1
|
Kaushik P, Mishra R, Gopal C, Kumar A. miR-198 targets TOPORS: implications for oral squamous cell carcinoma pathogenesis. Front Oncol 2024; 14:1485802. [PMID: 39697236 PMCID: PMC11652479 DOI: 10.3389/fonc.2024.1485802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
Background miRNAs play a critical role in the progression of various diseases, including oral squamous cell carcinoma (OSCC), which represents a major health concern and is one of the leading causes for new cancer cases worldwide. The miRNA dysregulation causes havoc and could be attributed to various factors, with epigenetic silencing of tumor suppressor genes being a major contributor to tumorigenesis. In this study, we have explored the tumor suppressive role of miR-198 in OSCC. Methods The tumor suppressive effect of miR-198 is established using miRNA analysis in OSCC cell lines, patient samples and xenograft nude mice model. The relationship between the miR-198 and TOPORS is explored using bioinformatics analyses, qRT-PCR, dual-luciferase reporter assay, Western blotting and cancer hall marks assays. The hypermethylation of the MIR198 promoter is confirmed using bisulfite sequencing PCR. Results We have found miR-198 to be upregulated in OSCC cells treated with 5-Azacytidine, a known DNA methyltransferase inhibitor. Upregulation of miR-198 in 5-Azacytidine treated OSCC cells appears to be due to methylation of the MIR198 promoter. Using bioinformatics analysis and dual-luciferase reporter assay, we have identified TOPORS (TOP1 binding arginine/serine rich protein, E3 ubiquitin ligase) as a novel gene target for miR-198. miR-198-mediated repression of TOPORS decreases cell proliferation and anchorage-independent growth and enhances apoptosis of OSCC cells, which is dependent on the presence of the 3'UTR in TOPORS. An inverse correlation between the expression levels of miR-198 and TOPORS is observed in OSCC patient samples, highlighting the biological relevance of their interaction. Delivery of a synthetic miR-198 mimic to OSCC cells results in a significant decrease in xenograft size in nude mice, potentiating its use in therapeutics. Conclusions These results suggest that miR-198 is epigenetically silenced in OSCC, which promotes tumor growth, in part, by upregulating the levels of TOPORS.
Collapse
Affiliation(s)
- Pankhuri Kaushik
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Radha Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Champaka Gopal
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Arun Kumar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Ooi YJ, Wen Y, Zhu J, Song X, Li J. Codelivery of Doxorubicin and p53 Gene by β-Cyclodextrin-Based Supramolecular Nanoparticles Formed via Host-Guest Complexation and Electrostatic Interaction. Biomacromolecules 2024; 25:2980-2989. [PMID: 38587905 DOI: 10.1021/acs.biomac.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We developed a supramolecular system for codelivery of doxorubicin (Dox) and p53 gene based on a β-CD-containing star-shaped cationic polymer. First, a star-shaped cationic polymer consisting of a β-CD core and 3 arms of oligoethylenimine (OEI), named CD-OEI, was used to form a supramolecular inclusion complex with hydrophobic Dox. The CD-OEI/Dox complex was subsequently used to condense plasmid DNA via electrostatic interactions to form CD-OEI/Dox/DNA polyplex nanoparticles with positive surface charges that enhanced the cellular uptake of both Dox and DNA. This supramolecular drug and gene codelivery system showed high gene transfection efficiency and effective protein expression in cancer cells. The codelivery of Dox and DNA encoding the p53 gene resulted in reduced cell viability and enhanced antitumor effects at low Dox concentrations. With its enhanced cellular uptake and anticancer efficacy, the system holds promise as a delivery carrier for potential combination cancer therapies.
Collapse
Affiliation(s)
- Ying Jie Ooi
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
3
|
Islam SA, Díaz-Gay M, Wu Y, Barnes M, Vangara R, Bergstrom EN, He Y, Vella M, Wang J, Teague JW, Clapham P, Moody S, Senkin S, Li YR, Riva L, Zhang T, Gruber AJ, Steele CD, Otlu B, Khandekar A, Abbasi A, Humphreys L, Syulyukina N, Brady SW, Alexandrov BS, Pillay N, Zhang J, Adams DJ, Martincorena I, Wedge DC, Landi MT, Brennan P, Stratton MR, Rozen SG, Alexandrov LB. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. CELL GENOMICS 2022; 2:None. [PMID: 36388765 PMCID: PMC9646490 DOI: 10.1016/j.xgen.2022.100179] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022]
Abstract
Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.
Collapse
Affiliation(s)
- S.M. Ashiqul Islam
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yang Wu
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Mike Vella
- NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jon W. Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Clapham
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sergey Senkin
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Riva
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andreas J. Gruber
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464 Konstanz, Germany
| | - Christopher D. Steele
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Samuel W. Brady
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David J. Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - David C. Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Steven G. Rozen
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Heijkants RC, Teunisse AFAS, de Jong D, Glinkina K, Mei H, Kielbasa SM, Szuhai K, Jochemsen AG. MDMX Regulates Transcriptional Activity of p53 and FOXO Proteins to Stimulate Proliferation of Melanoma Cells. Cancers (Basel) 2022; 14:cancers14184482. [PMID: 36139642 PMCID: PMC9496676 DOI: 10.3390/cancers14184482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We have investigated the transcriptional changes occurring in uveal and cutaneous melanoma cell lines upon depletion of MDMX (aka:MDM4). Computational analyses of the mRNAs/genes affected upon MDMX depletion determined that many were containing a p53-bindingsite, but even more contained a FOX recognition site(s). Since connections between MDM2 and FOXO1 had already been published, we investigated whether indeed a subset of the MDMX-regulated genes are dependent on FOXO1/FOXO3 expression. Indeed, a number of such target genes, i.e., PIK3IP1, MXD4 and ZMAT3, were found to be FOXO target genes in our cell models. Some of these genes were recently identified as indirect p53-target genes, and their expression was found to be regulated by RFX7 transcription factor, which was found activated upon pharmacological activation of p53, e.g., by Nutlin-3. However, a clear involvement of RFX7 in our model could not be established, but an interplay between FOXO and RFX7 factors seems evident. Abstract The tumor suppressor protein p53 has an important role in cell-fate determination. In cancer cells, the activity of p53 is frequently repressed by high levels of MDMX and/or MDM2. MDM2 is a ubiquitin ligase whose activity results in ubiquitin- and proteasome-dependent p53 degradation, while MDMX inhibits p53-activated transcription by shielding the p53 transactivation domain. Interestingly, the oncogenic functions of MDMX appear to be more wide-spread than inhibition of p53. The present study aimed to elucidate the MDMX-controlled transcriptome. Therefore, we depleted MDMX with four distinct shRNAs from a high MDMX expressing uveal melanoma cell line and determined the effect on the transcriptome by RNAseq. Biological function analyses indicate the inhibition of the cell cycle regulatory genes and stimulation of cell death activating genes upon MDMX depletion. Although the inhibition of p53 activity clearly contributes to the transcription regulation controlled by MDMX, it appeared that the transcriptional regulation of multiple genes did not only rely on p53 expression. Analysis of gene regulatory networks indicated a role for Forkhead box (FOX) transcription factors. Depletion of FOXO proteins partly prevented the transcriptional changes upon MDMX depletion. Furthermore, depletion of FOXO proteins relatively diminished the growth inhibition upon MDMX knockdown, although the knockdown of the FOXO transcription factors also reduces cell growth. In conclusion, the p53-independent oncogenic functions of MDMX could be partially explained by its regulation of FOXO activity.
Collapse
Affiliation(s)
- Renier C. Heijkants
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Amina F. A. S. Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Danielle de Jong
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Kseniya Glinkina
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Szymon M. Kielbasa
- Sequencing Analysis Support Core, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
5
|
de Andrade KC, Lee EE, Tookmanian EM, Kesserwan CA, Manfredi JJ, Hatton JN, Loukissas JK, Zavadil J, Zhou L, Olivier M, Frone MN, Shahzada O, Longabaugh WJR, Kratz CP, Malkin D, Hainaut P, Savage SA. The TP53 Database: transition from the International Agency for Research on Cancer to the US National Cancer Institute. Cell Death Differ 2022; 29:1071-1073. [PMID: 35352025 PMCID: PMC9090805 DOI: 10.1038/s41418-022-00976-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/16/2023] Open
Affiliation(s)
- Kelvin César de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Elise M Tookmanian
- Office of the Director, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Chimene A Kesserwan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica N Hatton
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer K Loukissas
- Office of the Director, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, WHO, Lyon, France
| | - Lei Zhou
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Magali Olivier
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, WHO, Lyon, France
| | - Megan N Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Owais Shahzada
- General Dynamics Information Technology, Rockville, MD, USA
| | | | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale 1209 Centre National de la Recherche Scientifique, 5309, Universitè Grenoble Alpes, Grenoble, France
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Shen L, Zhang S, Wang K, Wang X. Familial Breast Cancer: Disease Related Gene Mutations and Screening Strategies for Chinese Population. Front Oncol 2021; 11:740227. [PMID: 34926254 PMCID: PMC8671637 DOI: 10.3389/fonc.2021.740227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND About 5%-10% of the breast cancer cases have a hereditary background, and this subset is referred to as familial breast cancer (FBC). In this review, we summarize the susceptibility genes and genetic syndromes associated with FBC and discuss the FBC screening and high-risk patient consulting strategies for the Chinese population. METHODS We searched the PubMed database for articles published between January 2000 and August 2021. Finally, 380 pieces of literature addressing the genes and genetic syndromes related to FBC were included and reviewed. RESULTS We identified 16 FBC-related genes and divided them into three types (high-, medium-, and low-penetrance) of genes according to their relative risk ratios. In addition, six genetic syndromes were found to be associated with FBC. We then summarized the currently available screening strategies for FBC and discussed those available for high-risk Chinese populations. CONCLUSION Multiple gene mutations and genetic disorders are closely related to FBC. The National Comprehensive Cancer Network (NCCN) guidelines recommend corresponding screening strategies for these genetic diseases. However, such guidelines for the Chinese population are still lacking. For screening high-risk groups in the Chinese population, genetic testing is recommended after genetic counseling.
Collapse
Affiliation(s)
| | | | | | - Xiaochen Wang
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Shen Y, Ha W, Zeng W, Queen D, Liu L. Exome sequencing identifies novel mutation signatures of UV radiation and trichostatin A in primary human keratinocytes. Sci Rep 2020; 10:4943. [PMID: 32188867 PMCID: PMC7080724 DOI: 10.1038/s41598-020-61807-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
Canonical ultraviolet (UV) mutation type and spectra are traditionally defined by direct sequencing-based approaches to map mutations in a limited number of representative DNA elements. To obtain an unbiased view of genome wide UV mutation features, we performed whole exome-sequencing (WES) to profile single nucleotide substitutions in UVB-irradiated primary human keratinocytes. Cross comparison of UV mutation profiles under different UVB radiation conditions revealed that T > C transition was highly prevalent in addition to C > T transition. We also identified 5'-ACG-3' as a common sequence motif of C > T transition. Furthermore, our analyses uncovered several recurring UV mutations following acute UVB radiation affecting multiple genes including HRNR, TRIOBP, KCNJ12, and KMT2C, which are frequently mutated in skin cancers, indicating their potential role as founding mutations in UV-induced skin tumorigenesis. Pretreatment with trichostatin A, a pan-histone deacetylase inhibitor that renders chromatin decondensation, significantly decreased the number of mutations in UVB-irradiated keratinocytes. Unexpectedly, we found trichostatin A to be a mutagen that caused DNA damage and mutagenesis at least partly through increased reactive oxidation. In summary, our study reveals new UV mutation features following acute UVB radiation and identifies novel UV mutation hotspots that may potentially represent founding driver mutations in skin cancer development.
Collapse
Affiliation(s)
- Yao Shen
- Department of Systems Biology, Columbia University, New York, New York, USA
| | - Wootae Ha
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Wangyong Zeng
- Department of Dermatology, Columbia University, New York, USA
| | - Dawn Queen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
- Department of Dermatology, Columbia University, New York, USA.
| |
Collapse
|
8
|
Shahbandi A, Nguyen HD, Jackson JG. TP53 Mutations and Outcomes in Breast Cancer: Reading beyond the Headlines. Trends Cancer 2020; 6:98-110. [PMID: 32061310 PMCID: PMC7931175 DOI: 10.1016/j.trecan.2020.01.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
TP53 is the most frequently mutated gene in breast cancer, but its role in survival is confounded by different studies concluding that TP53 mutations are associated with negative, neutral, or positive outcomes. Closer examination showed that many studies were limited by factors such as imprecise methods to detect TP53 mutations and small cohorts that combined patients treated with drugs having very different mechanisms of action. When only studies of patients receiving the same treatment(s) were compared, they tended to agree. These analyses reveal a role for TP53 in response to different treatments as complex as its different biological activities. We discuss studies that have assessed the role of TP53 mutations in breast cancer treatment and limitations in interpreting reported results.
Collapse
Affiliation(s)
- Ashkan Shahbandi
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, 1430 Tulane Avenue #8543, New Orleans, LA 70112, USA
| | - Hoang D Nguyen
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, 1430 Tulane Avenue #8543, New Orleans, LA 70112, USA
| | - James G Jackson
- Tulane School of Medicine, Department of Biochemistry and Molecular Biology, 1430 Tulane Avenue #8543, New Orleans, LA 70112, USA.
| |
Collapse
|
9
|
Chen YQ, Yang TQ, Zhou B, Yang MX, Feng HJ, Wang YL. HOXA5 overexpression promotes osteosarcoma cell apoptosis through the p53 and p38α MAPK pathway. Gene 2019; 689:18-23. [DOI: 10.1016/j.gene.2018.11.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022]
|
10
|
Moussa RS, Park KC, Kovacevic Z, Richardson DR. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radic Biol Med 2019; 133:276-294. [PMID: 29572098 DOI: 10.1016/j.freeradbiomed.2018.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Iron (Fe) has become an important target for the development of anti-cancer therapeutics with a number of Fe chelators entering human clinical trials for advanced and resistant cancer. An important aspect of the activity of these compounds is their multiple molecular targets, including those that play roles in arresting the cell cycle, such as the cyclin-dependent kinase inhibitor, p21. At present, the exact mechanism by which Fe chelators regulate p21 expression remains unclear. However, recent studies indicate the ability of chelators to up-regulate p21 at the mRNA level was dependent on the chelator and cell-type investigated. Analysis of the p21 promoter identified that the Sp1-3-binding site played a significant role in the activation of p21 transcription by Fe chelators. Furthermore, there was increased Sp1/ER-α and Sp1/c-Jun complex formation in melanoma cells, suggesting these complexes were involved in p21 promoter activation. Elucidating the mechanisms involved in the regulation of p21 expression in response to Fe chelator treatment in neoplastic cells will further clarify how these agents achieve their anti-tumor activity. It will also enhance our understanding of the complex roles p21 may play in neoplastic cells and lead to the development of more effective and specific anti-cancer therapies.
Collapse
Affiliation(s)
- Rayan S Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
11
|
Pandey S, Bourn J, Cekanova M. Mutations of p53 decrease sensitivity to the anthracycline treatments in bladder cancer cells. Oncotarget 2018; 9:28514-28531. [PMID: 29983877 PMCID: PMC6033348 DOI: 10.18632/oncotarget.25530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
Due to doxorubicin (Dox) cardiotoxicity, the next generation of novel non-cardiotoxic anthracyclines, including AD 312 and AD 198, were synthesized and validated. In this study, we assessed the efficacy and mechanisms of anthracyclines-induced apoptosis and inhibition of cell viability in human bladder cancer cells expressing wild-type (wt) p53 (RT4 and SW780) and mutated (mt) p53 (UM-UC-3, 5637, T-24, J82, and TCCSUP) protein. Anthracyclines inhibited cell viability in tested TCC cells, but were less effective in mt-p53 TCC cells, especially in the drug-resistant J82 and TCCSUP cells. Anthracyclines upregulated the expression of wt p53 protein in RT4 and SW780 cells, but had no effect on expression of mt p53 protein in UM-UC-3, 5637, T-24, J82, and TCCSUP cells. The anthracyclines activated caspase 3/7 and cleavage of PARP in wt-p53 RT4 and SW780 cells, and mt-p53 5637, UM-UC-3, and T-24, but not in mt-p53 J82 and TCCSUP cells. The anthracyclines-induced cleavage of PARP was blocked by p53 siRNA in wt-p53 RT4 cells. Co-treatment of AD 198 with PRIMA-1 significantly inhibited cell viability of mt-p53 J82 cells, but had no effect in wt-p53 RT4 cells. AD 198 blocked c-myc expression in mt-p53 UM-UC-3, 5637, T-24, and J82 cells, however no expression of c-myc was detected in wt-p53 RT4 and SW780 cells. In conclusion, our results demonstrated that the anthracycline-induced resistance in bladder cancer cells positively correlated with TP53 mutations in the tetramerization domain in J82 and TCCSUP cells. Further, AD 312 and AD 198 are promising chemotherapeutic drugs for bladder cancer, especially in combination with PRIMA-1.
Collapse
Affiliation(s)
- Sony Pandey
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Jennifer Bourn
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee 37996, USA.,UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Maria Cekanova
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee 37996, USA.,UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
12
|
Sobieszkoda D, Czech J, Gablo N, Kopanska M, Tabarkiewicz J, Kolacinska A, Robak T, Zawlik I. MGMT promoter methylation as a potential prognostic marker for acute leukemia. Arch Med Sci 2017; 13:1433-1441. [PMID: 29181075 PMCID: PMC5701700 DOI: 10.5114/aoms.2017.71067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/14/2016] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION It has been proved that genetic and epigenetic changes play a significant role in the development and progression of acute leukemia. The aim of our study was to evaluate the frequency and prognostic implications of genetic and epigenetic alterations in p15, MGMT, DNMT3A and TP53 genes in acute leukemias. MATERIAL AND METHODS We included in the study 59 patients with acute leukemia. Evaluation of TP53 and DNMT3A mutations was performed using sequencing analysis and PCR-RFLP, respectively. Methylation status of MGMT and p15 genes was evaluated using MSP and COBRA, respectively. For assessment of global DNA methylation ELISA-based kit was used. RESULTS We found that overall survival was higher for ALL patients. MGMT promoter methylation was significantly associated with patients age at the time of diagnosis (p = 0.03). TP53 and DNMT3A mutations were observed only in AML patients (16.67% and 8.8%, respectively). Patients with acute leukemia and p15 promoter methylation had significantly more frequently mutated TP53 gene (p = 0.04) and AML patients with p15 promoter methylation had significantly more frequently detected global hypomethylation of DNA (p = 0.009). In the group of ALL patients we noted an opposite trend: only patients negative for p15 promoter methylation were characterized by global DNA hypomethylation. CONCLUSIONS Our findings demonstrate that MGMT promoter methylation can have a considerable impact on the development of acute leukemia in older patients. DNMT3A and TP53 mutations may play a significant role in AML development. However, further studies conducted in a larger cohort of patients are needed to determine its clinical utility.
Collapse
Affiliation(s)
- Dominika Sobieszkoda
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Joanna Czech
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
- Department of Genetics, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Natalia Gablo
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
- Department of Genetics, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Marta Kopanska
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
- Department of Genetics, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Jacek Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
- Department of Immunology, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Agnieszka Kolacinska
- Department of Head and Neck Cancer Surgery, Medical University of Lodz, Lodz, Poland
- Department of Surgical Oncology, Cancer Center, Copernicus Memorial Hospital, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | - Izabela Zawlik
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
- Department of Genetics, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
13
|
Zhivagui M, Korenjak M, Zavadil J. Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:16-22. [PMID: 27754614 DOI: 10.1111/bcpt.12690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022]
Abstract
Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome-wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen-specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single-gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure-specific base-change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures.
Collapse
Affiliation(s)
- Maria Zhivagui
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| |
Collapse
|
14
|
Antitumoral effects of γCdcPLI, a PLA 2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 breast cancer cell. Sci Rep 2017; 7:7077. [PMID: 28765552 PMCID: PMC5539153 DOI: 10.1038/s41598-017-07082-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/22/2017] [Indexed: 12/23/2022] Open
Abstract
Phospholipases A2(PLA2s) overexpression is closely associated with the malignant potential of breast cancers. Here, we showed for the first the antitumoral effects of γCdcPLI, a PLA2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 cell. Firstly, γCdcPLI was more cytotoxic to MDA-MB-231 breast cancer cells than other cell lines (MCF-7, HeLa, PC3 and A549) and did not affect the viability of non-tumorigenic breast cell (MCF 10A). In addition, γCdcPLI induced modulation of important mediators of apoptosis pathways such as p53, MAPK-ERK, BIRC5 and MDM2. γCdcPLI decreased MDA-MB-231 adhesion, migration and invasion. Interestingly, the γCdcPLI also inhibited the adhesion and migration of endothelial cells and blocked angiogenesis by inhibiting tube formation by HUVECs in vitro and sprouting elongation on aortic ring assay ex vivo. Furthermore, γCdcPLI reduced the production of vascular endothelial growth factor (VEGF). γCdcPLI was also able to decrease PGE2 levels in MDA-MB-231 and inhibited gene and protein expression of the PI3K/Akt pathway. In conclusion, γCdcPLI showed in vitro antitumoral, antimestatatic and anti-angiogenic potential effects and could be an attractive approach for futures studies in cancer therapy.
Collapse
|
15
|
Hainaut P, Pfeifer GP. Somatic TP53 Mutations in the Era of Genome Sequencing. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026179. [PMID: 27503997 DOI: 10.1101/cshperspect.a026179] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amid the complexity of genetic alterations in human cancer, TP53 mutation appears as an almost invariant component, representing by far the most frequent genetic alteration overall. Compared with previous targeted sequencing studies, recent integrated genomics studies offer a less biased view of TP53 mutation patterns, revealing that >20% of mutations occur outside the DNA-binding domain. Among the 12 mutations representing each at least 1% of all mutations, five occur at residues directly involved in specific DNA binding, four affect the tertiary fold of the DNA-binding domain, and three are nonsense mutations, two of them in the carboxyl terminus. Significant mutations also occur in introns, affecting alternative splicing events or generating rearrangements (e.g., in intron 1 in sporadic osteosarcoma). In aggressive cancers, mutation is so common that it may not have prognostic value (all these cancers have impaired p53 function caused by mutation or by other mechanisms). In several other cancers, however, mutation makes a clear difference for prognostication, as, for example, in HER2-enriched breast cancers and in lung adenocarcinoma with EGFR mutations. Thus, the clinical significance of TP53 mutation is dependent on tumor subtype and context. Understanding the clinical impact of mutation will require integrating mutation-specific information (type, frequency, and predicted impact) with data on haplotypes and on loss of heterozygosity.
Collapse
Affiliation(s)
- Pierre Hainaut
- University Grenoble Alpes, Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale (INSERM), 823 Grenoble, France
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
16
|
Hollstein M, Alexandrov LB, Wild CP, Ardin M, Zavadil J. Base changes in tumour DNA have the power to reveal the causes and evolution of cancer. Oncogene 2016; 36:158-167. [PMID: 27270430 PMCID: PMC5241425 DOI: 10.1038/onc.2016.192] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/19/2022]
Abstract
Next-generation sequencing (NGS) technology has demonstrated that the cancer genomes are peppered with mutations. Although most somatic tumour mutations are unlikely to have any role in the cancer process per se, the spectra of DNA sequence changes in tumour mutation catalogues have the potential to identify the mutagens, and to reveal the mutagenic processes responsible for human cancer. Very recently, a novel approach for data mining of the vast compilations of tumour NGS data succeeded in separating and precisely defining at least 30 distinct patterns of sequence change hidden in mutation databases. At least half of these mutational signatures can be readily assigned to known human carcinogenic exposures or endogenous mechanisms of mutagenesis. A quantum leap in our knowledge of mutagenesis in human cancers has resulted, stimulating a flurry of research activity. We trace here the major findings leading first to the hypothesis that carcinogenic insults leave characteristic imprints on the DNA sequence of tumours, and culminating in empirical evidence from NGS data that well-defined carcinogen mutational signatures are indeed present in tumour genomic DNA from a variety of cancer types. The notion that tumour DNAs can divulge environmental sources of mutation is now a well-accepted fact. This approach to cancer aetiology has also incriminated various endogenous, enzyme-driven processes that increase the somatic mutation load in sporadic cancers. The tasks now confronting the field of molecular epidemiology are to assign mutagenic processes to orphan and newly discovered tumour mutation patterns, and to determine whether avoidable cancer risk factors influence signatures produced by endogenous enzymatic mechanisms. Innovative research with experimental models and exploitation of the geographical heterogeneity in cancer incidence can address these challenges.
Collapse
Affiliation(s)
- M Hollstein
- Molecular Mechanisms and Biomarkers, International Agency for Research on Cancer, World Health Organization, Lyon, France.,Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - L B Alexandrov
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA.,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - C P Wild
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - M Ardin
- Molecular Mechanisms and Biomarkers, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - J Zavadil
- Molecular Mechanisms and Biomarkers, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
17
|
Petljak M, Alexandrov LB. Understanding mutagenesis through delineation of mutational signatures in human cancer. Carcinogenesis 2016; 37:531-40. [DOI: 10.1093/carcin/bgw055] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/29/2016] [Indexed: 01/04/2023] Open
|
18
|
Secondary interaction between MDMX and p53 core domain inhibits p53 DNA binding. Proc Natl Acad Sci U S A 2016; 113:E2558-63. [PMID: 27114532 DOI: 10.1073/pnas.1603838113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The MDMX oncoprotein is an important regulator of tumor suppressor p53 activity during embryonic development. Despite sequence homology to the ubiquitin E3 ligase MDM2, MDMX depletion activates p53 without significant increase in p53 level, implicating a degradation-independent mechanism. We present evidence that MDMX inhibits the sequence-specific DNA binding activity of p53. This function requires the cooperation between MDMX and CK1α, and phosphorylation of S289 on MDMX. Depletion of MDMX or CK1α increases p53 DNA binding without stabilization of p53. A proteolytic fragment release assay revealed that in the MDMX-p53 complex, the MDMX acidic domain and RING domain interact stably with the p53 DNA binding domain. These interactions are referred to as secondary interactions because they only occur after the canonical-specific binding between the MDMX and p53 N termini, but exhibit significant binding stability in the mature complex. CK1α cooperates with MDMX to inhibit p53 DNA binding by further stabilizing the MDMX acidic domain and p53 core domain interaction. These results suggest that secondary intermolecular interaction is important in p53 regulation by MDMX, which may represent a common phenomenon in complexes containing multidomain proteins.
Collapse
|
19
|
Huang SW, Chang SH, Mu SW, Jiang HY, Wang ST, Kao JK, Huang JL, Wu CY, Chen YJ, Shieh JJ. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line. J Dermatol Sci 2016; 81:182-91. [DOI: 10.1016/j.jdermsci.2015.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 12/11/2022]
|
20
|
Affiliation(s)
- Ludmil B Alexandrov
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
21
|
Long JS, Schoonen PM, Graczyk D, O'Prey J, Ryan KM. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene 2015; 34:5152-62. [PMID: 25659586 PMCID: PMC4761646 DOI: 10.1038/onc.2014.436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022]
Abstract
Tumour cells often acquire the ability to escape cell death, a key event leading to the development of cancer. In almost half of all human cancers, the capability to induce cell death is reduced by the mutation and inactivation of p53, a tumour suppressor protein that is a central regulator of apoptosis. As a result, there is a crucial need to identify different cell death pathways that could be targeted in malignancies lacking p53. p73, the closely related p53 family member, can regulate many p53 target genes and therefore some of the same cellular responses as p53. Unlike p53, however, p73 is seldom mutated in cancer, making it an attractive, alternative death effector to target. We report here the ability of p73 to upregulate the expression of the A2B receptor, a recently characterized p53 target that effectively promotes cell death in response to extracellular adenosine--a metabolite that accumulates during various forms of cellular stress. Importantly, we show that p73-dependent stimulation of A2B signalling markedly enhances apoptosis in cancer cells that are devoid of p53. This mode of death is caspase- and puma-dependent, and can be prevented by the overexpression of anti-apoptotic Bcl-X(L). Moreover, treatment of p53-null cancer cells with the chemotherapeutic drug adriamycin (doxorubicin) induces A2B in a p73-dependent manner and, in combination with an A2B agonist, substantially enhances apoptotic death. We therefore propose an alternate and distinct p53-independent pathway to stimulate programmed cell death involving p73-mediated engagement of adenosine signalling.
Collapse
Affiliation(s)
- J S Long
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - P M Schoonen
- Cancer Research UK Beatson Institute, Glasgow, UK
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - D Graczyk
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - J O'Prey
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - K M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
22
|
Single-strand conformational polymorphism analysis of a common single nucleotide variation in WRAP53 gene, rs2287499, and evaluating its association in relation to breast cancer risk and prognosis among Iranian-Azeri population. Med Oncol 2014; 31:168. [PMID: 25134915 DOI: 10.1007/s12032-014-0168-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
The WRAP53 (WD40-encoding RNA antisense to p53) gene encodes an antisense RNA, essential for p53 stabilization and induction upon DNA damage. Single nucleotide polymorphisms (SNPs) in WRAP53 have been associated with risk of cancer, which strengthens the role of WRAP53 in the pathogenesis of human malignancies. In fact, WRAP53 has been considered as a candidate cancer susceptibility gene. Accordingly, we performed a study to examine the association of a frequent genetic variation in WRAP53, rs2287499 (C/G), with breast cancer risk and prognosis among Iranian-Azeri population. A case-control association study, including 206 cases and 203 controls from Iranian-Azeri population, was conducted. Genomic DNA was extracted from peripheral blood and tumor samples by salting-out method. SNP genotyping was carried out by polymerase chain reaction-based single-strand conformational polymorphism (PCR-SSCP) technique. The sequence variation of SSCP banding patterns was determined by sequencing. The collected data were analyzed through statistical package for the social sciences software, using Chi-square (χ (2)) or Fisher's exact tests, with a significance level of 0.05. No significant differences in the allele and genotype frequencies between cases and controls were detected. Similarly, no significant associations between genotypes and clinicopathological data were observed. Concisely, no significant overall associations between rs2287499 and breast cancer risk and prognosis were detected in the studied population. The rs2287499 SNP is not associated with breast cancer predisposition in Iranian-Azeri women; it also cannot be used as a molecular biomarker to predict breast cancer prognosis in Iranian-Azeri population.
Collapse
|
23
|
Dey SK, Saha S, Das P, Das MR, Jana SS. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes. Exp Cell Res 2014; 326:68-77. [PMID: 24887008 DOI: 10.1016/j.yexcr.2014.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/16/2023]
Abstract
3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC20) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC20 phosphorylation may be associated with the fragmentation step of dedifferentiation.
Collapse
Affiliation(s)
- Sumit K Dey
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| | - Shekhar Saha
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| | - Provas Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| | - Mahua R Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| | - Siddhartha S Jana
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India.
| |
Collapse
|
24
|
Kaur JS, Vierkant RA, Hobday T, Visscher D. Regional differences in breast cancer biomarkers in american Indian and Alaska native women. Cancer Epidemiol Biomarkers Prev 2014; 23:409-15. [PMID: 24609850 PMCID: PMC3955020 DOI: 10.1158/1055-9965.epi-13-0738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Breast cancer is not a homogeneous disease, but several different and unique subtypes defined by gene expression analysis. Incidence and mortality rates vary by almost 3-fold between Alaska (highest) and the Southwestern tribes (lowest). We hypothesized that these differences may be due to, in part, varying levels of biologic tumor aggressiveness. METHODS A biorepository of the North Central Cancer Treatment Group with 95 cases of American Indian and Alaska Native (AIAN) women with adenocarcinoma of the breast surgically treated from 1990 to 2000 was tested for several biomarkers. Comparison distributions of biomarker values across state of residence using t tests for continuous (p53, MIB-1, cyclin D) and ordinally scaled markers [EGF receptor (EGFR), BCL-2, Her2] and χ(2) tests of significance for binary markers [estrogen receptor (ER), progesterone receptor (PR)] were done. RESULTS Significant regional differences in some biomarker expression levels were seen. No increase was observed in "triple-negative" breast cancer or Her2 overexpression in these cases. CONCLUSIONS Despite a 3-fold difference in breast cancer mortality in Alaska Native versus Southwestern American Indians, standard biomarkers such as ER, PR, and Her2 neu expression did not explain the disparity. IMPACT There is a need for research to understand the biologic basis of breast cancer disparities in AIAN women. Potential for a prospective trial will be explored with tribes.
Collapse
Affiliation(s)
- Judith S Kaur
- Authors' Affiliations: Divisions of Medical Oncology and Anatomical Pathology; Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
25
|
Alexandrov LB, Stratton MR. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr Opin Genet Dev 2013; 24:52-60. [PMID: 24657537 PMCID: PMC3990474 DOI: 10.1016/j.gde.2013.11.014] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/17/2013] [Indexed: 12/14/2022]
Abstract
All cancers originate from a single cell that starts to behave abnormally due to the acquired somatic mutations in its genome. Until recently, the knowledge of the mutational processes that cause these somatic mutations has been very limited. Recent advances in sequencing technologies and the development of novel mathematical approaches have allowed deciphering the patterns of somatic mutations caused by different mutational processes. Here, we summarize our current understanding of mutational patterns and mutational signatures in light of both the somatic cell paradigm of cancer research and the recent developments in the field of cancer genomics.
Collapse
Affiliation(s)
- Ludmil B Alexandrov
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom.
| | - Michael R Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| |
Collapse
|
26
|
3EZ,20Ac-ingenol, a catalytic inhibitor of topoisomerases, downregulates p-Akt and induces DSBs and apoptosis of DT40 cells. Arch Pharm Res 2013; 36:1029-38. [PMID: 23595550 PMCID: PMC3731510 DOI: 10.1007/s12272-013-0108-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 03/21/2013] [Indexed: 11/24/2022]
Abstract
We have previously reported that many ingenol compounds derived from Euphorbia kansui exhibit topoisomerase (topo) II inhibitory activity. Of these compounds, 3EZ,20Ac-ingenol inhibited topo I activity. Camptothecin, which inhibits the religation activity of topo I without interfering with the binding of topo I to DNA and induces topo I-mediated DNA cleavage, was used as a positive control. In this study, we found that 3EZ,20Ac-ingenol did not hamper the binding of topo I to DNA in the same manner as camptothecin but affected the inhibition of cleavage of one DNA strand. 3EZ,20Ac-ingenol inhibited cell proliferation by blocking cell cycle progression in the G2/M phase. To define the mechanism of inhibition of DT40 cell proliferation, the change in Akt activity was observed because Akt activity is regulated in response to DNA damage. Western blot analysis revealed that 3EZ,20Ac-ingenol downregulated the expression of p-Akt, and apoptosis was detected by the presence of DNA double-strand breaks and caspase 3 activation.
Collapse
|
27
|
p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells. Toxicol Appl Pharmacol 2013; 267:113-24. [DOI: 10.1016/j.taap.2012.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/23/2012] [Accepted: 12/05/2012] [Indexed: 12/19/2022]
|
28
|
Wei QX, van der Hoeven F, Hollstein M, Odell AF. Efficient introduction of specific TP53 mutations into mouse embryonic fibroblasts and embryonic stem cells. Nat Protoc 2012; 7:1145-60. [DOI: 10.1038/nprot.2012.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Mohibi S, Mirza S, Band H, Band V. Mouse models of estrogen receptor-positive breast cancer. J Carcinog 2011; 10:35. [PMID: 22279420 PMCID: PMC3263010 DOI: 10.4103/1477-3163.91116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/20/2011] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 – 70% of breast cancers are Estrogen Receptor alpha (ER-α) positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs) have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.
Collapse
Affiliation(s)
- Shakur Mohibi
- Department of Genetics, Cell Biology, and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | |
Collapse
|
30
|
Wu J, Wu G, Lv L, Ren YF, Zhang XJ, Xue YF, Li G, Lu X, Sun Z, Tang KF. MicroRNA-34a inhibits migration and invasion of colon cancer cells via targeting to Fra-1. Carcinogenesis 2011; 33:519-28. [PMID: 22198213 DOI: 10.1093/carcin/bgr304] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNA-34a (miR-34a), a transcriptional target of p53, is a well-known tumor suppressor gene. Here, we identified Fra-1 as a new target of miR-34a and demonstrated that miR-34a inhibits Fra-1 expression at both protein and messenger RNA levels. In addition, we found that p53 indirectly regulates Fra-1 expression via a miR-34a-dependant manner in colon cancer cells. Overexpression of miR-34a strongly inhibited colon cancer cell migration and invasion, which can be partially rescued by forced expression of the Fra-1 transcript lacking the 3'-untranslated region. The expression of matrix metalloproteinase (MMP)-1 and MMP-9, two enzymes involved in cell migration and invasion, was decreased in miR-34a-transfected cells, and this can be rescued by Fra-1 overexpression. Moreover, we found that miR-34a was downregulated in 25 of 40 (62.5%) colon cancer tissues, as compared with the adjacent normal colon tissues and that the expression of miR-34a was correlated with the DNA-binding activity of p53. Unexpectedly, the DNA-binding activity of p53 was not inversely correlated with Fra-1 expression, and a significant statistical inverse correlation between miR-34a and Fra-1 expression was only observed in 14 of 40 (35%) colon cancer tissues. Taken together, our in vitro data suggest that p53 regulates Fra-1 expression, and eventually cell migration/invasion, via a miR-34a-dependent manner. However, in vivo data indicate that the p53-miR-34a pathway is not the major regulator of Fra-1 expression in human colon cancer tissues.
Collapse
Affiliation(s)
- Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical College, 268 Xueyuan Road, Wenzhou, Zhejiang 325000, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
FUJITA ANDRÉ, SATO JOÃORICARDO, DEMASI MARCOSANGELOALMEIDA, SOGAYAR MARICLEIDE, FERREIRA CARLOSEDUARDO, MIYANO SATORU. COMPARING PEARSON, SPEARMAN AND HOEFFDING'S D MEASURE FOR GENE EXPRESSION ASSOCIATION ANALYSIS. J Bioinform Comput Biol 2011; 7:663-84. [DOI: 10.1142/s0219720009004230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/13/2009] [Accepted: 01/17/2009] [Indexed: 11/18/2022]
Abstract
DNA microarrays have become a powerful tool to describe gene expression profiles associated with different cellular states, various phenotypes and responses to drugs and other extra- or intra-cellular perturbations. In order to cluster co-expressed genes and/or to construct regulatory networks, definition of distance or similarity between measured gene expression data is usually required, the most common choices being Pearson's and Spearman's correlations. Here, we evaluate these two methods and also compare them with a third one, namely Hoeffding's D measure, which is used to infer nonlinear and non-monotonic associations, i.e. independence in a general sense. By comparing three different variable association approaches, namely Pearson's correlation, Spearman's correlation and Hoeffding's D measure, we aimed at assessing the most approppriate one for each purpose. Using simulations, we demonstrate that the Hoeffding's D measure outperforms Pearson's and Spearman's approaches in identifying nonlinear associations. Our results demonstrate that Hoeffding's D measure is less sensitive to outliers and is a more powerful tool to identify nonlinear and non-monotonic associations. We have also applied Hoeffding's D measure in order to identify new putative genes associated with tp53. Therefore, we propose the Hoeffding's D measure to identify nonlinear associations between gene expression profiles.
Collapse
Affiliation(s)
- ANDRÉ FUJITA
- Human Genome Center, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - JOÃO RICARDO SATO
- Mathematics, Computation and Cognition Center, Universidade Federal do ABC, Rua Santa Adélia, 166 — Santo André, 09210-170, Brazil
| | | | - MARI CLEIDE SOGAYAR
- Chemistry Institute, University of São Paulo, Av. Lineu Prestes, 748, São Paulo, SP, 05508-900, Brazil
| | - CARLOS EDUARDO FERREIRA
- Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, São Paulo, SP, 05508-090, Brazil
| | - SATORU MIYANO
- Human Genome Center, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
32
|
Liu J, Shao C, Tan ML, Mu D, Ferris RL, Ha PK. Molecular biology of adenoid cystic carcinoma. Head Neck 2011; 34:1665-77. [PMID: 22006498 DOI: 10.1002/hed.21849] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) is an unusual salivary gland malignancy that remains poorly understood. Standard treatment, including surgery with postoperative radiation therapy, has attained reasonable local control rates, but the propensity for distant metastases has limited any improvement in survival over time. Our understanding of the molecular mechanisms driving ACC is quite rudimentary, due to the infrequent nature of its occurrence. METHODS An extensive literature review was performed on salivary gland ACCs and basic science research findings. RESULTS This review highlights many findings that are emerging about the carcinogenesis of ACC including cytogenetics, tumor suppressor genes, oncogenes, epigenetic alterations, mitochondrial alterations, and biomarker studies. CONCLUSION Although there have been many discoveries, much still remains unknown about this rare malignancy. © 2011 Wiley Periodicals, Inc. Head Neck, 2011.
Collapse
Affiliation(s)
- Jia Liu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
33
|
Cross B, Chen L, Cheng Q, Li B, Yuan ZM, Chen J. Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. J Biol Chem 2011; 286:16018-29. [PMID: 21454483 DOI: 10.1074/jbc.m111.228981] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MDM2 regulates p53 predominantly by promoting p53 ubiquitination. However, ubiquitination-independent mechanisms of MDM2 have also been implicated. Here we show that MDM2 inhibits p53 DNA binding activity in vitro and in vivo. MDM2 binding promotes p53 to adopt a mutant-like conformation, losing reactivity to antibody Pab1620, while exposing the Pab240 epitope. The acidic domain of MDM2 is required to induce p53 conformational change and inhibit p53 DNA binding. Alternate reading frame binding to the MDM2 acidic domain restores p53 wild type conformation and rescues DNA binding activity. Furthermore, histone methyl transferase SUV39H1 binding to the MDM2 acidic domain also restores p53 wild type conformation and allows p53-MDM2-SUV39H1 complex to bind DNA. These results provide further evidence for an ubiquitination-independent mechanism of p53 regulation by MDM2 and reveal how MDM2-interacting repressors gain access to p53 target promoters and repress transcription. Furthermore, we show that the MDM2 inhibitor Nutlin cooperates with the proteasome inhibitor Bortezomib by stimulating p53 DNA binding and transcriptional activity, providing a rationale for combination therapy using proteasome and MDM2 inhibitors.
Collapse
Affiliation(s)
- Brittany Cross
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ozaki T, Kubo N, Nakagawara A. p73-Binding Partners and Their Functional Significance. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2010:283863. [PMID: 22084676 PMCID: PMC3195385 DOI: 10.1155/2010/283863] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/26/2010] [Indexed: 12/21/2022]
Abstract
p73 is one of the tumor-suppressor p53 family of nuclear transcription factor. As expected from the structural similarity between p53 and p73, p73 has a tumor-suppressive function. However, p73 was rarely mutated in human primary tumors. Under normal physiological conditions, p73 is kept at an extremely low level to allow cells normal growth. In response to a certain subset of DNA damages, p73 is induced dramatically and transactivates an overlapping set of p53-target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death. Cells undergo cell cycle arrest and/or apoptotic cell death depending on the type and strength of DNA damages. p73 is regulated largely through the posttranslational modifications such as phosphorylation and acetylation. These chemical modifications are tightly linked to direct protein-protein interactions. In the present paper, the authors describe the functional significance of the protein-protein interactions in the regulation of proapoptotic p73.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of Anti-tumor Research, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | | | | |
Collapse
|
35
|
Ozaki T, Nakagawara A. p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol 2010; 2011:603925. [PMID: 21188172 PMCID: PMC3004423 DOI: 10.1155/2011/603925] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/07/2010] [Indexed: 01/16/2023] Open
Abstract
p53 is one of the most studied tumor suppressors in the cancer research field. Of note, over 50% of human tumors carry loss of function mutations, and thus p53 has been considered to be a classical Knudson-type tumor suppressor. From the functional point of view, p53 is a nuclear transcription factor to transactivate a variety of its target genes implicated in the induction of cell cycle arrest, DNA repair, and apoptotic cell death. In response to cellular stresses such as DNA damage, p53 is activated and promotes cell cycle arrest followed by the replacement of DNA lesions and/or apoptotic cell death. Therefore, p53 is able to maintain the genomic integrity to prevent the accumulation of genetic alterations, and thus stands at a crossroad between cell survival and cell death. In this paper, we describe a variety of molecular mechanisms behind the regulation of p53.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of Anti-Tumor Research, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | - Akira Nakagawara
- Laboratory of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan
| |
Collapse
|
36
|
Boamah EK, Brekman A, Tomasz M, Myeku N, Figueiredo-Pereira M, Hunter S, Meyer J, Bhosle RC, Bargonetti J. DNA adducts of decarbamoyl mitomycin C efficiently kill cells without wild-type p53 resulting from proteasome-mediated degradation of checkpoint protein 1. Chem Res Toxicol 2010; 23:1151-62. [PMID: 20536192 PMCID: PMC2907727 DOI: 10.1021/tx900420k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The mitomycin derivative 10-decarbamoyl mitomycin C (DMC) more rapidly activates a p53-independent cell death pathway than mitomycin C (MC). We recently documented that an increased proportion of mitosene1-β-adduct formation occurs in human cells treated with DMC in comparison to those treated with MC. Here, we compare the cellular and molecular response of human cancer cells treated with MC and DMC. We find the increase in mitosene 1-β-adduct formation correlates with a condensed nuclear morphology and increased cytotoxicity in human cancer cells with or without p53. DMC caused more DNA damage than MC in the nuclear and mitochondrial genomes. Checkpoint 1 protein (Chk1) was depleted following DMC, and the depletion of Chk1 by DMC was achieved through the ubiquitin proteasome pathway since chemical inhibition of the proteasome protected against Chk1 depletion. Gene silencing of Chk1 by siRNA increased the cytotoxicity of MC. DMC treatment caused a decrease in the level of total ubiquitinated proteins without increasing proteasome activity, suggesting that DMC mediated DNA adducts facilitate signal transduction to a pathway targeting cellular proteins for proteolysis. Thus, the mitosene-1-β stereoisomeric DNA adducts produced by the DMC signal for a p53-independent mode of cell death correlated with reduced nuclear size, persistent DNA damage, increased ubiquitin proteolysis and reduced Chk1 protein.
Collapse
Affiliation(s)
- Ernest K Boamah
- Department of Biological Sciences, Hunter College and The Graduate Center, City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chakraborty J, Banerjee S, Ray P, Hossain DMS, Bhattacharyya S, Adhikary A, Chattopadhyay S, Das T, Sa G. Gain of cellular adaptation due to prolonged p53 impairment leads to functional switchover from p53 to p73 during DNA damage in acute myeloid leukemia cells. J Biol Chem 2010; 285:33104-33112. [PMID: 20675383 PMCID: PMC2963387 DOI: 10.1074/jbc.m110.122705] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/15/2010] [Indexed: 12/29/2022] Open
Abstract
Tumor suppressor p53 plays the central role in regulating apoptosis in response to genotoxic stress. From an evolutionary perspective, the activity of p53 has to be backed up by other protein(s) in case of any functional impairment of this protein, to trigger DNA damage-induced apoptosis in cancer cells. We adopted multiple experimental approaches to demonstrate that in p53-impaired cancer cells, DNA damage caused accumulation of p53 paralogue p73 via Chk-1 that strongly impacted Bax expression and p53-independent apoptosis. On the contrary, when p53 function was restored by ectopic expression, Chk-2 induced p53 accumulation that in turn overshadowed p73 activity, suggesting an antagonistic interaction between p53 family members. To understand such interaction better, p53-expressing cells were impaired differentially for p53 activity. In wild-type p53-expressing cancer cells that were silenced for p53 for several generations, p73 was activated, whereas no such trend was observed when p53 was transiently silenced. Prolonged p53 interference, even in functional p53 settings, therefore, leads to the "gain of cellular adaptation" in a way that alters the cellular microenvironment in favor of p73 activation by altering p73-regulatory proteins, e.g. Chk1 activation and dominant negative p73 down-regulation. These findings not only unveil a hitherto unexplained mechanism underlying the functional switchover from p53 to p73, but also validate p73 as a promising and potential target for cancer therapy in the absence of functional p53.
Collapse
Affiliation(s)
- Juni Chakraborty
- From the Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - Shuvomoy Banerjee
- From the Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - Pallab Ray
- From the Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - Dewan Md Sakib Hossain
- From the Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - Sankar Bhattacharyya
- From the Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - Arghya Adhikary
- From the Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - Sreya Chattopadhyay
- From the Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - Tanya Das
- From the Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - Gaurisankar Sa
- From the Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India.
| |
Collapse
|
38
|
Watanabe M, Naraba H, Sakyo T, Kitagawa T. DNA damage-induced modulation of GLUT3 expression is mediated through p53-independent extracellular signal-regulated kinase signaling in HeLa cells. Mol Cancer Res 2010; 8:1547-57. [PMID: 20870738 DOI: 10.1158/1541-7786.mcr-10-0011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many cancer cells exhibit increased rates of uptake and metabolism of glucose compared with normal cells. Glucose uptake in mammalian cells is mediated by the glucose transporter (GLUT) family. Here, we report that DNA-damaging anticancer agents such as Adriamycin and etoposide suppressed the expression of GLUT3, but not GLUT1, in HeLa cells and a tumorigenic HeLa cell hybrid. Suppression of GLUT3 expression determined by the real-time PCR was also evident with another DNA-damaging agent, camptothecin, which reduced the promoter's activity as determined with a luciferase-linked assay. The suppression by these agents seemed to be induced independently of p53, and it was evident when wild-type p53 was overproduced in these cells. In contrast, the mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) kinase (MEK) inhibitor U0126 (but not the phosphoinositide 3-kinase inhibitor LY294002) prevented the drug-induced suppression as determined by reverse transcription-PCR and promoter assays. Furthermore, overexpression of GLUT3 in HeLa cell hybrids increased resistance to these drugs, whereas depletion of the gene by small interfering RNA rendered the cells more sensitive to the drugs, decreasing glucose consumption. The results suggest that DNA-damaging agents reduce GLUT3 expression in cancer cells through activation of the MEK-ERK pathway independently of p53, leading to cell death or apoptosis. The findings may contribute to the development of new chemotherapeutic drugs based on the GLUT3-dependent metabolism of glucose.
Collapse
Affiliation(s)
- Masaru Watanabe
- Department of Cell Biology and Molecular Pathology, Iwate Medical University, School of Pharmacy, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | | | | | | |
Collapse
|
39
|
Piaskowski S, Zawlik I, Szybka M, Kulczycka-Wojdala D, Stoczynska-Fidelus E, Bienkowski M, Robak T, Kusinska R, Jesionek-Kupnicka D, Kordek R, Rieske P, Liberski PP. Detection of P53 mutations in different cancer types is improved by cDNA sequencing. Oncol Lett 2010; 1:717-721. [PMID: 22966368 DOI: 10.3892/ol_00000125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/14/2010] [Indexed: 11/06/2022] Open
Abstract
Recently published data show discrepancies between P53 cDNA and DNA sequencing results in glioblastoma, colorectal cancer and pleomorphic xanthoastrocytoma. We hypothesized that similar discrepancies are observed in other types of human cancers. Using DNA and cDNA direct sequencing, we analyzed 40 cases of invasive breast duct carcinoma, 23 cases of acute myeloblastic leukaemia, 12 cases of astrocytoma and 40 cases of soft tissue sarcoma for P53 mutations. Additionally, we used real-time quantitative PCR to estimate the normalized relative P53 expression. In the comparative study, the P53 mutation was detected more frequently when using cDNA sequencing than DNA sequencing in all of the cancer types. Furthermore, several samples presented missense P53 mutations, with visible wild-type nucleotide on the DNA sequence. In contrast, elimination of the wild-type allele or selective overproduction of the mutated allele was observed on the cDNA sequence. P53 expression was not significantly different between the cases with or without P53 mutations. These results indicate that cDNA sequencing improves the detection of P53 mutations in these cancers. We suggest that the true incidence of P53 mutations in these cancers is underestimated at the DNA level, and evaluation of the alteration should be carried out using cDNA analysis.
Collapse
Affiliation(s)
- Sylwester Piaskowski
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, 92-216 Lodz
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Human cancer is characterized by a process of tumor cell motility, invasion, and metastasis. One of the critical tyrosine kinases that is linked to these processes of tumor invasion and survival is the Focal Adhesion Kinase (FAK). Our laboratory was the first to isolate FAK from human tumors, and we had demonstrated that FAK mRNA was up-regulated in invasive and metastatic human breast and colon cancer samples. We have cloned FAK promoter and have found that FAK promoter contains p53 binding sites, and that p53 inhibits FAK transcription and regulates its expression in tumor samples. In addition, we have found a high correlation between FAK overexpression and p53 mutations in 600 population-based series of breast cancer patients. found that N-myc binds FAK promoter and induces FAK transcription in neuroblastoma cells. Thus, this review will be focused on FAK and p53 signal transduction pathways in cancer.
Collapse
Affiliation(s)
- Vita M Golubovskaya
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | |
Collapse
|
41
|
Kucab JE, Phillips DH, Arlt VM. Linking environmental carcinogen exposure to TP53 mutations in human tumours using the human TP53 knock-in (Hupki) mouse model. FEBS J 2010. [DOI: 10.1111/j.1742-4658.2010.07676.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: epidemiology, clinical findings, and prevention. Int J Clin Oncol 2010; 15:126-34. [PMID: 20224884 DOI: 10.1007/s10147-010-0056-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Indexed: 12/20/2022]
Abstract
Both cigarette smoking and alcohol drinking are well-established risk factors for esophageal squamous cell carcinoma (ESCC), and the relationship of dose to cancer risk has already been described. Furthermore, the synergistic effect of these two factors has been reported. Our case-control study revealed the odds ratio of ESCC to be 50.1 for those who were both heavy smokers and heavy drinkers in comparison to people who neither drank nor smoked. In patients with ESCC, head and neck cancers as well as dysplastic lesions are frequently observed. Heavy smoking and heavy drinking are closely related to such multicentric carcinogenesis events in the upper aerodigestive tract (UADT), including the esophagus and head andneck region. Polymorphisms in acetaldehyde dehydrogenase 2 (ALDH2) are reported to be a key event in deciding individual susceptibility to UADT cancer. Patients with inactive ALDH2, in whom facial flushing is usually observed after the drinking of alcohol, are at high risk for ESCC as well as multiple UADT cancers. For the early detection of the disease, effective follow up using endoscopy with Lugol staining or narrow band imaging endoscopy is strongly recommended for high-risk populations, such as smokers, heavy drinkers, people with experience of flushing after the drinking of alcohol, and patients with UADT cancer.
Collapse
|
43
|
Pratt WB, Morishima Y, Peng HM, Osawa Y. Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med (Maywood) 2010; 235:278-89. [PMID: 20404045 PMCID: PMC3046050 DOI: 10.1258/ebm.2009.009250] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Hsp90/Hsp70-based chaperone machinery plays a well-established role in signaling protein function, trafficking and turnover. A number of recent observations also support the notion that Hsp90 and Hsp70 play key roles in the triage of damaged and aberrant proteins for degradation via the ubiquitin-proteasome pathway. In the mid-1990s, it was discovered that Hsp70 is required for ubiquitin-dependent degradation of short-lived and abnormal proteins, and it became clear that inhibition of Hsp90 uniformly leads to the proteasomal degradation of Hsp90 client proteins. Subsequently, CHIP and parkin were shown to be Hsp70-binding ubiquitin E3 ligases that direct ubiquitin-charged E2 enzymes to the Hsp70-bound client protein. Stabilization by Hsp90 reflects the interaction of the chaperone with the ligand binding cleft of the client protein. These hydrophobic clefts must be open to allow passage of ligands to binding sites in the protein interior, and they are inherent sites of conformational instability. Hsp90 stabilizes the open state of the cleft and prevents Hsp70-dependent ubiquitination. In the model we propose here, progressive oxidative events result in cleft opening as the initial step in protein unfolding, and as long as Hsp90 can interact to stabilize the cleft, it will buffer the effect of oxidative damage. When cleft opening is such that Hsp90 can no longer interact, Hsp70-dependent ubiquitination occurs. We summarize evidence that Hsp90 interacts very dynamically with a variety of proteins that are not classic Hsp90 clients, and we show that this dynamic cycling of Hsp90 with nitric oxide synthase protects against CHIP-mediated ubiquitination. Scientific interest to date has focused on stringent regulation of the classic client proteins, which have metastable clefts and are inherently short lived. But, the recognition that Hsp90 cycles dynamically with longer lived proteins with more stable clefts may permit extension of the triage model to the quality control of damaged proteins in general.
Collapse
Affiliation(s)
- William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, 48109, USA
| | | | | | | |
Collapse
|
44
|
Bom APDA, Freitas MS, Moreira FS, Ferraz D, Sanches D, Gomes AMO, Valente AP, Cordeiro Y, Silva JL. The p53 core domain is a molten globule at low pH: functional implications of a partially unfolded structure. J Biol Chem 2009; 285:2857-66. [PMID: 19933157 PMCID: PMC2807339 DOI: 10.1074/jbc.m109.075861] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 is a transcription factor that maintains genome integrity, and its function is lost in 50% of human cancers. The majority of p53 mutations are clustered within the core domain. Here, we investigate the effects of low pH on the structure of the wild-type (wt) p53 core domain (p53C) and the R248Q mutant. At low pH, the tryptophan residue is partially exposed to the solvent, suggesting a fluctuating tertiary structure. On the other hand, the secondary structure increases, as determined by circular dichroism. Binding of the probe bis-ANS (bis-8-anilinonaphthalene-1-sulfonate) indicates that there is an increase in the exposure of hydrophobic pockets for both wt and mutant p53C at low pH. This behavior is accompanied by a lack of cooperativity under urea denaturation and decreased stability under pressure when p53C is in acidic pH. Together, these results indicate that p53C acquires a partially unfolded conformation (molten-globule state) at low pH (5.0). The hydrodynamic properties of this conformation are intermediate between the native and denatured conformation. 1H-15N HSQC NMR spectroscopy confirms that the protein has a typical molten-globule structure at acidic pH when compared with pH 7.2. Human breast cells in culture (MCF-7) transfected with p53-GFP revealed localization of p53 in acidic vesicles, suggesting that the low pH conformation is present in the cell. Low pH stress also tends to favor high levels of p53 in the cells. Taken together, all of these data suggest that p53 may play physiological or pathological roles in acidic microenvironments.
Collapse
Affiliation(s)
- Ana Paula D Ano Bom
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Huang WW, Huang HY, Liao AC, Shiue YL, Tai HL, Lin CM, Wang YH, Lin CN, Shen KH, Li CF. Primary urothelial carcinoma of the upper tract: important clinicopathological factors predicting bladder recurrence after surgical resection. Pathol Int 2009; 59:642-649. [PMID: 19712132 DOI: 10.1111/j.1440-1827.2009.02420.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to further characterize potential clinicopathological predictors for urinary bladder recurrence-free survival (UBRFS) in patients with primary urothelial carcinoma of the upper urinary tract (UUT-UC). The present series included 385 cases of surgically treated primary localized UUT-UC without previous or concurrent urothelial carcinoma of the urinary bladder. Among the 374 patients with follow-up information, clinicopathological features and therapeutic information including whether they received a laparoscopy-assisted nephroureterectomy (LNU) and adjuvant chemotherapy were correlated with UBRFS. After a median follow up of 69 months, 86 patients (23%) developed urinary bladder recurrence. The median time to develop urinary bladder recurrence was 12 months. At the univariate level, an increment in histological grade (P= 0.0321), a prominent papillary configuration (P= 0.0004), LNU (P= 0.0397) and male gender (P= 0.0401) significantly predicted an inferior UBRFS. At the multivariate level, increase of histological grade (P < 0.0001, relative risk (RR) = 3.776), prominent papillary configuration (P < 0.0001, RR = 3.244), and male gender (P= 0.0463, RR = 1.444) independently predicted UBRFS. In conclusion, male patients and those with high-grade and papillary UUT-UC, and who received LNU had higher risks of urinary bladder recurrence. Accordingly, for these patients, more intensive follow up coupled with postoperative intravesical adjuvant therapy to prevent urinary bladder recurrence should also be considered.
Collapse
Affiliation(s)
- Wen-Wei Huang
- Department of Family Medicine, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nardinocchi L, Puca R, Sacchi A, Rechavi G, Givol D, D'Orazi G. Targeting hypoxia in cancer cells by restoring homeodomain interacting protein-kinase 2 and p53 activity and suppressing HIF-1alpha. PLoS One 2009; 4:e6819. [PMID: 19714248 PMCID: PMC2729407 DOI: 10.1371/journal.pone.0006819] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 08/03/2009] [Indexed: 11/18/2022] Open
Abstract
Background The tumor suppressor homeodomain-interacting protein kinase-2 (HIPK2) by phosphorylating serine 46 (Ser46) is a crucial regulator of p53 apoptotic function. HIPK2 is also a transcriptional co-repressor of hypoxia-inducible factor-1α (HIF-1α) restraining tumor angiogenesis and chemoresistance. HIPK2 can be deregulated in tumors by several mechanisms including hypoxia. Here, we sought to target hypoxia by restoring HIPK2 function and suppressing HIF-1α, in order to provide evidence for the involvement of both HIPK2 and p53 in counteracting hypoxia-induced chemoresistance. Methodology/Principal Findings Upon exposure of colon and lung cancer cells to hypoxia, by either low oxygen or cobalt, HIPK2 function was impaired allowing for increased HIF-1α expression and inhibiting the p53-apoptotic response to drug. Cobalt suppressed HIPK2 recruitment onto HIF-1α promoter. Hypoxia induced expression of the p53 target MDM2 that downregulates HIPK2, thus MDM2 inhibition by siRNA restored the HIPK2/p53Ser46 response to drug. Zinc supplementation to hypoxia-treated cells increased HIPK2 protein stability and nuclear accumulation, leading to restoration of HIPK2 binding to HIF-1α promoter, repression of MDR1, Bcl2, and VEGF genes, and activation of the p53 apoptotic response to drug. Combination of zinc and ADR strongly suppressed tumor growth in vivo by inhibiting HIF-1 pathway and upregulating p53 apoptotic target genes. Conclusions/Significance We show here for the first time that hypoxia-induced HIPK2 deregulation was counteracted by zinc that restored HIPK2 suppression of HIF-1 pathway and reactivated p53 apoptotic response to drug, underscoring the potential use of zinc supplementation in combination with chemotherapy to address hypoxia and improve tumor treatment.
Collapse
Affiliation(s)
- Lavinia Nardinocchi
- Department of Experimental Oncology, Molecular Oncogenesis Laboratory, National Cancer Institute “Regina Elena”, Rome, Italy
| | - Rosa Puca
- Department of Experimental Oncology, Molecular Oncogenesis Laboratory, National Cancer Institute “Regina Elena”, Rome, Italy
| | - Ada Sacchi
- Department of Experimental Oncology, Molecular Oncogenesis Laboratory, National Cancer Institute “Regina Elena”, Rome, Italy
| | - Gideon Rechavi
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer and Sachler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David Givol
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gabriella D'Orazi
- Department of Experimental Oncology, Molecular Oncogenesis Laboratory, National Cancer Institute “Regina Elena”, Rome, Italy
- Department of Oncology and Neurosciences, University “G. d'Annunzio”, Chieti, Italy
- * E-mail:
| |
Collapse
|
47
|
A novel p53 target gene, S100A9, induces p53-dependent cellular apoptosis and mediates the p53 apoptosis pathway. Biochem J 2009; 422:363-72. [PMID: 19534726 DOI: 10.1042/bj20090465] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
S100A9 (S100 calcium-binding protein A9) is a calcium-binding protein of the S100 family, and its differential expression has been associated with acute and chronic inflammation and several human cancers. Our previous work showed that S100A9 was severely down-regulated in human ESCC (oesophageal squamous cell carcinoma). To further investigate the transcriptional regulation of S100A9, we analysed the S100A9 promoter region and found several putative p53BS (p53-binding sites). Luciferase reporter assays showed that constructs carrying the p53BS exhibited enhanced luciferase activity in response to wild-type p53 activation. Further study demonstrated that S100A9 mRNA and protein expression could be positively regulated in a p53-dependent manner and p53 could bind to p53BS on the S100A9 promoter. Overexpression of S100A9 could induce cellular apoptosis, and this was partly p53-dependent. Knockdown of S100A9 impaired the apoptosis induced by p53. Thus we conclude that a gene down-regulated in ESCC, S100A9, is a novel p53 transcriptional target, induces cellular apoptosis in a partly p53-dependent manner and mediates the p53 apoptosis pathway.
Collapse
|
48
|
Rosser CJ, Gaar M, Porvasnik S. Molecular fingerprinting of radiation resistant tumors: can we apprehend and rehabilitate the suspects? BMC Cancer 2009; 9:225. [PMID: 19589167 PMCID: PMC2719662 DOI: 10.1186/1471-2407-9-225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/09/2009] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy continues to be one of the more popular treatment options for localized prostate cancer. One major obstacle to radiation therapy is that there is a limit to the amount of radiation that can be safely delivered to the target organ. Emerging evidence suggests that therapeutic agents targeting specific molecules might be combined with radiation therapy for more effective treatment of tumors. Recent studies suggest that modulation of these molecules by a variety of mechanisms (e.g., gene therapy, antisense oligonucleotides, small interfering RNA) may enhance the efficacy of radiation therapy by modifying the activity of key cell proliferation and survival pathways such as those controlled by Bcl-2, p53, Akt/PTEN and cyclooxygenase-2. In this article, we summarize the findings of recent investigations of radiosensitizing agents in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Charles J Rosser
- Department of Urology, The University of Florida, Gainesville, Florida, 32610, USA.
| | | | | |
Collapse
|
49
|
Engellau J. Prognostic factors in soft tissue sarcomaTissue microarray for immunostaining, the importance of whole-tumor sections and time-dependence. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/03008820410001887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Ianzini F, Kosmacek EA, Nelson ES, Napoli E, Erenpreisa J, Kalejs M, Mackey MA. Activation of meiosis-specific genes is associated with depolyploidization of human tumor cells following radiation-induced mitotic catastrophe. Cancer Res 2009; 69:2296-304. [PMID: 19258501 PMCID: PMC2657811 DOI: 10.1158/0008-5472.can-08-3364] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer is frequently characterized histologically by the appearance of large cells that are either aneuploid or polyploid. Aneuploidy and polyploidy are hallmarks of radiation-induced mitotic catastrophe (MC), a common phenomenon occurring in tumor cells with impaired p53 function following exposure to various cytotoxic and genotoxic agents. MC is characterized by altered expression of mitotic regulators, untimely and abnormal cell division, delayed DNA damage, and changes in morphology. We report here that cells undergoing radiation-induced MC are more plastic with regards to ploidy and that this plasticity allows them to reorganize their genetic material through reduction division to produce smaller cells which are morphologically indistinguishable from control cells. Experiments conducted with the large-scale digital cell analysis system are discussed and show that a small fraction of polyploid cancer cells formed via radiation-induced MC can survive and start a process of depolyploidization that yields various outcomes. Although most multipolar divisions failed and cell fusion occurred, some of these divisions were successful and originated a variety of cell progeny characterized by different ploidy. Among these ploidy phenotypes, a progeny of small mononucleated cells, indistinguishable from the untreated control cells, is often seen. We report here evidence that meiosis-specific genes are expressed in the polyploid cells during depolyploidization. Tumor cells might take advantage of the temporary change from a promitotic to a promeiotic division regimen to facilitate depolyploidization and restore the proliferative state of the tumor cell population. These events might be mechanisms by which tumor progression and resistance to treatment occur in vivo.
Collapse
Affiliation(s)
- Fiorenza Ianzini
- Department of Pathology, University of Iowa, Seamans Center, University of Iowa, Iowa City, Iowa, USA.
| | | | | | | | | | | | | |
Collapse
|