1
|
Liu S, Chirkov YY, Horowitz JD. Neutrophil-Initiated Myocardial Inflammation and Its Modulation by B-Type Natriuretic Peptide: A Potential Therapeutic Target. Int J Mol Sci 2018; 20:129. [PMID: 30602672 PMCID: PMC6337677 DOI: 10.3390/ijms20010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
Activation of neutrophils is a critically important component of the innate immune response to bacterial and chemical stimuli, and culminates in the "neutrophil burst", which facilitates neutrophil phagocytosis via the release of superoxide anion radical (O₂-) from NADPH oxidase. Excessive and/or prolonged neutrophil activation results in substantial tissue injury and increases in vascular permeability-resulting in sustained tissue infiltration with neutrophils and monocytes, and persistent vasomotor dysfunction. Cardiovascular examples of such changes include acute and chronic systolic and diastolic heart failure ("heart failure with preserved ejection fraction"), and the catecholamine-induced inflammatory disorder takotsubo syndrome. We have recently demonstrated that B-type natriuretic peptide (BNP), acting via inhibition of activation of neutrophil NADPH oxidase, is an important negative modulator of the "neutrophil burst", though its effectiveness in limiting tissue injury is partially lost in acute heart failure. The potential therapeutic implications of these findings, regarding the development of new means of treating both acute and chronic cardiac injury states, are discussed.
Collapse
Affiliation(s)
- Saifei Liu
- Cardiology/Clinical Pharmacology Unit, Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide 5011, Australia.
| | - Yuliy Y Chirkov
- Cardiology/Clinical Pharmacology Unit, Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide 5011, Australia.
| | - John D Horowitz
- Cardiology/Clinical Pharmacology Unit, Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide 5011, Australia.
| |
Collapse
|
2
|
Peng ZF, Chen MJ, Manikandan J, Melendez AJ, Shui G, Russo-Marie F, Whiteman M, Beart PM, Moore PK, Cheung NS. Multifaceted role of nitric oxide in an in vitro mouse neuronal injury model: transcriptomic profiling defines the temporal recruitment of death signalling cascades. J Cell Mol Med 2012; 16:41-58. [PMID: 21352476 PMCID: PMC3823092 DOI: 10.1111/j.1582-4934.2011.01288.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Nitric oxide is implicated in the pathogenesis of various neuropathologies characterized by oxidative stress. Although nitric oxide has been reported to be involved in the exacerbation of oxidative stress observed in several neuropathologies, existent data fail to provide a holistic description of how nitrergic pathobiology elicits neuronal injury. Here we provide a comprehensive description of mechanisms contributing to nitric oxide induced neuronal injury by global transcriptomic profiling. Microarray analyses were undertaken on RNA from murine primary cortical neurons treated with the nitric oxide generator DETA-NONOate (NOC-18, 0.5 mM) for 8–24 hrs. Biological pathway analysis focused upon 3672 gene probes which demonstrated at least a ±1.5-fold expression in a minimum of one out of three time-points and passed statistical analysis (one-way anova, P < 0.05). Numerous enriched processes potentially determining nitric oxide mediated neuronal injury were identified from the transcriptomic profile: cell death, developmental growth and survival, cell cycle, calcium ion homeostasis, endoplasmic reticulum stress, oxidative stress, mitochondrial homeostasis, ubiquitin-mediated proteolysis, and GSH and nitric oxide metabolism. Our detailed time-course study of nitric oxide induced neuronal injury allowed us to provide the first time a holistic description of the temporal sequence of cellular events contributing to nitrergic injury. These data form a foundation for the development of screening platforms and define targets for intervention in nitric oxide neuropathologies where nitric oxide mediated injury is causative.
Collapse
Affiliation(s)
- Zhao Feng Peng
- Key Laboratory of Biogeology and Environmental Geology of the Ministry of Education, China University of Geosciences, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kuebler WM. The Janus-faced regulation of endothelial permeability by cyclic GMP. Am J Physiol Lung Cell Mol Physiol 2011; 301:L157-60. [PMID: 21685243 DOI: 10.1152/ajplung.00192.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Roy DN, Mandal S, Sen G, Mukhopadhyay S, Biswas T. 14-Deoxyandrographolide desensitizes hepatocytes to tumour necrosis factor-alpha-induced apoptosis through calcium-dependent tumour necrosis factor receptor superfamily member 1A release via the NO/cGMP pathway. Br J Pharmacol 2010; 160:1823-43. [PMID: 20649583 DOI: 10.1111/j.1476-5381.2010.00836.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Andrographis paniculata (AP) has been found to display hepatoprotective effect, although the mechanism of action of the active compounds of AP in this context still remains unclear. Here, we evaluated the hepatoprotective efficacy of 14-deoxyandrographolide (14-DAG), a bioactive compound of AP, particularly its role in desensitization of hepatocytes to tumour necrosis factor-alpha (TNF-alpha)-induced signalling of apoptosis. EXPERIMENTAL APPROACH TNF-alpha-mediated ligand receptor interaction in hepatocytes in the presence of 14-DAG was studied in vitro in primary hepatocyte cultures, with the help of co-immunoprecipitation, confocal microscopy and FACS analysis. Events associated with 14-DAG-induced TNFRSF1A release from hepatocytes were determined using immunoblotting, biochemical assay and fluorimetric studies. Pulse-chase experiments with radiolabelled TNF-alpha and detection of apoptotic nuclei by terminal transferase-mediated dUTP nick-end labelling were performed under in vivo conditions. KEY RESULTS 14-DAG down-regulated the formation of death-inducing signalling complex, resulting in desensitization of hepatocytes to TNF-alpha-induced apoptosis. Pretreatment of hepatocytes with 14-DAG accentuated microsomal Ca-ATPase activity through induction of NO/cGMP pathway. This resulted in enhanced calcium influx into microsomal lumen with the formation of TNFRSF1A-ARTS-1-NUCB2 complex in cellular vesicles. It was followed by the release of full-length 55 kDa TNFRSF1A and a reduction in the number of cell surface TNFRSF1A, which eventually caused diminution of TNF-alpha signal in hepatocytes. CONCLUSION AND IMPLICATION Taken together, the results demonstrate for the first time that 14-DAG desensitizes hepatocytes to TNF-alpha-mediated apoptosis through the release of TNFRSF1A. This can be used as a strategy against cytokine-mediated hepatocyte apoptosis in liver dysfunctions.
Collapse
Affiliation(s)
- D N Roy
- Cell Biology and Physiology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Kolkata, India
| | | | | | | | | |
Collapse
|
5
|
Rautureau Y, Gowers I, Wheeler-Jones CPD, Baxter GF. C-type natriuretic peptide regulation of guanosine-3',5'-cyclic monophosphate production in human endothelial cells. ACTA ACUST UNITED AC 2010; 30:185-92. [PMID: 20085572 DOI: 10.1111/j.1474-8673.2009.00449.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vascular smooth muscle cells, relaxant actions of guanosine--3',5'-cyclic monophosphate (cGMP) are well recognized, but there is increasing evidence that cGMP also plays regulatory roles in vascular endothelium. However, the autacoid and endocrine mechanisms controlling cGMP production in endothelium are not well understood. The objective of these studies was to examine the mechanisms of cGMP accumulation in human umbilical vein endothelial cells (HUVEC) in response to natriuretic peptides. Expression in HUVEC of natriuretic peptide receptors, particulate guanylyl cyclases (GC)-A and GC-B, was confirmed by RT-PCR and Western blot analysis. In the presence of the phosphodiesterase inhibitor IBMX 500 microM, 3 h incubation of HUVEC with B-type natriuretic peptide (BNP) (preferential GC-A agonist) or C-type natriuretic peptide (CNP) (preferential GC-B agonist) stimulated concentration-dependent increases in cGMP production. At 10 and 100 nM, we observed two to three-fold greater potency of CNP compared to BNP. In the absence of IBMX, CNP-stimulated cGMP accumulation was significantly less than cGMP accumulation in response to sodium nitroprusside 1 mM. This greater sensitivity of GC-B-derived cGMP to phosphodiesterases suggests compartmentalization of two pools of cGMP from particulate and soluble guanylyl cyclases. Although CNP 100 nM and 1 microM was observed to increase nitrite + nitrate (stable metabolites of NO) production in HUVEC two-fold above basal level, the soluble guanylyl cyclase inhibitor ODQ 10 microM did not significantly modify CNP-stimulated cGMP accumulation suggesting that endothelial actions of CNP may be NO-independent. In conclusion, these studies indicate functional signaling by natriuretic peptides in endothelial cells, supporting possible roles of these mediators in regulating endothelial cell function.
Collapse
Affiliation(s)
- Y Rautureau
- The Royal Veterinary College, University of London, London NW1 0TU, UK
| | | | | | | |
Collapse
|
6
|
Kwan HY, Huang Y, Yao XQ, Leung FP. Role of cyclic nucleotides in the control of cytosolic Ca2+ levels in vascular endothelial cells. Clin Exp Pharmacol Physiol 2009; 36:857-66. [PMID: 19413591 DOI: 10.1111/j.1440-1681.2009.05199.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. Endothelial cells have a key role in the cardiovascular system. Most endothelial cell functions depend on changes in cytosolic Ca(2+) concentrations ([Ca(2+)](i)) to some extent and Ca2+ signalling acts to link external stimuli with the synthesis and release of regulatory factors in endothelial cells. The [Ca(2+)](i) is maintained by a well-balanced Ca(2+) flux across the endoplasmic reticulum and plasma membrane. 2. Cyclic nucleotides, such as cAMP and cGMP, are very important second messengers. The cyclic nucleotides can affect [Ca(2+)](i) directly or indirectly (via the actions of protein kinase (PK) A or PKG-mediated phosphorylation) by regulating Ca(2+) mobilization and Ca(2+) influx. Fine-tuning of [Ca(2+)](i) is also fundamental to protect endothelial cells against damaged caused by the excessive accumulation of Ca(2+). 3. Therapeutic agents that control cAMP and cGMP levels have been used to treat various cardiovascular diseases. 4. The aim of the present review is to discuss: (i) the functions of endothelial cells; (ii) the importance of [Ca(2+)](i) in endothelial cells; (iii) the impact of excessive [Ca(2+)](i) in endothelial cells; and (iv) the balanced control of [Ca(2+)](i) in endothelial cells via involvement of cyclic nucleotides (cAMP and cGMP) and their general effectors.
Collapse
Affiliation(s)
- H Y Kwan
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
7
|
Perrier E, Fournet-Bourguignon MP, Royere E, Molez S, Reure H, Lesage L, Gosgnach W, Frapart Y, Boucher JL, Villeneuve N, Vilaine JP. Effect of uncoupling endothelial nitric oxide synthase on calcium homeostasis in aged porcine endothelial cells. Cardiovasc Res 2009; 82:133-42. [PMID: 19176602 DOI: 10.1093/cvr/cvp034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIMS The requirement of endothelial NO synthase (NOS3) calcium to produce NO is well described, although the effect of NO on intracellular calcium levels [Ca(2+)](i) is still confusing. Therefore, NO and [Ca(2+)](i) cross-talk were studied in parallel in endothelial cells possessing a functional or a dysfunctional NO pathway. METHODS AND RESULTS Dysfunctional porcine endothelial cells were obtained either in vitro by successive passages or in vivo from regenerated endothelium 1 month after coronary angioplasty. Activity of NOS3 was characterized by conversion of arginine to citrulline, BH(4) intracellular availability, cGMP, and superoxide anion production. Imaging of the Ca(2+) indicator FURA 2-AM was recorded and sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) pump activity was analysed by (45)Ca(2+) uptake into cells. In endothelial cells with a functional NO pathway, NOS3 inhibition increased [Ca(2+)](i) and, conversely, an NO donor decreased it. In aged cells with an uncoupled NOS3 as shown by the reduced BH(4) level, the increase in superoxide anion and the lower production of cGMP and the decrease in NO bioavailability were linearly correlated with the increase in basal [Ca(2+)](i). Moreover, when stimulated by bradykinin, the calcium response was reduced while its decay was slowed down. These effects on the calcium signalling were abolished in calcium-free buffer and were similarly induced by SERCA inhibitors. In aged cells, NO improved the reduced SERCA activity and tended to normalize the agonist calcium response. CONCLUSION In control endothelial cells, NO exerts a negative feedback on cytosolic Ca(2+) homeostasis. In aged cells, uncoupled NOS3 produced NO that was insufficient to control the [Ca(2+)](i). Consequently, under resting conditions, SERCA activity decreased and [Ca(2+)](i) increased. These alterations were reversible as exogenous NO, in a cGMP-independent way, refilled intracellular calcium stores, reduced calcium influx, and improved the agonist-evoked calcium response. Therefore, prevention of the decrease in NO in dysfunctional endothelium would normalize the calcium-dependent functions.
Collapse
Affiliation(s)
- Emeline Perrier
- Institut de Recherches SERVIER, 11 rue des Moulineaux, 92150 Suresnes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang Q, Davidov T, Weiss HR, Scholz PM. SERCA inhibition limits the functional effects of cyclic GMP in both control and hypertrophic cardiac myocytes. Pharmacology 2009; 83:223-30. [PMID: 19258738 DOI: 10.1159/000205822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/16/2008] [Indexed: 01/19/2023]
Abstract
The negative functional effects of cyclic GMP are controlled by the sarcoplasmic reticulum calcium-ATPase (SERCA). The effects of cyclic GMP are blunted in cardiac hypertrophy. We tested the hypothesis that the interaction between cyclic GMP and SERCA would be reduced in hypertrophic cardiac myocytes. Myocytes were isolated from 7 control and 7 renal-hypertensive hypertrophic rabbits. Control and hypertrophic myocytes received 8-bromo-cGMP (8-Br-cGMP; 10(-7), 10(-6), 10(-5) mol/l), the SERCA blocker thapsigargin (10(-8) mol/l) followed by 8-Br-cGMP, or the SERCA blocker, cyclopiazonic acid (CPA; 10(-7) mol/l) followed by 8-Br-cGMP. Percent shortening and maximal rate of shortening and relaxation were recorded using a video edge detector. Changes in cytosolic Ca2+ were assessed in fura 2-loaded myocytes. In controls, 8-Br-cGMP caused a significant 36% decrease in percent shortening from 5.8 +/- 0.4 to 3.7 +/- 0.3%. Thapsigargin and CPA did not affect basal control or hypertrophic myocyte function. When 8-Br-cGMP was given following thapsigargin or CPA, the negative effects of 8-Br-cGMP on control myocyte function were reduced. In hypertrophic myocytes, 8-Br-cGMP caused a smaller but significant 17% decrease in percent shortening from 4.7 +/- 0.2 to 3.9 +/- 0.1%. When 8-Br-cGMP was given following thapsigargin or CPA, no significant changes occurred in hypertrophic cell function. Intracellular Ca2+ transients responded in a similar manner to changes in cell function in control and hypertrophic myocytes. These results show that the effects of cyclic GMP were reduced in hypertrophic myocytes, but this was not related to SERCA. In presence of SERCA inhibitors, the responses to cyclic GMP were blunted in hypertrophic as well as control myocytes.
Collapse
Affiliation(s)
- Qihang Zhang
- Heart and Brain Circulation Laboratory, Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08903-0019, USA
| | | | | | | |
Collapse
|
9
|
Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2008; 46:309-17. [PMID: 19133271 DOI: 10.1016/j.yjmcc.2008.12.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 01/10/2023]
Abstract
Flavonoids have long been acknowledged for their unique antioxidant properties, and possess other activities that may be relevant to heart ischemia-reperfusion. They may prevent production of oxidants (e.g. by inhibition of xanthine oxidase and chelation of transition metals), inhibit oxidants from attacking cellular targets (e.g. by electron donation and scavenging activities), block propagation of oxidative reactions (by chain-breaking antioxidant activity), and reinforce cellular antioxidant capacity (through sparing effects on other antioxidants and inducing expression of endogenous antioxidants). Flavonoids also possess anti-inflammatory and anti-platelet aggregation effects through inhibiting relevant enzymes and signaling pathways, resulting ultimately in lower oxidant production and better re-establishment of blood in the ischemic zone. Finally, flavonoids are vasodilatory through a variety of mechanisms, one of which is likely interaction with ion channels. These multifaceted activities of flavonoids raise their utility as possible therapeutic interventions to ameliorate ischemia-reperfusion injury.
Collapse
|
10
|
Yin J, Hoffmann J, Kaestle SM, Neye N, Wang L, Baeurle J, Liedtke W, Wu S, Kuppe H, Pries AR, Kuebler WM. Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circ Res 2008; 102:966-74. [PMID: 18323527 DOI: 10.1161/circresaha.107.168724] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the formation of hydrostatic lung edema is generally attributed to imbalanced Starling forces, recent data show that lung endothelial cells respond to increased vascular pressure and may thus regulate vascular permeability and edema formation. In combining real-time optical imaging of the endothelial Ca(2+) concentration ([Ca(2+)](i)) and NO production with filtration coefficient (K(f)) measurements in the isolated perfused lung, we identified a series of endothelial responses that constitute a negative-feedback loop to protect the microvascular barrier. Elevation of lung microvascular pressure was shown to increase endothelial [Ca(2+)](i) via activation of transient receptor potential vanilloid 4 (TRPV4) channels. The endothelial [Ca(2+)](i) transient increased K(f) via activation of myosin light-chain kinase and simultaneously stimulated NO synthesis. In TRPV4 deficient mice, pressure-induced increases in endothelial [Ca(2+)](i), NO synthesis, and lung wet/dry weight ratio were largely blocked. Endothelial NO formation limited the permeability increase by a cGMP-dependent attenuation of the pressure-induced [Ca(2+)](i) response. Inactivation of TRPV4 channels by cGMP was confirmed by whole-cell patch-clamp of pulmonary microvascular endothelial cells and intravital imaging of endothelial [Ca(2+)](i). Hence, pressure-induced endothelial Ca(2+) influx via TRPV4 channels increases lung vascular permeability yet concomitantly activates an NO-mediated negative-feedback loop that protects the vascular barrier by a cGMP-dependent attenuation of the endothelial [Ca(2+)](i) response. The identification of this novel regulatory pathway gives rise to new treatment strategies, as demonstrated in vivo in rats with acute myocardial infarction in which inhibition of cGMP degradation by the phosphodiesterase 5 inhibitor sildenafil reduced hydrostatic lung edema.
Collapse
Affiliation(s)
- Jun Yin
- Institute of Physiology, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Arnimallee 22, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Role of neuronal nitric oxide synthase in the regulation of the neuroendocrine stress response in rodents: insights from mutant mice. Amino Acids 2008; 35:17-27. [DOI: 10.1007/s00726-007-0630-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 10/31/2007] [Indexed: 02/04/2023]
|
12
|
Guix FX, Uribesalgo I, Coma M, Muñoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 2005; 76:126-52. [PMID: 16115721 DOI: 10.1016/j.pneurobio.2005.06.001] [Citation(s) in RCA: 480] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is a molecule with pleiotropic effects in different tissues. NO is synthesized by NO synthases (NOS), a family with four major types: endothelial, neuronal, inducible and mitochondrial. They can be found in almost all the tissues and they can even co-exist in the same tissue. NO is a well-known vasorelaxant agent, but it works as a neurotransmitter when produced by neurons and is also involved in defense functions when it is produced by immune and glial cells. NO is thermodynamically unstable and tends to react with other molecules, resulting in the oxidation, nitrosylation or nitration of proteins, with the concomitant effects on many cellular mechanisms. NO intracellular signaling involves the activation of guanylate cyclase but it also interacts with MAPKs, apoptosis-related proteins, and mitochondrial respiratory chain or anti-proliferative molecules. It also plays a role in post-translational modification of proteins and protein degradation by the proteasome. However, under pathophysiological conditions NO has damaging effects. In disorders involving oxidative stress, such as Alzheimer's disease, stroke and Parkinson's disease, NO increases cell damage through the formation of highly reactive peroxynitrite. The paradox of beneficial and damaging effects of NO will be discussed in this review.
Collapse
Affiliation(s)
- F X Guix
- Laboratori de Fisiologia Molecular, Unitat de Senyalització Cellular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Carrer Dr. Aiguader, 80, Barcelona 08003, Spain
| | | | | | | |
Collapse
|
13
|
Zhang Q, Scholz PM, He Y, Tse J, Weiss HR. Cyclic GMP signaling and regulation of SERCA activity during cardiac myocyte contraction. Cell Calcium 2005; 37:259-66. [PMID: 15670873 DOI: 10.1016/j.ceca.2004.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 10/29/2004] [Indexed: 10/25/2022]
Abstract
We tested the hypothesis that cGMP-induced reductions in cardiac myocyte function were related to activation of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) and cGMP-dependent phosphorylation of phospholamban. Ventricular myocyte function was measured using a video edge detector (n = 11 rabbits). Thapsigargin (TG) or cyclopiazonic acid (CPA) were used to inhibit SERCA. 8-Bromo-cGMP was added at 10(-6), 10(-5) M followed by TG 10(-8) M or KT5823 (cGMP-protein kinase inhibitor, 10(-6) M) prior to TG or CPA. Cyclic GMP-dependent protein phosphorylation and immunoblotting with anti-phospholamban antibody were examined. TG 10(-8) M significantly increased percent shortening (from 6.6+/-0.7 to 9.1+/-1.3%). Cyclic GMP 10(-5) M significantly decreased cell shortening from 9.3+/-0.9 to 5.1+/-0.6%. This was partially reversed by KT5823 (5.1+/-0.6 to 8.2+/-1.4%) suggesting that negative functional effects of cGMP were partially through the cGMP-dependent protein kinase. Addition of TG after cGMP also reduced the negative effects of cGMP on myocyte shortening suggesting involvement of SERCA in cGMP signaling. TG after cGMP and KT5823 treatment did not alter myocyte contractility (8.2+/-1.4 to 7.2+/-1.3%). CPA had similar effects as those of TG. Protein phosphorylation and immunoblotting showed that phospholamban was a target of the cGMP protein kinase. These results indicated that the cyclic GMP-induced reductions in myocyte function were partially mediated through the action of SERCA. It further suggested that cGMP signaling affects myocyte function through phosphorylation of phospholamban which regulates SERCA activity.
Collapse
Affiliation(s)
- Qihang Zhang
- Heart and Brain Circulation Laboratory, Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | | | | | | | |
Collapse
|
14
|
Huang Y, Jiang J, Dou K, Chen Z. HAb18G/CD147 enhances the secretion of matrix metalloproteinases (MMP) via cGMP/NO-sensitive capacitative calcium entry (CCE) and accordingly attenuates adhesion ability of fibroblasts. Eur J Cell Biol 2005; 84:59-73. [PMID: 15724816 DOI: 10.1016/j.ejcb.2004.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The present study examined the effect of hepatoma-associated antigen HAb18G (homologous to CD147) expression on the NO/cGMP-regulated Ca2+ mobilization to induce matrix metalloproteinases (MMP) production and attenuate adhesion ability of mouse fibroblast NIH/3T3 cells. HAb18G/CD147 cDNA was transfected into fibroblast 3T3 cells to obtain a cell line stably expressing HAb18G/CD147, t3T3, as demonstrated by immunofluorescence staining and flow cytometry assays. 8-Bromo-cGMP inhibited the thapsigargin-induced Ca2+ entry in 3T3 cells, whereas an inhibitor of protein kinase G, KT5823 (1 microM), led to an increase in Ca2+ entry. Expression of HAb18G/CD147 in t3T3 cells decreased the inhibitory response to cGMP. A similar effect on the Ca2+ entry was observed in 3T3 cells in response to an NO donor, (+/-)-S-nitroso-N-acetylpenicillamine (SNAP). The inhibitory effect of SNAP on the thapsigargin-induced Ca2+ entry was also reduced in HAb18G/CD147-expressing t3T3 cells, indicating a role for HAb18G/CD 147 in NO/cGMP-regulated Ca2+ entry. Results of gelatin zymography assays showed that addition of extracellular Ca2+ induced MMP (MMP-2, MMP-9) release and activation in a dose-dependent manner, and expression of HAb18G/CD147 enhanced the secretion of MMP-2 and MMP-9 in 3T3 cells. 8-Bromo-cGMP and SNAP reduced the production of MMP in 3T3 cells but not in t3T3 with HAb18G/CD147 expression. RT-PCR experiments substantiated that the expression of MMP-2 and MMP-9 mRNA in HAb18G/CD 147-expressing t3T3 cell was significantly greater than that in 3T3 cells. Experiments investigating adhesion potentials demonstrated that HAb18G/CD147-expressing t3T3 cells pretreated with Ca2+ attached to Matrigel-coated culture plates significantly less efficiently than 3T3 cells. The proportion of attached cells could be increased by treatment with 8-bromo-cGMP and SNAP in 3T3 cells, but not in t3T3. These results suggest that HAb18G/CD147 attenuates adhesion potentials in fibroblasts by enhancing the secretion of MMP through NO/cGMP-sensitive capacitative Ca2+ entry.
Collapse
Affiliation(s)
- Yong Huang
- Cell Engineering Research Centre & Department of Cell Biology, The Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | |
Collapse
|
15
|
Martínez A, Zudaire E, Portal-Núñez S, Guédez L, Libutti SK, Stetler-Stevenson WG, Cuttitta F. Proadrenomedullin NH2-terminal 20 peptide is a potent angiogenic factor, and its inhibition results in reduction of tumor growth. Cancer Res 2004; 64:6489-94. [PMID: 15374959 DOI: 10.1158/0008-5472.can-04-0103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have found through ex vivo and in vivo angiogenesis models that the adrenomedullin gene-related peptide, proadrenomedullin NH2-terminal 20 peptide (PAMP), exhibits a potent angiogenic potential at femtomolar concentrations, whereas classic angiogenic factors such as vascular endothelial growth factor and adrenomedullin mediate a comparable effect at nanomolar concentrations. We found that human microvascular endothelial cells express PAMP receptors and respond to exogenous addition of PAMP by increasing migration and cord formation. Exposure of endothelial cells to PAMP increases gene expression of other angiogenic factors such as adrenomedullin, vascular endothelial growth factor, basic fibroblast growth factor, and platelet-derived growth factor C. In addition, the peptide fragment PAMP(12-20) inhibits tumor cell-induced angiogenesis in vivo and reduces tumor growth in xenograft models. Together, our data demonstrate PAMP to be an extremely potent angiogenic factor and implicate this peptide as an attractive molecular target for angiogenesis-based antitumor therapy.
Collapse
Affiliation(s)
- Alfredo Martínez
- Cell and Cancer Biology Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|