1
|
Sitnikova E, Rutskova E, Smirnov K. Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy. Int J Mol Sci 2023; 24:1477. [PMID: 36674992 PMCID: PMC9862736 DOI: 10.3390/ijms24021477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Spike-wave discharges are the hallmark of idiopathic generalized epilepsy. They are caused by a disorder in the thalamocortical network. Commercially available anti-epileptic drugs have pronounced side effects (i.e., sedation and gastroenterological concerns), which might result from a low selectivity to molecular targets. We suggest a specific subtype of adrenergic receptors (ARs) as a promising anti-epileptic molecular target. In rats with a predisposition to absence epilepsy, alpha2 ARs agonists provoke sedation and enhance spike-wave activity during transitions from awake/sedation. A number of studies together with our own observations bring evidence that the sedative and proepileptic effects require different alpha2 ARs subtypes activation. Here we introduce a new concept on target pharmacotherapy of absence epilepsy via alpha2B ARs which are presented almost exclusively in the thalamus. We discuss HCN and calcium channels as the most relevant cellular targets of alpha2 ARs involved in spike-wave activity generation.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Elizaveta Rutskova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Kirill Smirnov
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 121205, Russia
| |
Collapse
|
2
|
α2-Adrenergic stimulation of the ventrolateral preoptic nucleus destabilizes the anesthetic state. J Neurosci 2015; 34:16385-96. [PMID: 25471576 DOI: 10.1523/jneurosci.1135-14.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The sleep-promoting ventrolateral preoptic nucleus (VLPO) shares reciprocal inhibitory inputs with wake-active neuronal nuclei, including the locus ceruleus. Electrophysiologically, sleep-promoting neurons in the VLPO are directly depolarized by the general anesthetic isoflurane and hyperpolarized by norepinephrine, a wake-promoting neurotransmitter. However, the integration of these competing influences on the VLPO, a sleep- and anesthetic-active structure, has yet to be evaluated in either brain slices in vitro or the intact organism. Single-cell multiplex RT-PCR conducted on both isoflurane-activated, putative sleep-promoting VLPO neurons and neighboring, state-indifferent VLPO neurons in mouse brain slices revealed widespread expression of α2A-, α2B- and α2C-adrenergic receptors in both populations. Indeed, both norepinephrine and the highly selective α2 agonist dexmedetomidine each reversed the VLPO depolarization induced by isoflurane in slices in vitro. When microinjected directly into the VLPO of a mouse lightly anesthetized with isoflurane, dexmedetomidine increased behavioral arousal and reduced the depressant effects of isoflurane on barrel cortex somatosensory-evoked potentials but failed to elicit spectral changes in spontaneous EEG. Based on these observations, we conclude that local modulation of α-adrenergic activity in the VLPO destabilizes, but does not fully antagonize, the anesthetic state, thus priming the brain for anesthetic emergence.
Collapse
|
3
|
Voisin AN, Mouginot D, Drolet G. Multiple episodes of sodium depletion in the rat: a remodeling of the electrical properties of median preoptic nucleus neurons. Eur J Neurosci 2013; 38:2730-41. [DOI: 10.1111/ejn.12273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Aurore N. Voisin
- Axe Neurosciences du Centre de recherche du CHU and Université Laval; P-09800, 2705 Laurier; Québec; QC; G1V4G2; Canada
| | - Didier Mouginot
- Axe Neurosciences du Centre de recherche du CHU and Université Laval; P-09800, 2705 Laurier; Québec; QC; G1V4G2; Canada
| | - Guy Drolet
- Axe Neurosciences du Centre de recherche du CHU and Université Laval; P-09800, 2705 Laurier; Québec; QC; G1V4G2; Canada
| |
Collapse
|
4
|
Lee AW, Pfaff DW. Hormone effects on specific and global brain functions. J Physiol Sci 2008; 58:213-20. [PMID: 18505601 DOI: 10.2170/physiolsci.rv007008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 05/24/2008] [Indexed: 11/05/2022]
Abstract
The first demonstration of how biochemical changes in neurons in specific parts of the brain direct a complete mammalian behavior derived from the effects of estrogens in hypothalamic neurons that facilitate lordosis behavior, the primary reproductive behavior of female quadrupeds (Pfaff. Estrogens and Brain Function. 1980; Pfaff. Drive: Neurobiological and Molecular Mechanisms of Sexual Motivation. 1999). Sex behaviors depend on sexual arousal that in turn depends on a primitive function: generalized CNS arousal (Pfaff. Brain Arousal and Information Theory. 2006). Here we summarize one of the ways in which a generalized arousal transmitter, norepinephrine, can influence the electrical excitability of ventromedial hypothalamic cells in a way that will foster female sex behavior.
Collapse
Affiliation(s)
- A W Lee
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
5
|
Lee AW, Kyrozis A, Chevaleyre V, Kow LM, Zhou J, Devidze N, Zhang Q, Etgen AM, Pfaff DW. Voltage-dependent calcium channels in ventromedial hypothalamic neurones of postnatal rats: modulation by oestradiol and phenylephrine. J Neuroendocrinol 2008; 20:188-98. [PMID: 18088362 DOI: 10.1111/j.1365-2826.2007.01637.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oestradiol actions in the hypothalamus play an important role in reproductive behaviour. Oestradiol treatment in vivo induces alpha(1b)-adrenoceptor mRNA and increases the density of alpha(1B)-adrenoceptor binding in the hypothalamus. Oestradiol is also known to modulate neuronal excitability, in some cases by modulating calcium channels. We assessed the effects of phenylephrine, an alpha(1)-adrenergic agonist, on low-voltage-activated (LVA) and high-voltage-activated (HVA) calcium channels in ventromedial hypothalamic (VMN) neurones from vehicle- and oestradiol-treated female rats. Whole-cell and gramicidin perforated-patch recordings were obtained, with barium as the charge carrier. In the absence of phenylephrine, oestradiol treatment increased the magnitude of LVA currents compared to controls, but had no effect on HVA currents. Phenylephrine enhanced HVA currents in a significantly greater proportion of neurones from oestradiol-treated rats (76%) than from vehicle-treated (41%) rats. The L-channel blocker nifedipine abolished this oestradiol effect on phenylephrine-enhanced HVA currents. Preincubating slices with the N-type channel blocker omega-conotoxin GVIA completely blocked the phenylephrine response, suggesting that the N-type channel is essential. Phenylephrine also stimulated LVA currents in approximately two-thirds of neurones in slices from both vehicle- and oestradiol-treated rats. Our data show that oestradiol increases LVA currents in the VMN. Oestradiol also amplifies alpha(1)-adrenergic signalling by increasing the proportion of neurones showing phenylephrine-stimulated HVA currents mediated by N- and L-type calcium channels. In this way, oestradiol may increase excitatory responses to arousing adrenergic inputs to VMN neurones governing oestradiol-dependent reproductive behaviour.
Collapse
Affiliation(s)
- A W Lee
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kolaj M, Renaud LP. Presynaptic α-adrenoceptors in median preoptic nucleus modulate inhibitory neurotransmission from subfornical organ and organum vasculosum lamina terminalis. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1907-15. [PMID: 17218440 DOI: 10.1152/ajpregu.00763.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The median preoptic nucleus (MnPO) in the lamina terminalis receives a prominent catecholaminergic innervation from the dorsomedial and ventrolateral medulla. The present investigation used whole cell patch-clamp recordings in rat brain slice preparations to evaluate the hypothesis that presynaptic adrenoceptors could modulate GABAergic inputs to MnPO neurons. Bath applications of norepinephrine (NE; 20–50 μM) induced a prolonged and reversible suppression of inhibitory postsynaptic currents (IPSCs) and reduced paired-pulse depression evoked by stimulation in the subfornical organ and organum vasculosum lamina terminalis. These events were not correlated with any observed changes in membrane conductance arising from NE activity at postsynaptic α1- or α2-adrenoceptors. Consistent with a role for presynaptic α2-adrenoceptors, responses were selectively mimicked by an α2-adrenoceptor agonist (UK-14304) and blockable with an α2-adrenoceptor antagonist (idazoxan). Although the α1-adrenoceptor agonist cirazoline and the α1-adrenoceptor antagonist prazosin were without effect on these evoked IPSCs, NE was noted to increase (via α1-adrenoceptors) or decrease (via α2-adrenoceptors) the frequency of spontaneous and tetrodotoxin-resistant miniature IPSCs. Collectively, these observations imply that both presynaptic and postsynaptic α1- and α2-adrenoceptors in MnPO are capable of selective modulation of rapid GABAA receptor-mediated inhibitory synaptic transmission along the lamina terminalis and therefore likely to exert a prominent influence in regulating cell excitability within the MnPO.
Collapse
Affiliation(s)
- Miloslav Kolaj
- Neurosciences, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
7
|
Kombian SB, Ananthalakshmi KVV, Edafiogho IO. Enaminones and norepinephrine employ convergent mechanisms to depress excitatory synaptic transmission in the rat nucleus accumbensin vitro. Eur J Neurosci 2006; 24:2781-8. [PMID: 17156204 DOI: 10.1111/j.1460-9568.2006.05152.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently reported that anticonvulsant anilino enaminones depress excitatory postsynaptic currents (EPSCs) in the nucleus accumbens (NAc) indirectly via gamma-aminobutyric acid (GABA) acting on GABA(B) receptors [S.B. Kombian et al. (2005)Br. J. Pharmacol., 145, 945-953]. Norepinephrine (NE) and dopamine (DA), both known to be involved in seizure disorders, also depress EPSCs in this nucleus. The current study explored a possible interaction between enaminones and adrenergic and/or dopaminergic mechanisms that may contribute to their synaptic depression and anticonvulsant effect. Using whole-cell recording in rat forebrain slices containing the NAc, we show that NE-induced, but not DA-induced, EPSC depression occludes E139-induced EPSC depressant effect. UK14,304, a selective alpha(2) receptor agonist, mimicked the synaptic effect of NE and also occluded E139 effects. Phentolamine, a non-selective alpha-adrenergic antagonist that blocked NE-induced EPSC depression, also blocked the E139-induced EPSC depression. Furthermore, yohimbine, an alpha(2)-adrenoceptor antagonist, also blocked the E139-induced EPSC depression, while prazosin, a selective alpha(1)-adrenergic antagonist, and propranolol, a non-selective beta-adrenoceptor antagonist, did not block the E139 effect. Similar to the E139-induced EPSC depression, the NE-induced EPSC depression was also blocked by the GABA(B) receptor antagonist, CGP55845. By contrast, however, neither SCH23390 nor sulpiride, D1-like and D2-like DA receptor antagonists, respectively, blocked the E139-induced synaptic depression. These results suggest that NE and E139, but not DA, employ a similar mechanism to depress EPSCs in the NAc, and support the hypothesis that E139, like NE, may act on alpha(2)-adrenoceptors to cause the release of GABA, which then mediates synaptic depression via GABA(B) receptors.
Collapse
Affiliation(s)
- Samuel B Kombian
- Department of Applied Therapeutics, Faculty of Pharmacy, Health Sciences Centre, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | | | | |
Collapse
|
8
|
Abstract
Hypothalamic hypocretin enhances arousal, similar to the actions of norepinephrine (NE). The physiological actions of NE were examined in hypocretin neurons identified by selective green fluorescent protein expression in transgenic mouse hypothalamic slices using whole-cell recording. NE induced an outward current, inhibited spike frequency, and hyperpolarized hypocretin neurons dose dependently. Similar actions were evoked by the selective alpha2 adrenergic agonist clonidine. The alpha2 antagonist idazoxan increased spike frequency, suggesting tonic NE-mediated inhibition. The NE-induced current was inwardly rectified, and the reversal potential was dependent on external potassium concentration; it was blocked by barium in the bath and by GTP-gamma-S in the pipette, suggesting activation of a G-protein inward rectifying K+ (GIRK) current. NE and clonidine decreased calcium currents evoked by depolarizing voltage steps. The selective alpha1 adrenergic agonist phenylephrine had no effect on membrane potential but did increase IPSC frequency; miniature IPSC frequency was also increased, in some cells without any effect on amplitude, suggesting a facilitative presynaptic action at alpha1 receptors on GABAergic axons that innervate hypocretin neurons. NE therefore inhibits hypocretin neurons directly through two mechanisms: activation of a GIRK current, depression of calcium currents, and indirectly through increased inhibitory GABA input. Similar to NE, dopamine and epinephrine reduced or blocked spikes and, in the presence of TTX, showed direct hyperpolarizing actions. The action of dopamine was blocked by the D2 receptor antagonist eticlopride, whereas a D1/5 antagonist had no effect. These data suggest that catecholamines evoke strong inhibitory actions on hypocretin neurons and suggest negative feedback from catecholamine cells that may be excited by hypocretin.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
9
|
|
10
|
Chen XQ, Du JZ, Wang YS. Regulation of hypoxia-induced release of corticotropin-releasing factor in the rat hypothalamus by norepinephrine. ACTA ACUST UNITED AC 2004; 119:221-8. [PMID: 15120484 DOI: 10.1016/j.regpep.2004.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 02/04/2004] [Accepted: 02/05/2004] [Indexed: 10/26/2022]
Abstract
Corticotropin-releasing factor (CRF) peptide release was activated by hypoxia in the rat hypothalamus. The mechanisms, however, of the hypoxia-induced CRF release remains unclear. In this study, we demonstrated that the norepinephrine (NE) and its receptors in the paraventricular nucleus (PVN) mediated the CRF release in a simulated altitude hypoxia. When rats were exposed to 5 or 7 km altitude of hypoxia for a short or long term: (1) NE levels in the PVN and the CeA, using the HPLC analysis, were intensity and time course dependently increased, but the increase in the PVN were potential than in the CeA. Restraint-induced NE increase was much higher in both the PVN and the CeA, compared with hypoxia-induced response. (2) Hypoxia and restraint significantly enhanced CRF release in the ME and the PVN but not in the CeA, through RIA assay, which result in stimulating corticosterone secretion. (3) Hypoxia-induced CRF release was reversed by an injection of prazosin (i.c.v.), an alpha-1 adrenoceptor antagonist, while administration of yohimbine (i.c.v.), an alpha-2 receptor antagonist, facilitated further CRF release. These data suggested that hypoxia induced NE activation centrally, via alpha-1 and -2 receptors, leading to improving hypothalamic CRF release, which in turn stimulated pituitary and adrenal cortex. Restraint presented much potential action on NE activation than hypoxia.
Collapse
Affiliation(s)
- Xue-Qun Chen
- Department of Biological and Technological Sciences, Division of Neurobiology and Physiology, College of Life Sciences, Zhejiang University (Yuquan Campus), Hangzhou 310027, PR China
| | | | | |
Collapse
|
11
|
Kolaj M, Bai D, Renaud LP. GABAB receptor modulation of rapid inhibitory and excitatory neurotransmission from subfornical organ and other afferents to median preoptic nucleus neurons. J Neurophysiol 2004; 92:111-22. [PMID: 14973311 DOI: 10.1152/jn.00014.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular and behavioral responses to circulating angiotensin require intact connectivity along the upper lamina terminalis joining the subfornical organ (SFO) with the median preoptic nucleus (MnPO). Whole cell patch-clamp recordings in sagittal rat brain slice preparations revealed that 28/40 MnPO neurons responded to electrical stimulation of SFO efferents with bicuculline-sensitive GABA(A) receptor-mediated inhibition and glutamate-mediated postsynaptic excitation involving AMPA and N-methyl-d-aspartate (NMDA) receptor subtypes, blockable with 2,3-dioxo-6nitro-1, 2,3,4-tetrahydrobenzo [f] quinoxaline-7-sulfoamide disodium (NBQX) and d-2-amino-4-phosphonovaleric acid (d-APV), respectively. Bath applications of baclofen induced a concentration-dependent (0.3-10 microM) reduction in these SFO-evoked postsynaptic currents, attenuation of SFO-evoked paired-pulse depression, and reduction in frequency (but not amplitude) of miniature postsynaptic currents, consistent with an action at presynaptic GABA(B) receptors. Baclofen's effects on miniature currents lacked sensitivity to barium, omega-conotoxin GVIA, and cadmium. Acting at postsynaptic GABA(B) receptors, baclofen hyperpolarized a majority of MnPO neurons by increasing a G protein-coupled inwardly rectifying potassium conductance and suppressing an N-type high-voltage-activated calcium conductance. The latter contributed to reduction in action potential afterhyperpolarization and enhanced cell firing and spike frequency adaptation when tested with a depolarizing stimulus. All baclofen-induced effects were blockable with CGP52432. CGP52432 alone had no significant effect on SFO-evoked postsynaptic current amplitudes or paired-pulse ratios, but did induce an increase in miniature inhibitory postsynaptic current (mIPSC) frequency in 2/4 cells tested, indicating that ambient levels of GABA could activate presynaptic GABA(B) receptors on undefined inputs. These observations indicate that MnPO neurons receive both a GABAergic and glutamatergic innervation from SFO. Both forms of rapid neurotransmission are subject to modulation via pre- and postsynaptic GABA(B) receptors.
Collapse
Affiliation(s)
- Miloslav Kolaj
- Neuroscience Program, Ottawa Health Research Institute, University of Ottawa, 725 Parkdale Ave., Ottawa, Ontario K1Y 4E9, Canada
| | | | | |
Collapse
|