1
|
Woo SH, Trinh TN. P2 Receptors in Cardiac Myocyte Pathophysiology and Mechanotransduction. Int J Mol Sci 2020; 22:ijms22010251. [PMID: 33383710 PMCID: PMC7794727 DOI: 10.3390/ijms22010251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
ATP is a major energy source in the mammalian cells, but it is an extracellular chemical messenger acting on P2 purinergic receptors. A line of evidence has shown that ATP is released from many different types of cells including neurons, endothelial cells, and muscle cells. In this review, we described the distribution of P2 receptor subtypes in the cardiac cells and their physiological and pathological roles in the heart. So far, the effects of external application of ATP or its analogues, and those of UTP on cardiac contractility and rhythm have been reported. In addition, specific genetic alterations and pharmacological agonists and antagonists have been adopted to discover specific roles of P2 receptor subtypes including P2X4-, P2X7-, P2Y2- and P2Y6-receptors in cardiac cells under physiological and pathological conditions. Accumulated data suggest that P2X4 receptors may play a beneficial role in cardiac muscle function, and that P2Y2- and P2Y6-receptors can induce cardiac fibrosis. Recent evidence further demonstrates P2Y1 receptor and P2X4 receptor as important mechanical signaling molecules to alter membrane potential and Ca2+ signaling in atrial myocytes and their uneven expression profile between right and left atrium.
Collapse
|
2
|
Neumann J, Hofmann B, Gergs U. On inotropic effects of UTP in the human heart. Heliyon 2019; 5:e02197. [PMID: 31406941 PMCID: PMC6684494 DOI: 10.1016/j.heliyon.2019.e02197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/07/2019] [Accepted: 07/29/2019] [Indexed: 02/03/2023] Open
Abstract
Uridine 5'-triphosphate (UTP) exerts a positive inotropic effect (PIE) in isolated electrically driven isolated right atrial trabeculae carneae from patients undergoing heart surgery. This review discusses some aspects of the current knowledge on the putative receptor(s) involved and the potential biochemical transduction steps leading to the PIE.
Collapse
Affiliation(s)
- J Neumann
- Institute for Pharmacology and Toxicology, Germany
| | - B Hofmann
- Cardiac Surgery, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06097, Halle (Saale), Germany
| | - U Gergs
- Institute for Pharmacology and Toxicology, Germany
| |
Collapse
|
3
|
Gergs U, Rothkirch D, Hofmann B, Treede H, Robaye B, Simm A, Müller CE, Neumann J. Mechanism underlying the contractile activity of UTP in the mammalian heart. Eur J Pharmacol 2018; 830:47-58. [PMID: 29673908 DOI: 10.1016/j.ejphar.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022]
Abstract
We previously reported that uridine 5'-triphosphate (UTP), a pyrimidine nucleoside triphosphate produced a concentration- and time-dependent increase in the contraction force in isolated right atrial preparations from patients undergoing cardiac bypass surgery due to angina pectoris. The stimulation of the force of contraction was sustained rather than transient. In the present study, we tried to elucidate the underlying receptor and signal transduction for this effect of UTP. Therefore, we measured the effect of UTP on force of contraction, phosphorylation of p38 and ERK1/2, in human atrial preparations, atrial preparations from genetically modified mice, cardiomyocytes from adult mice and cardiomyocytes from neonatal rats. UTP exerted a positive inotropic effect in isolated electrically driven left atrial preparations from wild-type (WT) mice and P2Y2-, P2Y4- and P2Y6-receptor knockout mice. Therefore, we concluded that these P2Y receptors did not mediate the inotropic effects of UTP in atrial preparations from mice. However, UTP (like ATP) increased the phosphorylation states of p38 and ERK1/2 in neonatal rat cardiomyocytes, adult mouse cardiomyocytes and human atrial tissue in vitro. U0126, a MEK 1/2- signal cascade inhibitor, attenuated this phosphorylation and the positive inotropic effects of UTP in murine and human atrial preparations. We suggest that presently unknown receptors mediate the positive inotropic effect of UTP in murine and human atria. We hypothesize that UTP stimulates inotropy via p38 or ERK1/2 phosphorylation. We speculate that UTP may be a valuable target in the development of new drugs aimed at treating human systolic heart failure.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Daniel Rothkirch
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Britt Hofmann
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Hendrik Treede
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Bernard Robaye
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Andreas Simm
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany.
| |
Collapse
|
4
|
Joyce W, Gesser H, Wang T. Purinoceptors exert negative inotropic effects on the heart in all major groups of reptiles. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:16-22. [PMID: 24521885 DOI: 10.1016/j.cbpa.2014.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 01/23/2023]
Abstract
The few and fragmentary studies on purinergic regulation of the reptile heart have reached equivocal conclusions. Indeed, unlike fish, amphibians, and mammals, it has been suggested that the turtle heart lacks purinoceptors. Here, we study the effect of adenosine and ATP on isolated heart strips from three species of reptiles: the red-eared slider (Trachemys scripta), the ball python (Python regius) and the spectacled caiman (Caiman crocodilus). Both adenosine and ATP markedly decreased contractility in atria from all three species. This was attenuated by theophylline, suggesting that the response is mediated by P1 receptors. Ventricles were less sensitive, although high concentrations of the adenyl compounds evoked decreases in contractility. Our study suggests that cardiac purinoceptors are ubiquitous across reptiles, and may play an important and underappreciated role in reptile cardiovascular physiology.
Collapse
Affiliation(s)
- William Joyce
- Zoophysiology, Department of Biosciences, Aarhus University, DK-8000 Aarhus C, Denmark; Faculty of Life Sciences, The University of Manchester, M13 9PT, UK.
| | - Hans Gesser
- Zoophysiology, Department of Biosciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Biosciences, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
5
|
A positive inotropic effect of UTP in the human cardiac atrium. Eur J Pharmacol 2013; 724:24-30. [PMID: 24370494 DOI: 10.1016/j.ejphar.2013.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 11/22/2022]
Abstract
In the cardio-vascular system extracellular UTP can induce receptor-mediated vasoconstriction via smooth muscle cells and vasodilatation via endothelial cells. We evaluated inotropic effects of UTP in preparations from human heart. Contractile effects were studied in atrial preparations from patients undergoing cardiac bypass surgery. For comparison, contractility in isolated spontaneously beating right atrial and paced left atrial preparations from mice was investigated. UTP and UTPγS concentration-dependently exerted a positive inotropic effect with a maximum at 100 µM UTP that amounted to 156% of pre-drug value (n=13) without changing time parameters of contraction. UTP was able to partially attenuate the positive inotropic effect of β-adrenoceptor stimulation. UTP did not change the beating rate in right atrial mouse preparations. The positive inotropic effect of UTP could not be blocked by the P2 purinoceptor antagonists suramin (100 µM and 500 µM), PPADS (50 µM) and reactive blue (100 µM). Likewise inhibitors of PLC activity (U73122) and of adenylyl cyclase activity (SQ22563; 10 µM each) failed to affect the effects of UTP. In summary, we describe a novel positive inotropic effect of UTP on force contraction in the isolated human atrium. We tentatively suggest that UTP might act via P2Y2- or P2Y4-like receptors.
Collapse
|
6
|
Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 2010; 199:93-147. [PMID: 20345419 DOI: 10.1111/j.1748-1716.2010.02114.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purinergic signalling system is one of the most ancient and arguably the most widespread intercellular signalling system in living tissues. In this review we present a detailed account of the early developments and current status of purinergic signalling. We summarize the current knowledge on purinoceptors, their distribution and role in signal transduction in various tissues in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
7
|
P2X(7) Receptors in Neurological and Cardiovascular Disorders. Cardiovasc Psychiatry Neurol 2009; 2009:861324. [PMID: 20029634 PMCID: PMC2794459 DOI: 10.1155/2009/861324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 04/26/2009] [Accepted: 04/27/2009] [Indexed: 01/22/2023] Open
Abstract
P2X receptors are ATP-gated cation channels that mediate fast excitatory transmission in diverse regions of the brain and spinal cord. Several P2X receptor subtypes, including P2X(7), have the unusual property of changing their ion selectivity during prolonged exposure to ATP, which results in a channel pore permeable to molecules as large as 900 daltons. The P2X(7) receptor was originally described in cells of hematopoietic origin, and mediates the influx of Ca(2+) and Na(+) and Ca(2+) and Na(+) ions as well as the release of proinflammatory cytokines. P2X(7) receptors may affect neuronal cell death through their ability to regulate the processing and release of interleukin-1beta, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X(7), a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X(7) receptors provides an inflammatory stimulus, and P2X(7) receptor-deficient mice have substantially attenuated inflammatory responses, including models of neuropathic and chronic inflammatory pain. Moreover, P2X(7) receptor activity, by regulating the release of proinflammatory cytokines, may be involved in the pathophysiology of depression. Apoptotic cell death occurs in a number of vascular diseases, including atherosclerosis, restenosis, and hypertension, and may be linked to the release of ATP from endothelial cells, P2X(7) receptor activation, proinflammatory cytokine production, and endothelial cell apoptosis. In this context, the P2X(7) receptor may be viewed as a gateway of communication between the nervous, immune, and cardiovascular systems.
Collapse
|
8
|
Talasila A, Germack R, Dickenson JM. Characterization of P2Y receptor subtypes functionally expressed on neonatal rat cardiac myofibroblasts. Br J Pharmacol 2009; 158:339-53. [PMID: 19422377 DOI: 10.1111/j.1476-5381.2009.00172.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Little is known about P2Y receptors in cardiac fibroblasts, which represent the predominant cell type in the heart and differentiate into myofibroblasts under certain conditions. Therefore, we have characterized the phenotype of the cells and the different P2Y receptors at the expression and functional levels in neonatal rat non-cardiomyocytes. EXPERIMENTAL APPROACH Non-cardiomyocyte phenotype was determined by confocal microscopy by using discoidin domain receptor 2, alpha-actin and desmin antibodies. P2Y receptor expression was investigated by reverse transcription-polymerase chain reaction and immunocytochemistry, and receptor function by cAMP and inositol phosphate (IP) accumulation induced by adenine or uracil nucleotides in the presence or absence of selective antagonists of P2Y(1) (MRS 2179, 2-deoxy-N(6)-methyl adenosine 3',5'-diphosphate diammonium salt), P2Y(6) (MRS 2578) and P2Y(11) (NF 157, 8,8'-[carbonylbis[imino-3,1-phenylenecarbonylimino(4-fluoro-3,1-phenylene)carbonylimino]]bis-1,3,5-naphthalene trisulphonic acid hexasodium salt) receptors. G(i/o) and G(q/11) pathways were evaluated by using Pertussis toxin and YM-254890 respectively. KEY RESULTS The cells (>95%) were alpha-actin and discoidin domain receptor 2-positive and desmin-negative. P2Y(1), P2Y(2), P2Y(4), P2Y(6) were detected by reverse transcription-polymerase chain reaction and immunocytochemistry, and P2Y(11)-like receptors at protein level. All di- or tri-phosphate nucleotides stimulated IP production in an YM-254890-sensitive manner. AMP, ADPbetaS, ATP and ATPgammaS increased cAMP accumulation, whereas UDP and UTP inhibited cAMP response, which was abolished by Pertussis toxin. MRS 2179 and NF 157 inhibited ADPbetaS-induced IP production. MRS 2578 blocked UDP- and UTP-mediated IP responses. CONCLUSION AND IMPLICATIONS P2Y(1)-, P2Y(2)-, P2Y(4)-, P2Y(6)-, P2Y(11)-like receptors were co-expressed and induced function through G(q/11) protein coupling in myofibroblasts. Furthermore, P2Y(2) and P2Y(4) receptor subtypes were also coupled to G(i/o). The G(s) response to adenine nucleotides suggests a possible expression of a new P2Y receptor subtype.
Collapse
Affiliation(s)
- Amarnath Talasila
- Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | | |
Collapse
|
9
|
Pharmacological characterization of P2X1 and P2X3 purinergic receptors in bovine chondrocytes. Osteoarthritis Cartilage 2008; 16:1421-9. [PMID: 18448363 DOI: 10.1016/j.joca.2008.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 03/24/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of the present study is that of characterizing, for the first time in a quantitative way, from a biochemical, physico chemical and functional point of view P2X(1) and P2X(3) purinergic receptors in bovine chondrocytes. The affinity and the potency of typical purinergic ligands were studied through competition binding experiments and their role in modulating chondrocyte actvities was investigated by analyzing nitric oxide (NO) and prostaglandin E2 (PGE(2)) release. METHODS Saturation, competition binding experiments, western blotting and immunohistochemistry assays on the P2X(1) and P2X(3) purinergic receptors in bovine chondrocytes were performed. Thermodynamic analysis of the P2X(1) and P2X(3) purinergic binding was studied to investigate the forces driving drug-receptor coupling. In the functional assays (NO and PGE(2) release) the potency of purinergic agonists and antagonists was evaluated. RESULTS Bovine chondrocytes expressed P2X(1) and P2X(3) purinergic receptors and thermodynamic parameters indicated that purinergic binding is enthalpy- and entropy-driven for agonists and totally entropy-driven for antagonists. Typical purinergic agonists such as adenosine 5'-triphosphate (ATP) and alpha,beta-methyleneATP were able to increase NO and PGE(2) release. A purinergic antagonist, A317491, was able to block the stimulatory effect on functional experiments mediated by the agonists. CONCLUSIONS These data demonstrate for the first time the presence of functional P2X(1) and P2X(3) purinergic receptors in bovine chondrocytes. Agonists and antagonists are thermodynamically discriminated and are able to modulate functional responses such as NO and PGE(2) release. These results suggest the potential role of novel purinergic antagonists in the treatment of pathophysiological diseases linked to the inflammation and involved in articular cartilage resorption.
Collapse
|
10
|
Binding thermodynamic characterization of human P2X1 and P2X3 purinergic receptors. Biochem Pharmacol 2007; 75:1198-208. [PMID: 18076867 DOI: 10.1016/j.bcp.2007.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/31/2007] [Accepted: 10/31/2007] [Indexed: 11/21/2022]
Abstract
The present study was designed to perform binding and thermodynamic characterization of human P2X1 and P2X3 purinergic receptors expressed in HEK 293 cells. The thermodynamic parameters DeltaG degrees , DeltaH degrees and DeltaS degrees (standard free energy, enthalpy and entropy) of the binding equilibrium of well-known purinergic agonists and antagonists at P2X1 and P2X3 receptors were determined. Saturation binding experiments, performed in the temperature range 4-30 degrees C by using the high affinity purinergic agonist [3H]alphabetameATP, revealed a single class of binding sites with an affinity value in the nanomolar range in both cell lines examined. The affinity changed with the temperature whereas receptor density was essentially independent of it. van't Hoff plots of the purinergic receptors were linear in the range 4-30 degrees C for agonists and antagonists. The thermodynamic parameters of the P2X1 or P2X3 purinergic receptors were in the ranges -31 kJ mol(-1) < or =DeltaH degrees < or =-19 kJ mol(-1) and 17 J K(-1) mol(-1)< or =DeltaS degrees < or =51 J K(-1)mol(-1) or -26 kJ mol(-1)< or =DeltaH degrees < or =36 kJ mol(-1) and 59< or =DeltaS degrees < or =249 JK(-1) mol(-1), respectively. The results of these parameters showed that P2X1 receptors are not thermodynamically discriminated and that the binding of agonists and antagonists was both enthalpy and entropy-driven. P2X3 receptors were thermodynamically discriminated and purinergic agonist binding was enthalpy and entropy-driven while antagonist binding was totally entropy-driven. The analysis of such thermodynamic data makes it possible to obtain additional information on the nature of the forces driving the purinergic binding interaction. These data could be interesting in drug discovery programs aimed at development of novel and potent P2X1 and P2X3 purinergic ligands.
Collapse
|
11
|
Erlinge D, Burnstock G. P2 receptors in cardiovascular regulation and disease. Purinergic Signal 2007; 4:1-20. [PMID: 18368530 PMCID: PMC2245998 DOI: 10.1007/s11302-007-9078-7] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 08/22/2007] [Indexed: 12/11/2022] Open
Abstract
The role of ATP as an extracellular signalling molecule is now well established and evidence is accumulating that ATP and other nucleotides (ADP, UTP and UDP) play important roles in cardiovascular physiology and pathophysiology, acting via P2X (ion channel) and P2Y (G protein-coupled) receptors. In this article we consider the dual role of ATP in regulation of vascular tone, released as a cotransmitter from sympathetic nerves or released in the vascular lumen in response to changes in blood flow and hypoxia. Further, purinergic long-term trophic and inflammatory signalling is described in cell proliferation, differentiation, migration and death in angiogenesis, vascular remodelling, restenosis and atherosclerosis. The effects on haemostasis and cardiac regulation is reviewed. The involvement of ATP in vascular diseases such as thrombosis, hypertension and diabetes will also be discussed, as well as various heart conditions. The purinergic system may be of similar importance as the sympathetic and renin-angiotensin-aldosterone systems in cardiovascular regulation and pathophysiology. The extracellular nucleotides and their cardiovascular P2 receptors are now entering the phase of clinical development.
Collapse
Affiliation(s)
- David Erlinge
- Department of Cardiology, Lund University Hospital, 22185, Lund, Sweden,
| | | |
Collapse
|
12
|
Wihlborg AK, Balogh J, Wang L, Borna C, Dou Y, Joshi BV, Lazarowski E, Jacobson KA, Arner A, Erlinge D. Positive inotropic effects by uridine triphosphate (UTP) and uridine diphosphate (UDP) via P2Y2 and P2Y6 receptors on cardiomyocytes and release of UTP in man during myocardial infarction. Circ Res 2006; 98:970-6. [PMID: 16543499 PMCID: PMC3492942 DOI: 10.1161/01.res.0000217402.73402.cd] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to examine a possible role for extracellular pyrimidines as inotropic factors for the heart. First, nucleotide plasma levels were measured to evaluate whether UTP is released in patients with coronary heart disease. Then, inotropic effects of pyrimidines were examined in isolated mouse cardiomyocytes. Finally, expression of pyrimidine-selective receptors (a subgroup of the P2 receptors) was studied in human and mouse heart, using real time polymerase chain reaction, Western blot, and immunohistochemistry. Venous plasma levels of UTP were increased (57%) in patients with myocardial infarction. In electrically stimulated cardiomyocytes the stable P2Y(2/4) agonist UTPgammaS increased contraction by 52%, similar to beta1-adrenergic stimulation with isoproterenol (65%). The P2Y6-agonist UDPbetaS also increased cardiomyocyte contraction (35%), an effect abolished by the P2Y6-blocker MRS2578. The phospholipase C inhibitor U73122 inhibited both the UDPbetaS and the UTPgammaS-induced inotropic effect, indicating an IP3-mediated effect via P2Y6 receptors. The P2Y14 agonist UDP-glucose was without effect. Quantification of mRNA with real time polymerase chain reaction revealed P2Y2 as the most abundant pyrimidine receptor expressed in cardiomyocytes from man. Presence of P2Y6 receptor mRNA was detected in both species and confirmed at protein level with Western blot and immunohistochemistry in man. In conclusion, UTP levels are increased in humans during myocardial infarction, giving the first evidence for UTP release in man. UTP is a cardiac inotropic factor most likely by activation of P2Y2 receptors in man. For the first time we demonstrate inotropic effects of UDP, mediated by P2Y6 receptors via an IP3-dependent pathway. Thus, the extracellular pyrimidines (UTP and UDP) could be important inotropic factors involved in the development of cardiac disease.
Collapse
|
13
|
Cao C, Piao FL, Han JH, Kim SZ, Kim SH. ATP-stimulated ANP release through P1 receptor subtype. ACTA ACUST UNITED AC 2005; 127:37-43. [PMID: 15680468 DOI: 10.1016/j.regpep.2004.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 10/21/2004] [Indexed: 11/22/2022]
Abstract
Extracellular ATP acts as a local regulator of physiological functions in the cardiovascular system via P1 and P2 receptors. However, little is known about the effect of ATP on the release of atrial natriuretic peptide (ANP) secretion. The purpose of this study was to investigate the effects of extracellular ATP on atrial hemodynamics and ANP release and to identify their receptor-mediated mechanism. ATP was infused into isolated perfused beating rat atria in the absence and presence of various receptor antagonists. ATP (from 0.1 to 30 microM) increased the ANP release with negative inotropism in a dose-dependent manner. ADP (30 microM) also caused an increase in ANP release with similarity to ATP, but alpha,beta-methylene ATP (alpha,beta-MeATP, P2X1 receptor agonist) and 2-methylthioADP (2-MesADP, P2Y1 receptor agonist) did not. The rank order of potency for the increment of ANP release was adenosine>ATP=ADP>2-MesADP>alpha,beta-MeATP. In contrast, UTP, an agonist for P2Y2,4,6 receptor, caused a decrease in ANP release without changes in contractility. Extracellular ATP-induced increase in ANP release and negative inotropism were completely blocked by the pretreatment of 8-cyclopentyl-1,3-dipropylxanthine (P1 receptor antagonist), but not by pyridoxal phosphate-6-azobenzene-2,4-disulfonic acid (P2X1 receptor antagonist) and suramin (P2XY receptor antagonist). Reactive Blue 2 (P2Y receptor antagonist) caused an augmentation of ATP-induced increase in ANP release without affecting negative inotropism. Adenosine 5'-(alpha,beta-methylene) diphosphate, an ectonucleotidase inhibitor, did not affect ATP-induced augmentation of ANP release with negative inotropy. These results suggest that extracellular ATP-induced increase in ANP release and negative inotropism are mediated mainly by P1 receptor, and UTP decreases ANP release. Therefore, we suggest that extracellular ATP and UTP may have opposite actions on the regulation of ANP secretion.
Collapse
Affiliation(s)
- Chunhua Cao
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, 2-20 Keum-Am-Dong-San, Jeonju 561-180, Korea
| | | | | | | | | |
Collapse
|
14
|
Froldi G, Galzignato G, Zanetti M, Montopoli M, Dorigo P, Caparrotta L. Are prostanoids related to positive inotropism by UTP and ATP? Pharmacology 2004; 73:140-5. [PMID: 15564788 DOI: 10.1159/000082315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 09/30/2004] [Indexed: 11/19/2022]
Abstract
Uridine 5'-triphosphate (UTP) and adenosine 5'-triphosphate (ATP) induce biphasic inotropic effects: first a decrease and then an increase in contractile tension were observed in isolated rat myocardial tissues. Inotropic effects were higher in atrial tissue than in ventricular or papillary muscle; thus, experiments were mostly carried out on rat atria. In this research, we mainly studied positive inotropism by using selective inhibitors of the arachidonic acid cascade. The natural compounds luffariellolide and aristolochic acid, two inhibitors of PLA2, both inhibited positive inotropism by UTP but not by ATP, whereas they did not modify their negative inotropism. Indomethacin (5 micromol/l), an inhibitor of COX-1, reduced positive inotropism by UTP but not by ATP, without modifying their negative inotropism. Nimesulide (1 micromol/l), an inhibitor of COX-2, did not change any of the effects caused by nucleotides. Nor did NDGA (10 micromol/l), an inhibitor of lipoxygenase, change inotropism by nucleotides. Arachidonic acid pretreatment (10 micromol/l) increased inotropic effects by UTP without affecting those of ATP. These data suggest that there are differences in the mechanisms responsible for the positive inotropism caused by UTP in comparison with ATP; the effect of UTP depends on PLA2 activation and PG(s) release, whereas that of ATP does not.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmacology and Anaesthesiology, University of Padova, Padova, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
16
|
Abstract
ATP, besides an intracellular energy source, is an agonist when applied to a variety of different cells including cardiomyocytes. Sources of ATP in the extracellular milieu are multiple. Extracellular ATP is rapidly degraded by ectonucleotidases. Today ionotropic P2X(1--7) receptors and metabotropic P2Y(1,2,4,6,11) receptors have been cloned and their mRNA found in cardiomyocytes. On a single cardiomyocyte, micromolar ATP induces nonspecific cationic and Cl(-) currents that depolarize the cells. ATP both increases directly via a G(s) protein and decreases Ca(2+) current. ATP activates the inward-rectifying currents (ACh- and ATP-activated K(+) currents) and outward K(+) currents. P2-purinergic stimulation increases cAMP by activating adenylyl cyclase isoform V. It also involves tyrosine kinases to activate phospholipase C-gamma to produce inositol 1,4,5-trisphosphate and Cl(-)/HCO(3)(-) exchange to induce a large transient acidosis. No clear correlation is presently possible between an effect and the activation of a given P2-receptor subtype in cardiomyocytes. ATP itself is generally a positive inotropic agent. Upon rapid application to cells, ATP induces various forms of arrhythmia. At the tissue level, arrhythmia could be due to slowing of electrical spread after both Na(+) current decrease and cell-to-cell uncoupling as well as cell depolarization and Ca(2+) current increase. In as much as the information is available, this review also reports analog effects of UTP and diadenosine polyphosphates.
Collapse
Affiliation(s)
- G Vassort
- Institut National de la Santé et de la Recherche Médicale U. 390, Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, France.
| |
Collapse
|
17
|
Froldi G, Ragazzi E, Caparrotta L. Do ATP and UTP involve cGMP in positive inotropism on rat atria? Comp Biochem Physiol C Toxicol Pharmacol 2001; 128:265-74. [PMID: 11239839 DOI: 10.1016/s1532-0456(01)00203-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ATP and UTP induced a dual inotropic effect in rat left atria: first a decrease and then an increase in contractile tension were observed. PPADS, an antagonist of P2X receptors, inhibited positive inotropism induced by ATP and alpha,beta-meATP. Chiefly, we investigated intracellular mechanisms responsible for the positive inotropism. We tested cromakalim and glibenclamide, an activator and an inhibitor, respectively, of ATP-sensitive K(+) channels. These compounds did not influence the effects of ATP. IBMX, a phosphodiesterase inhibitor, and H-7, an inhibitor of protein kinase C and cAMP-dependent protein kinase, did not modify the inotropic effects of ATP. Instead, H-8, an inhibitor of cAMP- and cGMP-dependent protein kinases, strongly inhibited the positive effects of both ATP and UTP, suggesting the possible involvement of cGMP in the inotropism. Also, LY 83583, an inhibitor of cGMP production, reduced positive inotropism by alpha,beta-meATP, ATP and UTP. Moreover, 8-Br-cGMP (50 microM), a stable analogue of cGMP, inhibited positive inotropism by all nucleotides. Lastly, we determined intracellular cGMP levels by RIA; the cyclic nucleotide increased during positive inotropism induced by ATP and UTP. The results regarding positive inotropism suggest that: (a) ATP acts through P2X receptors, while UTP may act by P2X, but also through PPADS-insensitive receptors; and (b) changes in intracellular cGMP concentration are involved in this inotropic effect.
Collapse
Affiliation(s)
- G Froldi
- Department of Pharmacology, University of Padova, Largo E. Meneghetti 2, 35131 Padua, Italy.
| | | | | |
Collapse
|
18
|
Hansen MA, Bennett MR, Barden JA. Distribution of purinergic P2X receptors in the rat heart. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1999; 78:1-9. [PMID: 10589817 DOI: 10.1016/s0165-1838(99)00046-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The distribution of P2X purinergic receptor subtypes has been determined in relation to nerve varicosities in the rat heart with immunohistochemistry. Large clusters (about 1 microm diameter) of co-localised and sometimes co-extensive P2X1 and P2X3 receptors were found at sites of tyrosine hydroxylase (TH) positive axon varicosities in the atrium and the ventricle. Varicosities that were labelled with antibodies to the synaptic vesicle epitope SV2 were frequently labelled also with antibodies to P2X3, P2X5 and P2X6 but not always with antibodies to P2X1. Especially prominent were large numbers of small clusters (about 400 nm diameter) of co-localised P2X2 and P2X5 receptors on the sarcolemma unrelated to nerves at all. During development the 1 day-old heart possessed an abundance of co-localised P2X2 and P2X5 small receptor clusters on the sarcolemma. These observations are discussed in relation to the role of purinergic receptors in the mammalian heart.
Collapse
Affiliation(s)
- M A Hansen
- The Institute for Biomedical Research, The University of Sydney, NSW, Australia
| | | | | |
Collapse
|
19
|
Hou M, Malmsjö M, Möller S, Pantev E, Bergdahl A, Zhao XH, Sun XY, Hedner T, Edvinsson L, Erlinge D. Increase in cardiac P2X1-and P2Y2-receptor mRNA levels in congestive heart failure. Life Sci 1999; 65:1195-206. [PMID: 10503935 DOI: 10.1016/s0024-3205(99)00353-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We wanted to study the expression of P2-receptors at the mRNA-level in the heart and if it is affected by congestive heart failure (CHF). To quantify the P2 receptor mRNA-expression we used a competitive RT-PCR protocol which is based on an internal RNA standard. The P2 receptor mRNA-expression was quantified in hearts from CHF rats and compared to sham-operated rats. Furthermore, the presence of receptor mRNA was studied in the myocardium from patients with heart failure. In the sham operated rats the G-protein coupled P2Y-receptors were expressed at a higher level than the ligand gated ion-channel receptor (P2X1). Among the P2Y-receptors the P2Y6-receptor was most abundantly expressed (P2Y6 > P2Y1 > P2Y2 = P2Y4 > P2X1). A prominent change was seen for the P2X1- and P2Y2-receptor mRNA levels which were increased 2.7-fold and 4.7-fold respectively in the myocardium from the left ventricle of CHF-rats. In contrast, the P2Y1-, P2Y4- and P2Y6-receptor mRNA levels were not significantly altered in CHF rats. In human myocard the P2X1-, P2Y1-, P2Y2-, P2Y6- and P2Y11-receptors were detected by RT-PCR in both right and left atria and ventricles, while the P2Y4-receptor band was weak or absent. In conclusion, most of the studied P2-receptors were expressed in both rat and human hearts. Furthermore, the P2X1- and P2Y2-receptor mRNA were upregulated in CHF, suggesting a pathophysiological role for these receptors in the development of heart failure.
Collapse
Affiliation(s)
- M Hou
- Dept. of Internal Medicine, Lund University Hospital, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Worthington RA, Hansen MA, Balcar VJ, Bennett MR, Barden JA. Analysis of novel P2X subunit-specific antibodies in rat cardiac and smooth muscle. Electrophoresis 1999; 20:2081-5. [PMID: 10451119 DOI: 10.1002/(sici)1522-2683(19990701)20:10<2081::aid-elps2081>3.0.co;2-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
P2X receptors are cation-selective channels gated by extracellular adenosine triphosphate (ATP). There are relatively few known types of ligand-gated receptors. In vertebrates they include acetylcholine (Ach), 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA), glycine, and glutamate as well as ATP. Ach, 5-HT, GABA and glycine ligand-gated receptors are related in evolutionary terms, while glutamate and ATP receptors form separate groups. There have been seven cloned proteins identified to date as members of the P2X receptor family in a wide range of cells and species. We have carried out hydropathy investigations and sequence comparisons of each of the seven subunits in order to examine the putative transmembrane and cysteine-rich extracellular domains. Probable locations of disulphide bridges are consistent with there being two separate extracellular folding domains. Assessment of the putative surface-accessible regions was used to select small localised amino acid segments in nonglycosylated regions for raising antibodies against each of the P2X receptor subunits. To test the specificity of these novel P2X receptor antibodies and their presence in cardiac and smooth muscle, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)/Western blotting was undertaken in homogenised rat heart, bladder, kidney, and vas deferens.
Collapse
Affiliation(s)
- R A Worthington
- Institute for Biomedical Research, and Department of Anatomy and Histology, The University of Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
21
|
Berry D, Yao M, Barden JA, Balcar VJ, Hansen MA, Bennett MR, Keogh A, dos Remedios CG. Alterations in the expression of P2X1 receptors in failing and nondiseased human atria. Electrophoresis 1998; 19:856-9. [PMID: 9629927 DOI: 10.1002/elps.1150190542] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This is the first report of the analysis of the ATP-specific P2X1 receptor subunit in human hearts. We have examined homogenate samples of human left atria for the presence of P2X1 receptors using Western blots. Anti-P2X1 immunoreactivity was detected in populations of nondiseased atria as well as in atria from explanted hearts from patients with terminally failing heart conditions such as dilated cardiomyopathy. At least three groups of P2X1 immunoreactive proteins were detected in the Western blots with approximate molecular mass values of 50, 70, and 160 kDa. We report changes in expression of their 50 and 70 kDa components. These changes may be related to the type of deficit in these hearts since the changes have been observed in hearts with decreased ejection fractions characteristic of dilated cardiomyopathy.
Collapse
Affiliation(s)
- D Berry
- Institute for Biomedical Research, Department of Anatomy and Histology, The University of Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bogdanov Y, Rubino A, Burnstock G. Characterisation of subtypes of the P2X and P2Y families of ATP receptors in the foetal human heart. Life Sci 1998; 62:697-703. [PMID: 9489506 DOI: 10.1016/s0024-3205(97)01168-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ATP exerts a variety of actions within the myocardium, including the regulation of coronary vascular tone and modulation of the autonomic control of the heart. In order to characterise the ATP receptor subtypes involved in these effects, degenerate oligonucleotides were used to clone receptors of both P2X and P2Y families from the human foetal heart. About 1 ng of "Quick-Clone cDNA" from foetal human heart was subjected to amplification with two pairs of degenerate oligonucleotides designed to amplify subtypes of the P2X and P2Y receptor families by means of PCR reactions. The sequence analysis of 34 and 29 clones of the P2X and P2Y receptor families, respectively, demonstrated that P2X1, P2X3 and P2X4 subtypes are present in the human foetal heart together with P2Y6, P2Y2 and P2Y4 receptors. P2X1 and P2Y4 receptor subtypes were here characterised for the first time in the human foetal heart. The present study provides the first molecular characterisation of ATP receptors in the foetal human heart. The results show that many P2 receptor subtypes are expressed in the foetal human heart, perhaps contributing to developmental processes as well as to the activity of the foetal heart.
Collapse
Affiliation(s)
- Y Bogdanov
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | |
Collapse
|