1
|
Zhang J, Yuan H, Yao X, Chen S. Endogenous ion channels expressed in human embryonic kidney (HEK-293) cells. Pflugers Arch 2022; 474:665-680. [PMID: 35567642 DOI: 10.1007/s00424-022-02700-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 12/21/2022]
Abstract
Mammalian expression systems, particularly the human embryonic kidney (HEK-293) cells, combined with electrophysiological studies, have greatly benefited our understanding of the function, characteristic, and regulation of various ion channels. It was previously assumed that the existence of endogenous ion channels in native HEK-293 cells could be negligible. Still, more and more ion channels are gradually reported in native HEK-293 cells, which should draw our attention. In this regard, we summarize the different ion channels that are endogenously expressed in HEK-293 cells, including voltage-gated Na+ channels, Ca2+ channels, K+ channels, Cl- channels, nonselective cation channels, TRP channels, acid-sensitive ion channels, and Piezo channels, which may complicate the recording of the heterogeneously expressed ion channels to a certain degree. We noted that the expression patterns and channel profiles varied with different studies, which may be due to the distinct originality of the cells, cell culture conditions, passage numbers, and different recording protocols. Therefore, a better knowledge of endogenous ion channels may help minimize potential problems in characterizing heterologously expressed ion channels. Based on this, it is recommended that HEK-293 cells from unknown sources should be examined before transfection for the characterization of their functional profile, especially when the expression level of exogenous ion channels does not overwhelm the endogenous ion channels largely, or the current amplitude is not significantly higher than the native currents.
Collapse
Affiliation(s)
- Jun Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Huikai Yuan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuo Chen
- Department of Biopharmaceutical Sciences, School of Pharmacy, Harbin Medical University at Daqing, No. 39 Xinyang Rd, High-tech District, Daqing, 163319, Heilongjiang Province, China.
| |
Collapse
|
2
|
Nakao T, Banba S. Mechanisms underlying the selectivity of meta-diamides between insect resistance to dieldrin (RDL) and human γ-aminobutyric acid (GABA) and glycine receptors. PEST MANAGEMENT SCIENCE 2021; 77:3744-3752. [PMID: 33002272 DOI: 10.1002/ps.6116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] show high insecticide activity by acting as antagonists to the insect resistance to dieldrin (RDL) γ-aminobutyric acid (GABA) receptors. In contrast, low-level antagonist activities of meta-diamides have been demonstrated against the human GABA type A receptor (GABAA R) α1β2γ2S, mammalian GABAA R α1β3γ2S, and the human glycine receptor (GlyR) α1β. Glycine residue 336 in the membrane-spanning region M3 of the Drosophila RDL GABA receptor is essential for its high sensitivity to meta-diamide 7, [3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide]. RESULTS We examined the effects of an equivalent mutation (M288G) in spontaneously opened human GABAA R β3 homomers using membrane potential assay. Picrotoxin and fipronil blocked spontaneously opened human GABAA Rs β3 and β3-M286G in a concentration-dependent manner. In contrast, meta-diamide 7 did not block spontaneously opened GABAA R β3 homomers, although meta-diamide 7 blocked spontaneously opened GABAA R β3-M286G homomers. In addition, inhibitory potency of meta-diamide 7 for GABA-induced membrane potential change in cells expressing GABAA R α1β3-M286G was much higher than that in cells expressing GABAA R α1β3. In the same way, the equivalent mutation (A288G) in GlyR α1 increased the inhibitory potency of meta-diamide 7 for GlyRs α1 and α1β. CONCLUSION Studies substituting an equivalent mutation (M288G) in spontaneously opening human GABAA R β3 homomers and human GABAA Rs α1β3 heteromers suggest that M286 in human GABAA R β3 is important for the low sensitivity to meta-diamide 7. In this study, we summarize the mechanisms underlying the selectivity of meta-diamides between insect RDL and human GABA and glycine receptors. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Toshifumi Nakao
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc., Chiba, Japan
| | - Shinichi Banba
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc., Chiba, Japan
| |
Collapse
|
3
|
Li AS, Iijima A, Huang J, Li QX, Chen Y. Putative Mode of Action of the Monoterpenoids Linalool, Methyl Eugenol, Estragole, and Citronellal on Ligand-Gated Ion Channels. ENGINEERING (BEIJING, CHINA) 2020; 6:541-545. [PMID: 38274392 PMCID: PMC10810144 DOI: 10.1016/j.eng.2019.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Essential oil has been used as sedatives, anticonvulsants, and local anesthetics in traditional medical remedies; as preservatives for food, fruit, vegetable, and grain storage; and as bio-pesticides for food production. Linalool (LL), along with a few other major components such as methyl eugenol (ME), estragole (EG), and citronellal, are the active chemicals in many essential oils such as basil oil. Basil oil and the aforementioned monoterpenoids are potent against insect pests. However, the molecular mechanism of action of these chemical constituents is not well understood. It is well-known that the γ-aminobutyric acid type A receptors (GABAARs) and nicotinic acetylcholine receptor (nAChR) are primary molecular targets of the synthetic insecticides used in the market today. Furthermore, the GABAAR-targeted therapeutics have been used in clinics for many decades, including barbiturates and benzodiazepines, to name just a few. In this research, we studied the electrophysiological effects of LL, ME, EG, and citronellal on GABAAR and nAChR to further understand their versatility as therapeutic agents in traditional remedies and as insecticides. Our results revealed that LL inhibits both GABAAR and nAChR, which may explain its insecticidal activity. LL is a concentration-dependent, non-competitive inhibitor on GABAAR, as the half-maximal effective concentration (EC50) values of γ-aminobutyric acid (GABA) for the rat α1β3γ2L GABAAR were not affected by LL: (36.2 ± 7.9) μmol·L-1 and (36.1 ± 23.8) μmol·L-1 in the absence and presence of 5 mmol·L-1 LL, respectively. The half-maximal inhibitory concentration (IC50) of LL on GABAAR was approximately 3.2 mmol·L-1. Considering that multiple monoterpenoids are found within the same essential oil, it is likely that LL has a synergistic effect with ME, which has been previously characterized as both a GABAAR agonist and a positive allosteric modulator, and with other monoterpenoids, which offers a possible explanation for the sedative and anticonvulsant effects and the insecticidal activities of LL.
Collapse
Affiliation(s)
- Amy S. Li
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
- Department of Internal Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Akimasa Iijima
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Junhao Huang
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yongli Chen
- College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA
| |
Collapse
|
4
|
Kumar N, Fagart J, Liere P, Mitchell SJ, Knibb AR, Petit-Topin I, Rame M, El-Etr M, Schumacher M, Lambert JJ, Rafestin-Oblin ME, Sitruk-Ware R. Nestorone® as a Novel Progestin for Nonoral Contraception: Structure-Activity Relationships and Brain Metabolism Studies. Endocrinology 2017; 158:170-182. [PMID: 27824503 PMCID: PMC5412978 DOI: 10.1210/en.2016-1426] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022]
Abstract
Nestorone® (NES) is a potent nonandrogenic progestin being developed for contraception. NES is a synthetic progestin that may possess neuroprotective and myelin regenerative potential as added health benefits. In receptor transactivation experiments, NES displayed greater potency than progesterone to transactivate the human progesterone receptor (PR). This was confirmed by docking experiments where NES adopts the same docking position within the PR ligand-binding domain (LBD) as progesterone and forms additional stabilizing contacts between 17α-acetoxy and 16-methylene groups and PR LBD, supporting its higher potency than progesterone. The analog 13-ethyl NES also establishes similar contacts as NES with Met909, leading to comparable potency as NES. In contrast, NES is not stabilized within the human androgen receptor LBD, leading to negligible androgen receptor transactivation. Because progesterone acts in the brain by both PR binding and indirectly via binding of the metabolite allopregnanolone to γ-aminobutyric acid type A receptor (GABAAR), we investigated if NES is metabolized to 3α, 5α-tetrahydronestorone (3α, 5α-THNES) in the brain and if this metabolite could interact with GABAAR. In female mice, low concentrations of reduced NES metabolites were identified by gas chromatography/mass spectrometry in both plasma and brain. Electrophysiological studies showed that 3α, 5α-THNES exhibited only limited activity to enhance GABAAR-evoked responses with WSS-1 cells and did not modulate synaptic GABAARs of mouse cortical neurons. Thus, the inability of reduced metabolite of NES (3α, 5α-THNES) to activate GABAAR suggests that the neuroprotective and myelin regenerative effects of NES are mediated via PR binding and not via its interaction with the GABAAR.
Collapse
Affiliation(s)
- Narender Kumar
- Population Council, Center for Biomedical Research, New York, New York 10065
| | | | - Philippe Liere
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Scott J. Mitchell
- Division of Neuroscience, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Alanah R. Knibb
- Division of Neuroscience, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | | | - Marion Rame
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Martine El-Etr
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Michael Schumacher
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Jeremy J. Lambert
- Division of Neuroscience, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | | | - Regine Sitruk-Ware
- Population Council, Center for Biomedical Research, New York, New York 10065
| |
Collapse
|
5
|
Chowdhury L, Croft CJ, Goel S, Zaman N, Tai ACS, Walch EM, Smith K, Page A, Shea KM, Hall CD, Jishkariani D, Pillai GG, Hall AC. Differential Potency of 2,6-Dimethylcyclohexanol Isomers for Positive Modulation of GABAA Receptor Currents. J Pharmacol Exp Ther 2016; 357:570-9. [PMID: 27029583 DOI: 10.1124/jpet.115.228890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
GABAA receptors meet all of the pharmacological requirements necessary to be considered important targets for the action of general anesthetic agents in the mammalian brain. In the following patch-clamp study, the relative modulatory effects of 2,6-dimethylcyclohexanol diastereomers were investigated on human GABAA (α1β3γ2s) receptor currents stably expressed in human embryonic kidney cells. Cis,cis-, trans,trans-, and cis,trans-isomers were isolated from commercially available 2,6-dimethylcyclohexanol and were tested for positive modulation of submaximal GABA responses. For example, the addition of 30 μM cis,cis-isomer resulted in an approximately 2- to 3-fold enhancement of the EC20 GABA current. Coapplications of 30 μM 2,6-dimethylcyclohexanol isomers produced a range of positive enhancements of control GABA responses with a rank order for positive modulation: cis,cis > trans,trans ≥ mixture of isomers > > cis,trans-isomer. In molecular modeling studies, the three cyclohexanol isomers bound with the highest binding energies to a pocket within transmembrane helices M1 and M2 of the β3 subunit through hydrogen-bonding interactions with a glutamine at the 224 position and a tyrosine at the 220 position. The energies for binding to and hydrogen-bond lengths within this pocket corresponded with the relative potencies of the agents for positive modulation of GABAA receptor currents (cis,cis > trans,trans > cis,trans-2,6-dimethylcyclohexanol). In conclusion, the stereochemical configuration within the dimethylcyclohexanols is an important molecular feature in conferring positive modulation of GABAA receptor activity and for binding to the receptor, a consideration that needs to be taken into account when designing novel anesthetics with enhanced therapeutic indices.
Collapse
Affiliation(s)
- Luvana Chowdhury
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Celine J Croft
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Shikha Goel
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Naina Zaman
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Angela C-S Tai
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Erin M Walch
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Kelly Smith
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Alexandra Page
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Kevin M Shea
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - C Dennis Hall
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - D Jishkariani
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Girinath G Pillai
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| | - Adam C Hall
- Neuroscience Program, Departments of Biological Sciences (L.C., C.J.C., S.G., N.Z., A.C.-S.T., E.M.W., A.C.H.) and Chemistry (K.S., A.P., K.M.S.), Smith College, Northampton, Massachusetts; Department of Chemistry, University of Florida, Gainesville, Florida (C.D.H., D.J., G.G.P.); and Department of Chemistry, University of Tartu, Ravila, Estonia (G.G.P.)
| |
Collapse
|
6
|
Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds. Int J Neuropsychopharmacol 2013; 16:1361-71. [PMID: 23217923 DOI: 10.1017/s146114571200140x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.
Collapse
|
7
|
Rae MG, Hilton J, Sharkey J. Putative TRP channel antagonists, SKF 96365, flufenamic acid and 2-APB, are non-competitive antagonists at recombinant human α1β2γ2 GABA(A) receptors. Neurochem Int 2012; 60:543-54. [PMID: 22369768 DOI: 10.1016/j.neuint.2012.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/09/2012] [Accepted: 02/11/2012] [Indexed: 11/30/2022]
Abstract
Although transient receptor potential (TRP) channel biology research has expanded rapidly in recent years, the field is hampered by the widely held, but relatively poorly investigated, belief that most of the pharmacological tools used to investigate TRP channel function may not be particularly selective for their intended targets. The objective of this study was therefore to determine if this was indeed the case by systematically evaluating the effects of three routinely used putative TRP channel antagonists, SKF 96365, flufenamic acid (FF) and 2-aminoethoxydiphenyl borate (2-APB) against one of the most widely expressed CNS receptor subtypes CNS, the human α1β2γ2 GABA(A) receptor. Using whole cell patch-clamp recording to record responses to rapidly applied GABA in the absence and presence of the three putative antagonists in turn we found that SKF 96365 (1-100 μM) and FF (1-100 μM) significantly inhibited GABA responses of recombinant human α1β2γ2 GABA(A) receptor stably expressed in HEK293 cells with IC(50) values of 13.4 ± 5.1 and 1.9 ± 1.4 μM, respectively, suppressing the maximal response to GABA at all concentrations used in a manner consistent with a non-competitive mode of action. SKF 96365 and FF also both significantly reduced desensitisation and prolonged the deactivation kinetics of the receptors to GABA (1mM; P<0.05). 2-APB (10-1000 μM) also inhibited responses to GABA at all concentrations used with an IC(50) value of 16.7 ± 5.4 μM (n=3-5) but had no significant effect on the activation, desensitisation or deactivation kinetics of the GABA responses. Taken together this investigation revealed that these widely utilised TRP channel antagonists display significant 'off-target' effects at concentrations that are routinely used for the study of TRP channel function in numerous biological systems and as such, data which is obtained utilising these compounds should be interpreted with caution.
Collapse
Affiliation(s)
- M G Rae
- Department of Physiology, University College Cork, Ireland.
| | | | | |
Collapse
|
8
|
Foster WR, Car BD, Shi H, Levesque PC, Obermeier MT, Gan J, Arezzo JC, Powlin SS, Dinchuk JE, Balog A, Salvati ME, Attar RM, Gottardis MM. Drug safety is a barrier to the discovery and development of new androgen receptor antagonists. Prostate 2011; 71:480-8. [PMID: 20878947 DOI: 10.1002/pros.21263] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/09/2010] [Indexed: 11/11/2022]
Abstract
BACKGROUND Androgen receptor (AR) antagonists are part of the standard of care for prostate cancer. Despite the almost inevitable development of resistance in prostate tumors to AR antagonists, no new AR antagonists have been approved for over a decade. Treatment failure is due in part to mutations that increase activity of AR in response to lower ligand concentrations as well as to mutations that result in AR response to a broader range of ligands. The failure to discover new AR antagonists has occurred in the face of continued research; to enable progress, a clear understanding of the reasons for failure is required. METHODS Non-clinical drug safety studies and safety pharmacology assays were performed on previously approved AR antagonists (bicalutamide, flutamide, nilutamide), next generation antagonists in clinical testing (MDV3100, BMS-641988), and a pre-clinical drug candidate (BMS-501949). In addition, non-clinical studies with AR mutant mice, and EEG recordings in rats were performed. Non-clinical findings are compared to disclosures of clinical trial results. RESULTS As a drug class, AR antagonists cause seizure in animals by an off-target mechanism and are found in vitro to inhibit GABA-A currents. Clinical trials of candidate next generation AR antagonists identify seizure as a clinical safety risk. CONCLUSIONS Non-clinical drug safety profiles of the AR antagonist drug class create a significant barrier to the identification of next generation AR antagonists. GABA-A inhibition is a common off-target activity of approved and next generation AR antagonists potentially explaining some side effects and safety hazards of this class of drugs.
Collapse
Affiliation(s)
- William R Foster
- Department of Discovery Toxicology, Bristol-Myers Squibb Co. (BMS), Princeton, New Jersey 08543, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Earl DE, Tietz EI. Inhibition of recombinant L-type voltage-gated calcium channels by positive allosteric modulators of GABAA receptors. J Pharmacol Exp Ther 2011; 337:301-11. [PMID: 21262851 PMCID: PMC3063747 DOI: 10.1124/jpet.110.178244] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/21/2011] [Indexed: 11/22/2022] Open
Abstract
Benzodiazepines (BDZs) depress neuronal excitability via positive allosteric modulation of inhibitory GABA(A) receptors (GABA(A)R). BDZs and other positive GABA(A)R modulators, including barbiturates, ethanol, and neurosteroids, can also inhibit L-type voltage-gated calcium channels (L-VGCCs), which could contribute to reduced neuronal excitability. Because neuronal L-VGCC function is up-regulated after long-term GABA(A)R modulator exposure, an interaction with L-VGCCs may also play a role in physical dependence. The current studies assessed the effects of BDZs (diazepam, flurazepam, and desalkylflurazepam), allopregnanolone, pentobarbital, and ethanol on whole-cell Ba(2+) currents through recombinant neuronal Ca(v)1.2 and Ca(v)1.3 L-VGCCs expressed with β(3) and α(2)δ-1 in HEK293T cells. Allopregnanolone was the most potent inhibitor (IC(50), ∼10 μM), followed by BDZs (IC(50), ∼50 μM), pentobarbital (IC(50), 0.3-1 mM), and ethanol (IC(50), ∼300 mM). Ca(v)1.3 channels were less sensitive to pentobarbital inhibition than Ca(v)1.2 channels, similar to dihydropyridine (DHP) L-VGCC antagonists. All GABA(A)R modulators induced a negative shift in the steady-state inactivation curve of Ca(v)1.3 channels, but only BDZs and pentobarbital induced a negative shift in Ca(v)1.2 channel inactivation. Mutation of the high-affinity DHP binding site (T1039Y and Q1043M) in Ca(v)1.2 channels reduced pentobarbital potency. Despite the structural similarity between benzothiazepines and BDZs, mutation of an amino acid important for diltiazem potency (I1150A) did not affect diazepam potency. Although L-VGCC inhibition by BDZs occurred at concentrations that are possibly too high to be clinically relevant and is not likely to play a role in the up-regulation of L-VGCCs during long-term treatment, pentobarbital and ethanol inhibited L-VGCCs at clinically relevant concentrations.
Collapse
Affiliation(s)
- Damien E Earl
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, OH 43614, USA
| | | |
Collapse
|
10
|
Meera P, Olsen RW, Otis TS, Wallner M. Etomidate, propofol and the neurosteroid THDOC increase the GABA efficacy of recombinant alpha4beta3delta and alpha4beta3 GABA A receptors expressed in HEK cells. Neuropharmacology 2008; 56:155-60. [PMID: 18778723 DOI: 10.1016/j.neuropharm.2008.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
General anesthetics, once thought to exert their effects through non-specific membrane effects, have highly specific ion channel targets that can silence neuronal populations in the nervous system, thereby causing unconsciousness and immobility, characteristic of general anesthesia. Inhibitory GABA(A) receptors (GABA(A)Rs), particularly highly GABA-sensitive extrasynaptic receptor subtypes that give rise to sustained inhibitory currents, are uniquely sensitive to GABA(A)R-active anesthetics. A prominent population of extrasynaptic GABA(A)Rs is made up of alpha4, beta2 or beta3, and delta subunits. Considering the demonstrated importance of GABA receptor beta3 subunits for in vivo anesthetic effects of etomidate and propofol, we decided to investigate the effects of GABA anesthetics on "extrasynaptic" alpha4beta3delta and also binary alpha4beta3 receptors expressed in human embryonic kidney (HEK) cells. Consistent with previous work on similar receptor subtypes we show that maximal GABA currents through "extrasynaptic" alpha4beta3delta receptors, receptors defined by sensitivity to EtOH (30mM) and the beta-carboline beta-CCE (1microM), are enhanced by the GABA(A)R-active anesthetics etomidate, propofol, and the neurosteroid anesthetic THDOC. Furthermore, we show that receptors formed by alpha4beta3 subunits alone also show high GABA sensitivity and that saturating GABA responses of alpha4beta3 receptors are increased to the same extent by etomidate, propofol, and THDOC as are alpha4beta3delta receptors. Therefore, both alpha4beta3 and alpha4beta3delta receptors show low GABA efficacy, and GABA is also a partial agonist on certain binary alphabeta receptor subtypes. Increasing GABA efficacy on alpha4/6beta3delta and alpha4beta3 receptors is likely to make an important contribution to the anesthetic effects of etomidate, propofol and the neurosteroid THDOC.
Collapse
Affiliation(s)
- Pratap Meera
- Department of Neurobiology, Geffen School of Medicine, University of California, Los Angeles, USA
| | | | | | | |
Collapse
|
11
|
The promiscuous role of the epsilon subunit in GABAA receptor biogenesis. Mol Cell Neurosci 2008; 37:610-21. [DOI: 10.1016/j.mcn.2007.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/21/2007] [Accepted: 12/06/2007] [Indexed: 11/18/2022] Open
|
12
|
Millingen M, Bridle H, Jesorka A, Lincoln P, Orwar O. Ligand-specific temperature-dependent shifts in EC50 values for the GABAA receptor. Anal Chem 2007; 80:340-3. [PMID: 18052252 DOI: 10.1021/ac702148p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We introduce a system for temperature control of a commercial microfluidic superfusion device that, in combination with patch-clamp, enables rapid acquisition of dose-response data at different temperatures. We obtained dose-response curves for the GABAA receptor, a ligand-gated ion channel, for two different agonists at temperatures between 25 and 40 degrees C. For GABA, the dose-response curves shifted toward higher EC50 values as the temperature increased, whereas for beta-alanine, the EC50 values were constant. This shows that temperature is an important factor for obtaining accurate estimations of EC50 values and also that such temperature effects can be ligand-specific. Using the EC50 values, we estimated the enthalpy of dissociation between the ligand and the receptor. Furthermore, the technology introduced here is generally applicable to all patch-clamp studies where temperature control is desirable, e.g., studies of kinetics and thermodynamics, drug screening, compliant ADME/Tox testing, and in studies of temperature-gated ion channels.
Collapse
Affiliation(s)
- Maria Millingen
- Department of Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
13
|
Picton AJ, Fisher JL. Effect of the alpha subunit subtype on the macroscopic kinetic properties of recombinant GABA(A) receptors. Brain Res 2007; 1165:40-9. [PMID: 17658489 PMCID: PMC2084258 DOI: 10.1016/j.brainres.2007.06.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/12/2007] [Accepted: 06/20/2007] [Indexed: 12/26/2022]
Abstract
The GABA(A) receptors (GABARs) are chloride-permeable ligand-gated ion channels responsible for fast inhibitory neurotransmission. These receptors are structurally heterogeneous, and in mammals can be formed from a combination of sixteen different subunit subtypes. Much of this variety comes from the six different alpha subunit subtypes. All neuronal GABARs contain an alpha subunit, and the identity of the alpha subtype affects the pharmacological properties of the receptors. The expression of each of the different alpha subtypes is regulated developmentally and regionally and changes with both normal physiological processes such development and synaptic plasticity, and pathological conditions such as epilepsy. In order to understand the functional significance of this structural heterogeneity, we examined the effect of the alpha subtype on the receptor's response to GABA. Each of the six alpha subtypes was transiently co-expressed with the beta3 and gamma2L subunits in mammalian cells. The sensitivity to GABA was measured with whole-cell recordings. We also determined the activation, deactivation, desensitization, and recovery kinetics for the six isoforms using rapid application recordings from excised macropatches. We found unique characteristics associated with each alpha subunit subtype. These properties would be expected to influence the post-synaptic response to GABA, creating functional diversity among neurons expressing different alpha subunits.
Collapse
Affiliation(s)
- Amber J Picton
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, South Carolina 29208, USA
| | | |
Collapse
|
14
|
Lagrange AH, Botzolakis EJ, Macdonald RL. Enhanced macroscopic desensitization shapes the response of alpha4 subtype-containing GABAA receptors to synaptic and extrasynaptic GABA. J Physiol 2006; 578:655-76. [PMID: 17124266 PMCID: PMC2151343 DOI: 10.1113/jphysiol.2006.122135] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Up-regulation of the GABAA receptor alpha4 subunit subtype has been consistently shown in multiple animal models of chronic epilepsy. This isoform is expressed in both thalamus and hippocampus and is likely to play a significant role in regulating corticothalamic and hippocampal rhythms. However, little is known about its physiological properties, thus limiting understanding of the role of alpha4 subtype-containing GABAA receptors in normal and abnormal physiology. We used rapid GABA application to recombinant GABAA receptors expressed in HEK293T cells to compare the macroscopic kinetic properties of alpha4beta3gamma2L receptors to those of the more widely distributed alpha1beta3gamma2L receptors. These receptor currents had similar peak current amplitudes and GABA EC50 values. However, alpha4beta3gamma2L currents activated more slowly when exposed to submaximal GABA concentrations, had more fast desensitization (tau = 15-100 ms), and had less residual current during long GABA applications. In addition, alpha4beta3gamma2L currents deactivated more slowly than alpha1beta3gamma2L currents. Peak currents evoked by repetitive, brief GABA applications were more strongly attenuated for alpha4beta3gamma2L currents than alpha1beta3gamma2L currents. Moreover, the time required to recover from desensitization was prolonged in alpha4beta3gamma2L currents compared to alpha1beta3gamma2L currents. We also found that exposure to prolonged low levels of GABA, similar to those that might be present in the extrasynaptic space, greatly suppressed the response of alpha4beta3gamma2L currents to higher concentrations of GABA, while alpha1beta3gamma2L currents were less affected by exposure to low levels of GABA. Taken together, these data suggest that alpha4beta3gamma2L receptors have unique kinetic properties that limit the range of GABA applications to which they can respond maximally. While similar to alpha1beta3gamma2L receptors in their ability to respond to brief and low frequency synaptic inputs, alpha4beta3gamma2L receptors are less efficacious when exposed to prolonged tonic GABA or during repetitive stimulation, as may occur during learning and seizures.
Collapse
Affiliation(s)
- Andre H Lagrange
- Department of Neurology, Vanderbilt University Medical Centre, 6140 Medical Research Building III, 465 21st Ave, South, Nashville, TN 37232-8552, USA.
| | | | | |
Collapse
|
15
|
Granfeldt D, Sinclair J, Millingen M, Farre C, Lincoln P, Orwar O. Controlling Desensitized States in Ligand−Receptor Interaction Studies with Cyclic Scanning Patch-Clamp Protocols. Anal Chem 2006; 78:7947-53. [PMID: 17134126 DOI: 10.1021/ac060812z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ligand-gated ion channels are important control elements in regulation of cellular activities, and increasing evidence demonstrates their role as therapeutic targets. The receptors display complex desensitization kinetics, occurring on vastly different time scales. This is not only important in biology and pharmacology but might also be of technological significance since populations of receptors under microfluidic control can function analogously to DRAM memory circuits. Using a novel microfluidic method, and computer modeling of the receptor state distributions, we here demonstrate that GABAA receptor populations can be controlled to display high or low EC50 values, depending on input function (i.e., the exact pattern of agonist application). The sensitivity of the receptors can be tuned up to 40-fold (beta-alanine) by the particular agonist exposure pattern. By combining patch-clamp experiments with computer modeling of receptor state distributions, we can control the assembly of receptors in desensitized states. The technique described can be used as an analytical tool to study the effect of desensitization on the activity of ion channel effectors. We describe the differential blocking effect of the competitive antagonist bicuculline on the high- and low-EC50 GABAA receptor preparations and conclude that the inhibition is dramatically dependent on how the different desensitized states are populated. Furthermore, we show that both GABA and beta-alanine, two agonists with different affinity but similar efficacy, induce the same type of desensitization behavior and memory effects in GABAA receptors.
Collapse
Affiliation(s)
- Daniel Granfeldt
- Department of Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Sinclair J, Granfeldt D, Pihl J, Millingen M, Lincoln P, Farre C, Peterson L, Orwar O. A Biohybrid Dynamic Random Access Memory. J Am Chem Soc 2006; 128:5109-13. [PMID: 16608345 DOI: 10.1021/ja0580993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report that GABA(A) receptors in a patch-clamped biological cell form a short-term memory circuit when integrated with a scanning-probe microfluidic device. Laminar patterns of receptor activators (agonists) provided by the microfluidic device define and periodically update the data input which is read and stored by the receptors as state distributions (based on intrinsic multistate kinetics). The memory is discharged over time and lasts for seconds to minutes depending on the input function. The function of the memory can be represented by an equivalent electronic circuit with striking similarity in function to a dynamic random access memory (DRAM) used in electronic computers. Multiplexed biohybrid memories may form the basis of large-scale integrated biocomputational/sensor devices with the curious ability to use chemical signals including odorants, neurotransmitters, chemical and biological warfare agents, and many more as input signals.
Collapse
Affiliation(s)
- Jon Sinclair
- Department of Chemistry and Bioscience and Microtechnology Centre, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Downing SS, Lee YT, Farb DH, Gibbs TT. Benzodiazepine modulation of partial agonist efficacy and spontaneously active GABA(A) receptors supports an allosteric model of modulation. Br J Pharmacol 2006; 145:894-906. [PMID: 15912137 PMCID: PMC1576208 DOI: 10.1038/sj.bjp.0706251] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Benzodiazepines (BZDs) have been used extensively for more than 40 years because of their high therapeutic index and low toxicity. Although BZDs are understood to act primarily as allosteric modulators of GABA(A) receptors, the mechanism of modulation is not well understood. The applicability of an allosteric model with two binding sites for gamma-aminobutyric acid (GABA) and one for a BZD-like modulator was investigated. This model predicts that BZDs should enhance the efficacy of partial agonists. Consistent with this prediction, diazepam increased the efficacy of the GABA(A) receptor partial agonist kojic amine in chick spinal cord neurons. To further test the validity of the model, the effects of diazepam, flurazepam, and zolpidem were examined using wild-type and spontaneously active mutant alpha1(L263S)beta3gamma2 GABA(A) receptors expressed in HEK-293 cells. In agreement with the predictions of the allosteric model, all three modulators acted as direct agonists for the spontaneously active receptors. The results indicate that BZD-like modulators enhance the amplitude of the GABA response by stabilizing the open channel active state relative to the inactive state by less than 1 kcal, which is similar to the energy of stabilization conferred by a single hydrogen bond.
Collapse
Affiliation(s)
- Scott S Downing
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
| | - Yan T Lee
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
| | - David H Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
| | - Terrell T Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
- Author for correspondence:
| |
Collapse
|
18
|
Thomas P, Smart TG. HEK293 cell line: A vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 2005; 51:187-200. [PMID: 15862464 DOI: 10.1016/j.vascn.2004.08.014] [Citation(s) in RCA: 472] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2004] [Indexed: 11/25/2022]
Abstract
The HEK cell line has been extensively used as an expression tool for recombinant proteins since it was generated over 25 years ago. Although of epithelial origin, its biochemical machinery is capable of carrying out most of the post-translational folding and processing required to generate functional, mature protein from a wide spectrum of both mammalian and non-mammalian nucleic acids. Though popular as a transient expression system, this cell type has also seen wide use in stably transfected forms (i.e. transformed cells) to study a variety of cell-biological questions in neurobiology. The principal attributes which have made the HEK cell a popular choice among electrophysiologists to study isolated receptor channels include; its quick and easy reproduction and maintenance; amenability to transfection using a wide variety of methods; high efficiency of transfection and protein production; faithful translation and processing of proteins; and small cell size with minimal processes appropriate for voltage-clamp experimentation. These, and other attributes, also mean that complementary biochemical/cell biological evaluations of expressed proteins can be performed in concert with functional analyses to establish detailed pharmacological and biophysical profiles for the action of new drugs and their targets. The increased amount of sequence information available from the human genome has placed greater emphasis upon heterologous cell expression systems as targets for high throughput structure-function evaluation of novel drug targets and disease markers. Here we have highlighted some of the innate characteristics of the HEK cell in order that its suitability as a vehicle for the expression of a gene product can be assessed for particular needs. We have also detailed some of the standard methods used for transfection and obtaining functional data from electrophysiological recording techniques.
Collapse
Affiliation(s)
- Philip Thomas
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
19
|
Charych EI, Yu W, Miralles CP, Serwanski DR, Li X, Rubio M, De Blas AL. The brefeldin A-inhibited GDP/GTP exchange factor 2, a protein involved in vesicular trafficking, interacts with the β subunits of the GABAA receptors. J Neurochem 2004; 90:173-89. [PMID: 15198677 DOI: 10.1111/j.1471-4159.2004.02481.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have found that the brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) interacts with the beta subunits of the gamma-aminobutyric acid type-A receptor (GABA(A)R). BIG2 is a Sec7 domain-containing guanine nucleotide exchange factor known to be involved in vesicular and protein trafficking. The interaction between the 110 amino acid C-terminal fragment of BIG2 and the large intracellular loop of the GABA(A)R beta subunits was revealed with a yeast two-hybrid assay. The native BIG2 and GABA(A)Rs interact in the brain since both coprecipitated from detergent extracts with either anti-GABA(A)R or anti-BIG2 antibodies. In transfected human embryonic kidney cell line 293 cells, BIG2 promotes the exit of GABA(A)Rs from endoplasmic reticulum. Double label immunofluorescence of cultured hippocampal neurons and electron microscopy immunocytochemistry of rat brain tissue show that BIG2 concentrates in the trans-Golgi network. BIG2 is also present in vesicle-like structures in the dendritic cytoplasm, sometimes colocalizing with GABA(A)Rs. BIG2 is present in both inhibitory GABAergic synapses that contain GABA(A)Rs and in asymmetric excitatory synapses. The results are consistent with the hypotheses that the interaction of BIG2 with the GABA(A)R beta subunits plays a role in the exocytosis and trafficking of assembled GABA(A)R to the cell surface.
Collapse
Affiliation(s)
- Erik I Charych
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Pericić D, Strac DS, Jembrek MJ, Rajcan I. Prolonged exposure to γ-aminobutyric acid up-regulates stably expressed recombinant α1β2γ2s GABAA receptors. Eur J Pharmacol 2003; 482:117-25. [PMID: 14660012 DOI: 10.1016/j.ejphar.2003.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to better understand the mechanisms that underlie adaptive changes in GABA(A) receptors following their prolonged exposure to drugs. Exposure (48 and/or 96 h) of human embryonic kidney (HEK 293) cells stably expressing recombinant alpha1beta2gamma2s GABA(A) receptors for gamma-aminobutyric (GABA, 1 mM) and muscimol (100 microM), but not for diazepam (1 microM), enhanced the maximum number (B(max)) of [3H]flunitrazepam binding sites without affecting their affinity (K(d)). The GABA-induced enhancement in B(max) was reduced by the GABA receptor antagonist, bicuculline (100 microM), and by cycloheximide (10 microl/ml), a protein synthesis inhibitor. GABA (100 microM) enhanced the affinity of [3H]flunitrazepam binding to vehicle- and GABA-pretreated, but not to diazepam-pretreated, HEK 293 cells. The results suggest that chronic GABA treatment up-regulates stably expressed GABA(A) receptors, presumably by stimulating their synthesis. Unlike chronic diazepam, which produced functional uncoupling of GABA and benzodiazepine binding sites, chronic GABA failed to produce this effect.
Collapse
Affiliation(s)
- Danka Pericić
- Ruder Bosković Institute, Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, P.O. Box 180, 10002, Zagreb, Croatia.
| | | | | | | |
Collapse
|
21
|
Davies PA, Kirkness EF, Hales TG. Evidence for the formation of functionally distinct alphabetagammaepsilon GABA(A) receptors. J Physiol 2001; 537:101-13. [PMID: 11711565 PMCID: PMC2278943 DOI: 10.1111/j.1469-7793.2001.0101k.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. We transiently introduced the human GABA(A) receptor epsilon subunit cDNA into a human embryonic kidney (HEK) cell line stably expressing alpha1beta3gamma2 receptors (WSS-1 cells) to establish whether the subunit competes with the gamma2 subunit for assembly into receptors. GABA-evoked currents were recorded using the patch-clamp technique from cells transfected with cDNA encoding green fluorescent protein (GFP) alone or in combination with the epsilon subunit cDNA. 2. The epsilon subunit did not change the potency of GABA: the GABA EC(50) was 34 +/- 6 microM in control WSS-1 cells and 37 +/- 6 microM in cells expressing the epsilon subunit. The introduction of the epsilon subunit reduced the peak current amplitude activated by GABA (1 mM) from 1.8 +/- 0.2 nA in control cells to 0.9 +/- 0.2 nA in cells expressing the epsilon subunit (P < 0.05). 3. The epsilon subunit caused the appearance of leak currents recorded in the absence of GABA. Outside-out patches excised from epsilon subunit-containing WSS-1 cells exhibited spontaneously opening GABA(A) channels not seen in patches excised from control GFP-expressing WSS-1 cells. Introduction of the epsilon subunit did not alter the GABA-evoked single-channel cord conductance. 4. The anaesthetic 2,6-diisopropylphenol (propofol, 3 microM) and the benzodiazepine flunitrazepam (1 microM) potentiated GABA-evoked currents recorded from control cells labelled with GFP. The epsilon subunit reduced potentiation by both agents 48-96 h after transfection. 5. The introduction of the epsilon subunit had no effect on the ability of propofol (3-30 microM) relative to GABA (1 mM) to activate GABA(A) receptors in WSS-1 cells. High concentrations of propofol (> or = 100 microM) produced a more marked desensitization of GABA(A) receptor activity in WSS-1 cells transfected with cDNA for the epsilon subunit than in control cells. 6. There was no difference in the potency of Zn(2+) as an inhibitor of currents recorded from control cells (IC(50) = 165 +/- 34 microM) or cells expressing the epsilon subunit (IC(50) = 179 +/- 11 microM). 7. GABA-activated currents recorded both from control cells and cells expressing the epsilon subunit reversed in sign at the Cl- equilibrium potential and exhibited outward rectification. 8. The introduction of the epsilon subunit changes the functional properties of GABA(A) receptors in WSS-1 cells. The resulting receptors have a unique combination of properties indicative of the co-assembly of alpha, beta, gamma and epsilon subunits.
Collapse
Affiliation(s)
- P A Davies
- Department of Pharmacology, The George Washington University Medical Center, 2300 Eye Street NW, Washington DC 20037, USA
| | | | | |
Collapse
|