrf2-KO showed significantly less SOD1/2 activity compared with WT. Nrf2-KO displayed significantly high total and phosphorylated p65 expressions and percentage of cells with nuclear p65. mRNA levels of NF-κB-mediated proinflammatory genes were also high. Graft dysfunction, apoptosis, and caspase-3 activity were significantly higher in Nrf2-KO. In the allograft studies, graft beating score was significantly weaker in Nrf2-KO compared with WT. Nrf2-KO also demonstrated significantly more coronary luminal narrowing. In WT animals, sulforaphane successfully augmented all the protective effects of Nrf2 with increase of SOD2 activity. Nrf2 inhibits NF-κB activation and protects against IRI via its antioxidant properties and suppresses the subsequent development of CAV.
Collapse
Affiliation(s)
- Naoto Fukunaga
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hiroyuki Kawajiri
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mitesh V Badiwala
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jagdish Butany
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Filio Billia
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Meng Y, Tian M, Yin S, Lai S, Zhou Y, Chen J, He M, Liao Z. Downregulation of TSPO expression inhibits oxidative stress and maintains mitochondrial homeostasis in cardiomyocytes subjected to anoxia/reoxygenation injury. Biomed Pharmacother 2020; 121:109588. [DOI: 10.1016/j.biopha.2019.109588] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
|
8
|
Rossello X, Lobo-Gonzalez M, Ibanez B. Editor's Choice- Pathophysiology and therapy of myocardial ischaemia/reperfusion syndrome. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2019; 8:443-456. [PMID: 31172789 DOI: 10.1177/2048872619845283] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a need to find interventions able to reduce the extent of injury in reperfused ST-segment elevation myocardial infarction (STEMI) beyond timely reperfusion. In this review, we summarise the clinical impact of STEMI from epidemiological, clinical and biological perspectives. We also revise the pathophysiology underlying the ischaemia/reperfusion syndrome occurring in reperfused STEMI, including the several players involved in this syndrome, such as cardiomyocytes, microcirculation and circulating cells. Interventions aimed to reduce the resultant infarct size, known as cardioprotective therapies, are extensively discussed, putting the focus on both mechanical interventions (i.e. ischaemic conditioning) and promising pharmacological therapies, such as early intravenous metoprolol, exenatide and other glucose modulators, N-acetylcysteine as well as on some other classic therapies which have failed to be translated to the clinical arena. Novel targets for evolving therapeutic interventions to ameliorate ischaemia/reperfusion injury are also discussed. Finally, we highlight the necessity to improve the study design of future randomised clinical trials in the field, as well as to select patients better who can most likely benefit from cardioprotective interventions.
Collapse
Affiliation(s)
- Xavier Rossello
- 1 Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Spain.,2 CIBER de enfermedades CardioVasculares (CIBERCV), Spain
| | - Manuel Lobo-Gonzalez
- 1 Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Spain
| | - Borja Ibanez
- 1 Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Spain.,2 CIBER de enfermedades CardioVasculares (CIBERCV), Spain.,3 Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Spain
| |
Collapse
|
9
|
Li X, He P, Wang XL, Zhang S, Devejian N, Bennett E, Cai C. Sulfiredoxin-1 enhances cardiac progenitor cell survival against oxidative stress via the upregulation of the ERK/NRF2 signal pathway. Free Radic Biol Med 2018; 123:8-19. [PMID: 29772252 PMCID: PMC5999586 DOI: 10.1016/j.freeradbiomed.2018.05.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/30/2018] [Accepted: 05/12/2018] [Indexed: 02/08/2023]
Abstract
Cardiac stem/progenitor cells (CPCs) have recently emerged as a potentially transformative regenerative medicine to repair the infarcted heart. However, the limited survival of donor cells is one of the major challenges for CPC therapy. Our recent research effort on preconditioning human CPCs (hCPCs) with cobalt protoporphyrin (CoPP) indicated that sulfiredoxin-1 (SRXN1) is upregulated upon preconditioning aldehyde dehydrogenase bright hCPCs (ALDHbr-hCPCs) with CoPP. Further studies demonstrated that overexpressing SRXN1 enhanced the survival capacity for ALDHbr-hCPCs. This was associated with the up-regulation of anti-apoptotic factors, including BCL2 and BCL-xL. Meanwhile, overexpressing SRXN1 decreased the ROS generation and mitochondrial membrane potential, concomitant with the up-regulated primary antioxidant systems, such as PRDX1, PRDX3, TXNRD1, Catalase and SOD2. It was also observed that overexpressing SRXN1 increased the migration, proliferation, and cardiac differentiation of ALDHbr-hCPCs. Interestingly, SRXN1 activated the ERK/NRF2 cell survival signaling pathway, which may be the underlying mechanism through which overexpressing SRXN1 lead to protection of hCPCs against oxidative stress-induced apoptosis. Taken together, these results provide a rationale for the exploration of SRXN1 as a novel molecular target that can be used to enhance the effectiveness of cardiac stem/progenitor cell therapy for ischemic heart disease.
Collapse
Affiliation(s)
- Xiuchun Li
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Pan He
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA; Laboratory for Cancer Signal Transduction, Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xiao-Liang Wang
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Shuning Zhang
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Neil Devejian
- Division of Pediatric Cardiothoracic Surgery, Albany Medical Center, NY 12208, USA
| | - Edward Bennett
- Division of Cardiothoracic Surgery, Albany Medical Center, NY 12208, USA
| | - Chuanxi Cai
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
10
|
Law JX, Liau LL, Aminuddin BS, Ruszymah BHI. Tissue-engineered trachea: A review. Int J Pediatr Otorhinolaryngol 2016; 91:55-63. [PMID: 27863642 DOI: 10.1016/j.ijporl.2016.10.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 01/23/2023]
Abstract
Tracheal replacement is performed after resection of a portion of the trachea that was impossible to reconnect via direct anastomosis. A tissue-engineered trachea is one of the available options that offer many advantages compared to other types of graft. Fabrication of a functional tissue-engineered trachea for grafting is very challenging, as it is a complex organ with important components, including cartilage, epithelium and vasculature. A number of studies have been reported on the preparation of a graftable trachea. A laterally rigid but longitudinally flexible hollow cylindrical scaffold which supports cartilage and epithelial tissue formation is the key element. The scaffold can be prepared via decellularization of an allograft or fabricated using biodegradable or non-biodegradable biomaterials. Commonly, the scaffold is seeded with chondrocytes and epithelial cells at the outer and luminal surfaces, respectively, to hasten tissue formation and improve functionality. To date, several clinical trials of tracheal replacement with tissue-engineered trachea have been performed. This article reviews the formation of cartilage tissue, epithelium and neovascularization of tissue-engineered trachea, together with the obstacles, possible solutions and future. Furthermore, the role of the bioreactor for in vitro tracheal graft formation and recently reported clinical applications of tracheal graft were also discussed. Generally, although encouraging results have been achieved, however, some obstacles remain to be resolved before the tissue-engineered trachea can be widely used in clinical settings.
Collapse
Affiliation(s)
- Jia Xian Law
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Bin Saim Aminuddin
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia; Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, 68000, Ampang, Selangor, Malaysia
| | - Bt Hj Idrus Ruszymah
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia; Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Teng L, Bennett E, Cai C. Preconditioning c-Kit-positive Human Cardiac Stem Cells with a Nitric Oxide Donor Enhances Cell Survival through Activation of Survival Signaling Pathways. J Biol Chem 2016; 291:9733-47. [PMID: 26940876 DOI: 10.1074/jbc.m115.687806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac stem cell therapy has shown very promising potential to repair the infarcted heart but is severely limited by the poor survival of donor cells. Nitric oxide (NO) has demonstrated cytoprotective properties in various cells, but its benefits are unknown specifically for human cardiac stem cells (hCSCs). Therefore, we investigated whether pretreatment of hCSCs with a widely used NO donor, diethylenetriamine nitric oxide adduct (DETA-NO), promotes cell survival. Results from lactate dehydrogenase release assays showed a dose- and time-dependent attenuation of cell death induced by oxidative stress after DETA-NO preconditioning; this cytoprotective effect was abolished by the NO scavenger. Concomitant up-regulation of several cell signaling molecules after DETA-NO preconditioning was observed by Western blotting, including elevated phosphorylation of NRF2, NFκB, STAT3, ERK, and AKT, as well as increased protein expression of HO-1 and COX2. Furthermore, pharmaceutical inhibition of ERK, STAT3, and NFκB activities significantly diminished NO-induced cytoprotection against oxidative stress, whereas inhibition of AKT or knockdown of NRF2 only produced a minor effect. Blocking PI3K activity or knocking down COX2 expression did not alter the protective effect of DETA-NO on cell survival. The crucial roles of STAT3 and NFκB in NO-mediated signaling pathways were further confirmed by stable expression of gene-specific shRNAs in hCSCs. Thus, preconditioning hCSCs with DETA-NO promotes cell survival and resistance to oxidative stress by activating multiple cell survival signaling pathways. These results will potentially provide a simple and effective strategy to enhance survival of hCSCs after transplantation and increase their efficacy in repairing infarcted myocardium.
Collapse
Affiliation(s)
- Lei Teng
- From the Center for Cardiovascular Sciences and Department of Medicine, Albany Medical College and
| | - Edward Bennett
- Division of Cardiothoracic Surgery, Albany Medical Center, Albany, New York 12208
| | - Chuanxi Cai
- From the Center for Cardiovascular Sciences and Department of Medicine, Albany Medical College and
| |
Collapse
|
12
|
Parameswaran S, Kumar S, Verma RS, Sharma RK. Cardiomyocyte culture - an update on the in vitro cardiovascular model and future challenges. Can J Physiol Pharmacol 2013; 91:985-98. [PMID: 24289068 DOI: 10.1139/cjpp-2013-0161] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The success of any work with isolated cardiomyocytes depends on the reproducibility of cell isolation, because the cells do not divide. To date, there is no suitable in vitro model to study human adult cardiac cell biology. Although embryonic stem cells and induced pluripotent stem cells are able to differentiate into cardiomyocytes in vitro, the efficiency of this process is low. Isolation and expansion of human cardiomyocyte progenitor cells from cardiac surgical waste or, alternatively, from fetal heart tissue is another option. However, to overcome various issues related to human tissue usage, especially ethical concerns, researchers use large- and small-animal models to study cardiac pathophysiology. A simple model to study the changes at the cellular level is cultures of cardiomyocytes. Although primary murine cardiomyocyte cultures have their own advantages and drawbacks, alternative strategies have been developed in the last two decades to minimise animal usage and interspecies differences. This review discusses the use of freshly isolated murine cardiomyocytes and cardiomyocyte alternatives for use in cardiac disease models and other related studies.
Collapse
Affiliation(s)
- Sreejit Parameswaran
- a Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | | | | | | |
Collapse
|
13
|
Cai C, Teng L, Vu D, He JQ, Guo Y, Li Q, Tang XL, Rokosh G, Bhatnagar A, Bolli R. The heme oxygenase 1 inducer (CoPP) protects human cardiac stem cells against apoptosis through activation of the extracellular signal-regulated kinase (ERK)/NRF2 signaling pathway and cytokine release. J Biol Chem 2012; 287:33720-32. [PMID: 22879597 DOI: 10.1074/jbc.m112.385542] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracoronary delivery of c-kit-positive human cardiac stem cells (hCSCs) is a promising approach to repair the infarcted heart, but it is severely limited by the poor survival of donor cells. Cobalt protoporphyrin (CoPP), a well known heme oxygenase 1 inducer, has been used to promote endogenous CO generation and protect against ischemia/reperfusion injury. Therefore, we determined whether preconditioning hCSCs with CoPP promotes CSC survival. c-kit-positive, lineage-negative hCSCs were isolated from human heart biopsies. Lactate dehydrogenase release assays demonstrated that preconditioning CSCs with CoPP markedly enhanced cell survival after oxidative stress induced by H(2)O(2), concomitant with up-regulation of heme oxygenase 1, COX-2, and anti-apoptotic proteins (BCL2, BCL2-A1, and MCL-1) and increased phosphorylation of NRF2. Apoptotic cytometric assays showed that pretreatment of CSCs with CoPP enhanced the cells' resistance to apoptosis induced by oxidative stress. Conversely, knocking down HO-1, COX-2, or NRF2 by shRNA gene silencing abrogated the cytoprotective effects of CoPP. Further, preconditioning CSCs with CoPP led to a global increase in release of cytokines, such as EGF, FGFs, colony-stimulating factors, and chemokine ligand. Conditioned medium from cells pretreated with CoPP conferred naive CSCs remarkable resistance to apoptosis, demonstrating that cytokines released by preconditioned cells play a key role in the anti-apoptotic effects of CoPP. Preconditioning CSCs with CoPP also induced an increase in the phosphorylation of Erk1/2, which are known to modulate multiple pro-survival genes. These results potentially provide a simple and effective strategy to enhance survival of CSCs after transplantation and, therefore, their efficacy in repairing infarcted myocardium.
Collapse
Affiliation(s)
- Chuanxi Cai
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bell RM, Yellon DM. Conditioning the whole heart—not just the cardiomyocyte. J Mol Cell Cardiol 2012; 53:24-32. [DOI: 10.1016/j.yjmcc.2012.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 03/05/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
15
|
Haider HK, Ashraf M. Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 2008; 45:554-66. [PMID: 18561945 DOI: 10.1016/j.yjmcc.2008.05.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/18/2008] [Accepted: 05/02/2008] [Indexed: 12/22/2022]
Abstract
Stem cell transplantation has emerged as a potential modality in cardiovascular therapeutics due to their inherent characteristics of self-renewal, unlimited capacity for proliferation and ability to cross lineage restrictions and adopt different phenotypes. Constrained by extensive death in the unfriendly milieu of ischemic myocardium, the results of heart cell therapy in experimental animal models as well as clinical studies have been less than optimal. Several factors which play a role in early cell death after engraftment in the ischemic myocardium include: absence of survival factors in the transplanted heart, disruption of cell-cell interaction coupled with loss of survival signals from matrix attachments, insufficient vascular supply and elaboration of inflammatory cytokines resulting from ischemia and/or cell death. This article reviews various signaling pathways involved in triggering highly complex forms of cell death and provides critical appreciation of different novel anti-death strategies developed from the knowledge gained from using an ischemic preconditioning approach. The use of pharmacological preconditioning for up-regulation of pro-survival proteins and cardiogenic markers in the transplanted stem cells will be discussed.
Collapse
Affiliation(s)
- Husnain Kh Haider
- Department of Pathology and Laboratory Medicine, 231-Albert Sabin Way, University of Cincinnati, OH-45267-0529, USA
| | | |
Collapse
|
16
|
Philipp S, Cohen MV, Downey JM. Animal models for the study of myocardial protection against ischemia. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ddmod.2005.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Abstract
BACKGROUND The aim of this study is to investigate the effects of ischemic preconditioning (IP) on myocardium and the level of nitric oxide (NO) in patients undergoing aorta-coronary bypass surgery. METHODS Twenty consecutive patients with coronary artery disease were subjected into two equal groups; the IP group and the control group. Following the onset of cardiopulmonary bypass in the study group, hearts were preconditioned with two 3-minute periods of cross-clamping separated by 2 minutes of reperfusion. In the control group, cardiopulmonary bypass was continued for 10 minutes without using cross-clamp. Arterial and coronary sinus blood samples were used to determine serum NO, malondialdehyde (MDA), creatine phosphokinase-MB (CKMB), and lactate dehydrogenase (LDH) levels. Need for defibrillation after cross-clamp removal, ECG changes, postoperative arrhythmias, ejection fraction, and fractional shortening rates were recorded as hemodynamic data. RESULTS Serum NO level was higher in the study group 5 minutes after aortic clamp removal (199.3 +/- 92.7 vs. 112.2 +/- 35.8 micromol; p = 001). Serum MDA (2.55 +/- 0.4 vs. 4.06 +/- 0.5; etamol/ml; 5 minutes after the aortic clamp removal; p = 0.0002); CK-MB (22.8 +/- 2.5 vs. 37.4 +/- 4.1; U/L 12 hours after the operation, p < 0.0001), and LDH (501.8 +/- 46.7 vs. 611.4 +/- 128.3; IU/L 48 hours after the operation, p = 0.02) levels were significantly lower in the preconditioned group when compared with the control group. Also, need for electrical defibrillation was significantly lower in the study group; Ejection fraction (64.3 +/- 6.3 vs. 57.6 +/- 7.6; p = 0.04) and fractional shortening (31.7 +/- 3.9 vs. 26.2 +/- 4.0; p = 0.04) rates were better in the study group postoperatively. CONCLUSIONS These data may suggest that cardioprotection by ischemic preconditioning offers higher NO production, a lower myocardial ischemia, and better functional recovery of the hearts in coronary artery surgery patients.
Collapse
Affiliation(s)
- Mustafa Buyukates
- Department of Cardiovascular Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | | | | | | |
Collapse
|
18
|
Yellon DM, Downey JM. Preconditioning the Myocardium: From Cellular Physiology to Clinical Cardiology. Physiol Rev 2003; 83:1113-51. [PMID: 14506302 DOI: 10.1152/physrev.00009.2003] [Citation(s) in RCA: 703] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Yellon, Derek M., and James M. Downey. Preconditioning the Myocardium: From Cellular Physiology to Clinical Cardiology. Physiol Rev 83: 1113-1151, 2003; 10.1152/physrev.00009.2003.—The phenomenon of ischemic preconditioning, in which a period of sublethal ischemia can profoundly protect the cell from infarction during a subsequent ischemic insult, has been responsible for an enormous amount of research over the last 15 years. Ischemic preconditioning is associated with two forms of protection: a classical form lasting ∼2 h after the preconditioning ischemia followed a day later by a second window of protection lasting ∼3 days. Both types of preconditioning share similarities in that the preconditioning ischemia provokes the release of several autacoids that trigger protection by occupying cell surface receptors. Receptor occupancy activates complex signaling cascades which during the lethal ischemia converge on one or more end-effectors to mediate the protection. The end-effectors so far have eluded identification, although a number have been proposed. A range of different pharmacological agents that activate the signaling cascades at the various levels can mimic ischemic preconditioning leading to the hope that specific therapeutic agents can be designed to exploit the profound protection seen with ischemic preconditioning. This review examines, in detail, the complex mechanisms associated with both forms of preconditioning as well as discusses the possibility to exploit this phenomenon in the clinical setting. As our understanding of the mechanisms associated with preconditioning are unravelled, we believe we can look forward to the development of new therapeutic agents with novel mechanisms of action that can supplement current treatment options for patients threatened with acute myocardial infarction.
Collapse
Affiliation(s)
- Derek M Yellon
- The Hatter Institute for Cardiovascular Studies, Centre for Cardiology, University College London Hospital and Medical School, Grafton Way, London, UK.
| | | |
Collapse
|
19
|
Schmiedl A, Richter J, Schnabel PA. Different preservation of myocardial capillary endothelial cells and cardiomyocytes during and after cardioplegic ischemia (25 degrees C) of canine hearts. Pathol Res Pract 2002; 198:281-90. [PMID: 12049337 DOI: 10.1078/0344-0338-00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Complete resumption of cardiac function after cardioplegic arrest presupposes a well-preserved myocardial ultrastructure during and after ischemia. Therefore, we determined ischemia-induced ultrastructural alterations in the myocardium during and after reversible cardioplegic ischemia using stereological methods. Cardiac arrest was induced with St. Thomas' Hospital- or Custodiol (HTK) solution. Reperfusion with Tyrode's solution followed after reversible cardioplegic ischemia in situ. Samples were taken 1) from beating hearts, 2) from cardioplegically arrested hearts immediately after the end of coronary perfusion, 3) from ischemic hearts incubated in the cardioplegic solution at 25 degrees C, and 4) from reperfused beating hearts after ischemia in situ at 22 degrees C. Cellular swelling was determined as the barrier thickness of capillary endothelium and as the sum of cardiomyocyte volume fractions of free sarcoplasm and mitochondria. In St. Thomas'-arrested hearts, intraischemic volume increase was significantly more pronounced in endothelial cells than in cardiomyocytes. Reperfusion at the intraischemic practical limit of resuscitability (ATP levels of 4 micromol/gww) significantly reduced intraischemic swelling of cardiomyocytes, but not of capillary endothelial cells. Mitochondrial damage was more pronounced in capillary endothelial cells during ischemia and after reperfusion. Thus, after reversible cardioplegic arrest, structural recovery of cardiomyocytes is better than that of capillary endothelial cells. An incomplete structural protection of capillary endothelial cells may predominantly contribute to postischemic dysfunction in the reperfused heart.
Collapse
Affiliation(s)
- A Schmiedl
- Department of Anatomy, Division of Electron Microscopy, University of Göttingen, Germany.
| | | | | |
Collapse
|
20
|
Shiono N, Rao V, Weisel RD, Kawasaki M, Li RK, Mickle DAG, Fedak PWM, Tumiati LC, Ko L, Verma S. L-arginine protects human heart cells from low-volume anoxia and reoxygenation. Am J Physiol Heart Circ Physiol 2002; 282:H805-15. [PMID: 11834473 DOI: 10.1152/ajpheart.00594.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protective effects of L-arginine were evaluated in a human ventricular heart cell model of low-volume anoxia and reoxygenation independent of alternate cell types. Cell cultures were subjected to 90 min of low-volume anoxia and 30 min of reoxygenation. L-Arginine (0-5.0 mM) was administered during the preanoxic period or the reoxygenation phase. Nitric oxide (NO) production, NO synthase (NOS) activity, cGMP levels, and cellular injury were assessed. To evaluate the effects of the L-arginine on cell signaling, the effects of the NOS antagonist N(G)-nitro-L-arginine methyl ester, NO donor S-nitroso-N-acetyl-penicillamine, guanylate cyclase inhibitor methylene blue, cGMP analog 8-bromo-cGMP, and ATP-sensitive K+ channel antagonist glibenclamide were examined. Our data indicate that low-volume anoxia and reoxygenation increased NOS activity and facilitated the conversion of L-arginine to NO, which provided protection against cellular injury in a dose-dependent fashion. In addition, L-arginine cardioprotection was achieved by the activation of guanylate cyclase, leading to increased cGMP levels in human heart cells. This action involves a glibenclamide-sensitive, NO-cGMP-dependent pathway.
Collapse
Affiliation(s)
- Noritsugu Shiono
- Division of Cardiac Surgery, University of Toronto, Toronto, Ontario, M5G 2C4 Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu ZK, Pehkonen E, Laurikka J, Kaukinen L, Honkonen EL, Kaukinen S, Tarkka MR. Myocardial lactate production is not involved in the ischemic preconditioning mechanism in coronary artery bypass graft surgery patients. J Cardiothorac Vasc Anesth 2001; 15:412-7. [PMID: 11505341 DOI: 10.1053/jcan.2001.24953] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To study the relationship between ischemic preconditioning (IP) and lactate production and their impact on coronary artery bypass graft surgery patients. DESIGN Prospective, randomized, controlled study. SETTING University hospital. PARTICIPANTS Eighty 3-vessel disease coronary artery bypass graft surgery patients with stable and unstable angina pectoris. INTERVENTIONS The IP patients were preconditioned with 2 periods of 2-minute ischemia followed by 3-minute reperfusion before aortic cross-clamping. MEASUREMENTS AND MAIN RESULTS The cardiac index (CI) after surgery was significantly higher in the IP group than in controls among stable patients (p = 0.013). IP was not effective in CI recovery in unstable patients. The baseline values of lactate production were 11.6%, 20.3%, -7.0%, and -2.9% in stable IP, stable control, unstable IP, and unstable control patients. Compared with baseline, lactate production increased significantly after the IP protocol (39.0% and 47.5% in the stable and unstable patients), and operation (47.5%, 31.7%, 35.4%, and 35.6% in stable IP, stable control, unstable IP, and unstable control patients) but not after 10 minutes of cardiopulmonary bypass (29.7% and 19.0% in the stable and unstable patients). There were no differences among the groups in lactate production after the operation. Lactate production after the IP protocol was negatively associated with CI recovery after surgery in the IP patients (p = 0.026). CONCLUSION The IP effects do not include modulation of lactate production. IP induces lactate production, but it seems not to be involved in the triggering process.
Collapse
Affiliation(s)
- Z K Wu
- Division of Cardiac Surgery, Department of Anesthesiology and Intensive Care, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
22
|
Han H, Wang H, Long H, Nattel S, Wang Z. Oxidative preconditioning and apoptosis in L-cells. Roles of protein kinase B and mitogen-activated protein kinases. J Biol Chem 2001; 276:26357-26364. [PMID: 11331278 DOI: 10.1074/jbc.m011136200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress can cause significant cell death by apoptosis. We performed studies in L-cells to explore whether prior exposure to oxidative stress ("oxidative preconditioning") can protect the cell against the apoptotic consequences of subsequent oxidative insults and to establish the mediators in the preconditioning signaling cascade. Cells were preconditioned with three 5-min exposures to H(2)O(2), followed by 10-h recovery and subsequent exposure to 600 microm H(2)O(2) for 10 h. A single 10-h exposure to H(2)O(2) induced substantial apoptotic cell death (approximately 90%), as determined by enzyme-linked immunosorbent assay, TUNEL (terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling), and Annexin V methods, but apoptosis was largely prevented in preconditioned cells. The degree of cytoprotection depended on the strength of preconditioning or H(2)O(2) concentration (20 approximately 600 microm). Transient increases in mitogen-activated protein kinase (MAPK), p38, and JNK/SAPK activities and sustained protein kinase B (Akt) activation, accompanied by drastically reduced caspase 3 activity, were seen after preconditioning. The expression levels of these kinases were unaltered. Inhibitors of p38 (SB203580) and phosphoinositide 3-kinase (PI3K, LY294002) pathways abolished the protection provided by preconditioning. We conclude that oxidative preconditioning protects cells against apoptosis and that this effect involves MAPK and PI3K/Akt pathways. This system may be important in regulating apoptotic cell death in development and disease states.
Collapse
Affiliation(s)
- H Han
- Research Center, Montreal Heart Institute, Montreal, Quebec H1T 1C8, Canada
| | | | | | | | | |
Collapse
|
23
|
Kevelaitis E, Oubénaissa A, Mouas C, Peynet J, Menasché P. Ischemic preconditioning with opening of mitochondrial adenosine triphosphate-sensitive potassium channels or Na/H exchange inhibition: which is the best protective strategy for heart transplants? J Thorac Cardiovasc Surg 2001; 121:155-62. [PMID: 11135172 DOI: 10.1067/mtc.2001.111417] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study was designed to compare ischemic preconditioning with opening of mitochondrial adenosine triphosphate-sensitive potassium channels and Na(+)/H(+) exchange inhibition in an isolated heart model of cold storage, simulating the situation of cardiac allografts. METHODS Sixty-seven isolated isovolumic buffer-perfused rat hearts were arrested with and stored in Celsior solution (Imtix-Sangstat) at 4 degrees C for 4 hours before a 2-hour reperfusion. Group I hearts served as controls and were arrested with and stored in Celsior solution. In group II, hearts were preconditioned by two 5-minute episodes of global ischemia, each separated by 5 minutes of reperfusion before arrest with Celsior solution. Group III hearts were arrested with and stored in Celsior solution supplemented with 100 micromol/L of the mitochondrial adenosine triphosphate-sensitive potassium channel opener diazoxide. In group IV, hearts received an infusion of diazoxide (30 micromol/L) during the first 15 minutes of reperfusion. Group V hearts underwent a protocol combining both interventions used in groups III and IV. In group VI, hearts were arrested with and stored in Celsior solution supplemented with 1 micromol/L of the Na(+)/H(+) exchange inhibitor cariporide. Group VII hearts received an infusion of cariporide (1 micromol/L) during the first 15 minutes of reperfusion. In group VIII, hearts underwent a protocol combining both interventions used in groups VI and VII. Group IX hearts were ischemically preconditioned as in group II, and sustained Na(+)/H(+) exchange inhibition during both storage and early reperfusion was used as in group VIII. RESULTS On the basis of comparisons of postischemic left ventricular contractility and diastolic function, coronary flow, total creatine kinase leakage, and myocardial water content, values indicative of improved protection were obtained by combining ischemic preconditioning with Na(+)/H(+) exchange inhibition by cariporide given during storage and initial reperfusion. The endothelium-dependent vasodilatory postischemic responses to 5-hydroxytryptamine or acetylcholine and endothelium-independent responses to papaverine were not affected by these interventions. CONCLUSIONS These data suggest that cardioprotection conferred by the Na(+)/H(+) exchange inhibitor cariporide is additive to that of ischemic preconditioning and might effectively contribute to improve donor heart preservation during cardiac transplantation.
Collapse
Affiliation(s)
- E Kevelaitis
- Department of Physiology, Kaunas University of Medicine, Kaunas, Lithuania
| | | | | | | | | |
Collapse
|
24
|
Chen YF, Wu SC, Huang CH, Pan PC, Lee CS, Lin CC. Morphometric identification of luminal narrowing of myocardial capillaries after cardioplegic arrest. Ann Thorac Surg 2001; 71:243-8. [PMID: 11216755 DOI: 10.1016/s0003-4975(00)02028-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Because there is no smooth muscle cell surrounding the capillary endothelial cells, the effect of coronary microcirculation at the capillary level following cardioplegic arrest and reperfusion would be much different from that of resistant arterioles. We therefore studied the effect of hypothermic blood cardioplegic arrest and subsequent reperfusion on the myocardial capillaries in cardiac operation patients. METHODS Twenty-seven patients who underwent cardiac operations were included in this study. Three sequential biopsies (preischemia, ischemia, and reperfusion) were obtained from the right atrium. This study was restricted to blood vessels with a diameter of less than 8 microns. Ten randomly selected capillaries from each biopsy were measured for luminal surface area, endothelial cytoplasmic surface area, and total cross-sectional surface area of capillaries. RESULTS From stereologic morphometric studies, the serial changes in total cross-sectional surface area were not statistically significant (p = 0.152). However, there was a significant swelling of endothelial cytoplasm following ischemia and reperfusion (p = 0.0007). Meanwhile, changes in luminal surface area of capillaries following ischemia and reperfusion were also remarkable (p = 0.0008). CONCLUSIONS The most striking finding of this study was the progressive decrease in capillary lumen during ischemia and after reperfusion. The swelling of endothelial cells is a major determinant of luminal narrowing of capillaries in patients receiving cardioplegic arrest.
Collapse
Affiliation(s)
- Y F Chen
- Department of Public Health, Kaohsiung Medical University, Taiwan.
| | | | | | | | | | | |
Collapse
|
25
|
Shimada M, Ogiwara M, Kadokura M, Asano H, Kyo S, Yokote Y, Omoto R, Lucien J, Coles JG. Human serum induces apoptosis of isolated xenogeneic cardiomyocytes in vitro. Transplant Proc 2000; 32:2401-3. [PMID: 11120216 DOI: 10.1016/s0041-1345(00)01715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M Shimada
- Department of Surgery, Saitama Medical School, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Saurin AT, Martin JL, Heads RJ, Foley C, Mockridge JW, Wright MJ, Wang Y, Marber MS. The role of differential activation of p38-mitogen-activated protein kinase in preconditioned ventricular myocytes. FASEB J 2000; 14:2237-46. [PMID: 11053245 DOI: 10.1096/fj.99-0671com] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Activation of protein kinase C (PKC) and more recently mitogen-activated protein kinases (MAPKs) have been associated with the cardioprotective effect of ischemic preconditioning. We examined the interplay between these kinases in a characterized model of ischemic preconditioning in cultured rat neonatal ventricular cardiocytes where ectopic expression of active PKC-delta results in protection. Two members of the MAPK family, p38 and p42/44, were activated transiently during preconditioning by brief simulated ischemia/reoxygenation. Overexpression of active PKC-delta, rather than augmenting, completely abolished this activation. We therefore determined whether a similar process occurred during lethal prolonged simulated ischemia. In contrast to ischemia, brief, lethal-simulated ischemia activated only p38 (2.8+/-0.45 vs. basal, P<0.01), which was attenuated by expression of active PKC-delta or by preconditioning (0.48+/-0.1 vs. ischemia, P<0.01). To determine whether reduced p38 activation was the cause or an effect of protection, we used SB203580, a p38 inhibitor. SB203580 reduced ischemic injury (CK release 38.0+/-3.1%, LDH release 77.3+/-4.0%, and MTT bioreduction 127.1+/-4.8% of control, n=20, P<0.05). To determine whether p38 activation was isoform selective, myocytes were infected with adenoviruses encoding wild-type p38alpha or p38beta. Transfected p38alpha and beta show differential activation (P<0.001) during sustained simulated ischemia, with p38alpha remaining activated (1.48+/-0.36 vs. basal) but p38beta deactivated (0.36+/-0.1 vs. basal, P<0.01). Prior preconditioning prevented the activation of p38alpha (0.65+/-0.11 vs. ischemia, P<0.05). Moreover, cells expressing a dominant negative p38alpha, which prevented ischemic p38 activation, were resistant to lethal simulated ischemia (CK release 82.9+/-3.9% and MTT bioreduction 130.2+/-6.5% of control, n=8, P<0.05). Thus, inhibition of p38alpha activation during ischemia reduces injury and may contribute to preconditioning-induced cardioprotection in this model.
Collapse
Affiliation(s)
- A T Saurin
- Department of Cardiology, KCL, The Rayne Institute, St. Thomas' Hospital London SE1 7EH, U.K
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Shimada M, Ogiwara M, Kadokura M, Asano H, Kyo S, Yokote Y, Omoto R, Lucien J, Coles JG. Human serum induces apoptosis of isolated mouse cardiomyocytes in vitro. Transplant Proc 2000; 32:885-7. [PMID: 10936259 DOI: 10.1016/s0041-1345(00)01025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M Shimada
- Department of Surgery, Saitama Medical School, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- M S Marber
- Department of Cardiology, St Thomas' Hospital, King's College London, London, England.
| |
Collapse
|
29
|
Abstract
It is now established that endothelial cells acquire several functional properties in response to a diverse array of extracellular stimuli. This expression of an altered phenotype is referred to as endothelial cell activation, and it includes several activities that promote inflammation and coagulation. While it is recognized that endothelial cell activation has a principal role in host defense, recent studies also demonstrate that endothelial cells are capable of complex molecular responses that protect the endothelium against various forms of stress including heat shock, hypoxia, oxidative stress, shock, ischemia-reperfusion injury, toxins, wounds, and mechanical stress. In this review, we examine endothelial cell genotypic and phenotypic responses to stress. Also, we highlight important cellular stress responses that, although not yet demonstrated directly in endothelial cells, likely exist as part of the repertoire of stress responses in endothelium. A detailed understanding of the molecular mechanisms mediating the adaptive responses of endothelial cells to stress should facilitate the development of novel therapeutics to aid in the management of diverse surgical diseases and their complications.
Collapse
Affiliation(s)
- T H Pohlman
- Department of Surgery, University of Washington, Seattle, Washington 98104, USA
| | | |
Collapse
|
30
|
Kevelaitis E, Peynet J, Mouas C, Launay JM, Menasché P. Opening of potassium channels: the common cardioprotective link between preconditioning and natural hibernation? Circulation 1999; 99:3079-85. [PMID: 10368128 DOI: 10.1161/01.cir.99.23.3079] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The tolerance of hibernating mammals to cold hypoxia is related to a factor similar to agonists of delta-opioid receptors. This study was designed to assess whether activation of these receptors could reproduce the protection conferred by ischemic preconditioning and whether such cardioprotection was similarly mediated by an opening of ATP-sensitive potassium (KATP) channels. METHODS AND RESULTS Thirty-two isolated rat hearts were arrested with and stored in Celsior at 4 degrees C for 5 hours before being reperfused for 2 hours. They were divided into 4 equal groups. Group 1 hearts served as controls. In group 2, ischemic preconditioning was elicited by two 5-minute global ischemia periods interspersed with 5 minutes of reperfusion before arrest. In group 3, hearts were pharmacologically preconditioned with a 15-minute infusion of the delta-opioid receptor agonist D-Ala2-D-Leu5-enkephalin (DADLE; 200 micromol/L). In group 4, the protocol was similar to group 3 except that infusion of DADLE was preceded by infusion of the KATP blocker glibenclamide (50 micromol/L). The salutary effects of both forms of preconditioning were primarily manifest as a better preservation of diastolic function, a reduced myocardial edema, and reduced creatine kinase leakage. This protection was abolished by administration of glibenclamide before DADLE. CONCLUSIONS These data suggest that activation of delta-opioid receptors improves recovery of cold-stored hearts to a similar extent as ischemic preconditioning, most likely through an opening of KATP channels. This provides a rationale for improving the preservation of hearts for transplantation by pharmacologically duplicating the common pathway to natural hibernation and preconditioning.
Collapse
Affiliation(s)
- E Kevelaitis
- Department of Physiology, Kaunas Medical University, Lithuania
| | | | | | | | | |
Collapse
|