1
|
Zhu C, Xu Z, Yuan Y, Wang T, Xu C, Yin C, Xie P, Xu P, Ye H, Patel N, Schaul S, Wang L, Zhu X, Wang S, Gao P, Xi Q, Zhang Y, Shu G, Jiang Q. Heparin impairs skeletal muscle glucose uptake by inhibiting insulin binding to insulin receptor. ENDOCRINOLOGY DIABETES & METABOLISM 2021; 4:e00253. [PMID: 34277977 PMCID: PMC8279624 DOI: 10.1002/edm2.253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/24/2022]
Abstract
Aim Heparin, a widely used antithrombotic drug has many other anticoagulant-independent physiological functions. Here, we elucidate a novel role of heparin in glucose homeostasis, suggesting an approach for developing heparin-targeted therapies for diabetes. Methods For serum heparin levels and correlation analysis, 122 volunteer's plasma, DIO (4 weeks HFD) and db/db mice serums were collected and used for spectrophotometric determination. OGTT, ITT, 2-NBDG uptake and muscle GLUT4 immunofluorescence were detected in chronic intraperitoneal injection of heparin or heparinase (16 days) and muscle-specific loss-of-function mice. In 293T cells, the binding of insulin to its receptor was detected by fluorescence resonance energy transfer (FRET), Myc-GLUT4-mCherry plasmid was used in GLUT4 translocation. In vitro, C2C12 cells as mouse myoblast cells were further verified the effects of heparin on glucose homeostasis through 2-NBDG uptake, Western blot and co-immunoprecipitation. Results Serum concentrations of heparin are positively associated with blood glucose levels in humans and are significantly increased in diet-induced and db/db obesity mouse models. Consistently, a chronic intraperitoneal injection of heparin results in hyperglycaemia, glucose intolerance and insulin resistance. These effects are independent of heparin's anticoagulant function and associated with decreases in glucose uptake and translocation of glucose transporter type 4 (GLUT4) in skeletal muscle. By using a muscle-specific loss-of-function mouse model, we further demonstrated that muscle GLUT4 is required for the detrimental effects of heparin on glucose homeostasis. Conclusions Heparin reduced insulin binding to its receptor by interacting with insulin and inhibited insulin-mediated activation of the PI3K/Akt signalling pathway in skeletal muscle, which leads to impaired glucose uptake and hyperglycaemia.
Collapse
Affiliation(s)
- Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | | | - Yexian Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Tao Wang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Chang Xu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Peipei Xie
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Pingwen Xu
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Hui Ye
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Nirali Patel
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Sarah Schaul
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The University of Illinois at Chicago Chicago IL USA
| | - Lina Wang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Xiaotong Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Songbo Wang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Ping Gao
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Qianyun Xi
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Yongliang Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
2
|
Vilar R, Fish RJ, Casini A, Neerman-Arbez M. Fibrin(ogen) in human disease: both friend and foe. Haematologica 2020; 105:284-296. [PMID: 31949010 PMCID: PMC7012490 DOI: 10.3324/haematol.2019.236901] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Fibrinogen is an abundant protein synthesized in the liver, present in human blood plasma at concentrations ranging from 1.5-4 g/L in healthy individuals with a normal half-life of 3-5 days. With fibrin, produced by thrombin-mediated cleavage, fibrinogen plays important roles in many physiological processes. Indeed, the formation of a stable blood clot, containing polymerized and cross-linked fibrin, is crucial to prevent blood loss and drive wound healing upon vascular injury. A balance between clotting, notably the conversion of fibrinogen to fibrin, and fibrinolysis, the proteolytic degradation of the fibrin mesh, is essential. Disruption of this equilibrium can cause disease in distinct manners. While some pathological conditions are the consequence of altered levels of fibrinogen, others are related to structural properties of the molecule. The source of fibrinogen expression and the localization of fibrin(ogen) protein also have clinical implications. Low levels of fibrinogen expression have been detected in extra-hepatic tissues, including carcinomas, potentially contributing to disease. Fibrin(ogen) deposits at aberrant sites including the central nervous system or kidney, can also be pathological. In this review, we discuss disorders in which fibrinogen and fibrin are implicated, highlighting mechanisms that may contribute to disease.
Collapse
Affiliation(s)
- Rui Vilar
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine
| | - Richard J Fish
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine
| | - Alessandro Casini
- Division of Angiology and Hemostasis, University Hospitals and University of Geneva Faculty of Medicine
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine .,iGE3, Institute of Genetics and Genomics in Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Kopec AK, Abrahams SR, Thornton S, Palumbo JS, Mullins ES, Divanovic S, Weiler H, Owens AP, Mackman N, Goss A, van Ryn J, Luyendyk JP, Flick MJ. Thrombin promotes diet-induced obesity through fibrin-driven inflammation. J Clin Invest 2017; 127:3152-3166. [PMID: 28737512 DOI: 10.1172/jci92744] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/02/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390-396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMβ2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390-396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | | | | | | | | | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Hartmut Weiler
- Department of Physiology, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - A Phillip Owens
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nigel Mackman
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashley Goss
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Joanne van Ryn
- Department of Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH, Biberach, Germany
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
4
|
Abstract
Major known effects of the metabolic derangements of diabetes in haemostasis are induction of platelet-vascular activation by hyperglycaemia, the increase in fibrinogen, modification of fibrin substrate by glucose and hypofibrinolysis related to insulin resistance. The platelet effects are specifically expressed during high shear stress and may be relevant in particular for developing of micro-angiopathy. Hypofibrinolysis, increased fibrinogen and modifications of fibrin may aggravate microthrombosis and organ damage and contribute to precipitation of coronary and cerebral infarction. In addition to specific anti-diabetic medication to reduce the haemostatic effects, specific antiplatelet and profibrinolytic treatments may be relevant for reducing further the morbidity and mortality in diabetics for both micro- and macro-angiopathy.
Collapse
Affiliation(s)
- Cornelis Kluft
- Gaubius Laboratory, TNO-PG, Leiden, The Netherlands, Thrombosis Institute, University of Southern Denmark, Esbjerg, Denmark,
| | - Jorgen Jespersen
- Thrombosis Institute, University of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
5
|
Sakkinen PA, Wahl P, Cushman M, Lewis MR, Tracy RP. Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome. Am J Epidemiol 2000; 152:897-907. [PMID: 11092431 DOI: 10.1093/aje/152.10.897] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The known metabolic cardiovascular disease risk factors associated with insulin resistance syndrome (IRS) do not adequately explain the excess cardiovascular disease risk attributed to this syndrome, and abnormalities in hemostatic variables may contribute to this excess risk. Using data from 322 nondiabetic elderly men and women (aged 65-100 years) participating in the Cardiovascular Health Study during 1989-1990, the authors performed factor analysis on 10 metabolic risk factors associated with IRS and 11 procoagulation, inflammation, and fibrinolysis variables to examine the clustering of the metabolic and hemostatic risk markers. Factor analysis of the metabolic variables confirmed four uncorrelated factors: body mass, insulin/glucose, lipids, and blood pressure. Adding the hemostatic variables yielded three new factors interpreted as inflammation, vitamin K-dependent proteins, and procoagulant activity. Plasminogen activator inhibitor-1 clustered with the body mass factor, supporting the hypothesis that obesity is related to impaired fibrinolysis. Fibrinogen clustered with the inflammation summary factor rather than procoagulant activity, supporting the position that fibrinogen principally reflects underlying inflammation rather than procoagulant potential. The authors conclude that should hemostatic variables be shown to contribute to IRS-related cardiovascular disease, apart from plasminogen activator inhibitor-1, they may do so independently of the established metabolic abnormalities.
Collapse
Affiliation(s)
- P A Sakkinen
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05446, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
There are epidemiological data and experimental animal models relating the development of premature atherosclerosis with defects of the reverse cholesterol transport (RCT) system. In this regard, the plasma concentrations of the high density lipoprotein (HDL) subfractions, of cholesteryl ester transfer protein (CETP), as well as the activity of the enzyme lecithin-cholesterol acyl transferase (LCAT) play critical roles. However, there has been plenty of evidence that atherosclerosis in diabetes mellitus (DM) is ascribed to a greater arterial wall cell uptake of modified apoB-containing lipoproteins whereas a primary or predominant defect of the RCT system is still a subject of debate. In other words, in spite of the fact that in DM the composition and rates of metabolism of the HDL particles are greatly altered and display a diminished in vitro efficiency to remove cell cholesterol, definitive in vivo demonstration of the importance of this fact in atherogenesis is lacking. Furthermore, the roles played by LCAT and CETP in RCT in DM are difficult to interpret because the in vitro procedures of measurement utilized have either been inadequate, or inappropriately interpreted. Knock-out or transgenic mice are much needed models to investigate the roles of LCAT, CETP, phospholipid transfer protein (PLTP), and of a CETP inhibitor in the development of atherosclerosis of experimental DM.
Collapse
Affiliation(s)
- E C Quintão
- Lipid Metabolism Laboratory (LIM 10), Hospital das Clínicas, The University of São Paulo Medical School, São Paulo, Brazil.
| | | | | |
Collapse
|