1
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Istomina A, Arsalidou M. Add, subtract and multiply: Meta-analyses of brain correlates of arithmetic operations in children and adults. Dev Cogn Neurosci 2024; 69:101419. [PMID: 39098250 PMCID: PMC11342769 DOI: 10.1016/j.dcn.2024.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/24/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
Mathematical operations are cognitive actions we take to calculate relations among numbers. Arithmetic operations, addition, subtraction, multiplication, and division are elemental in education. Addition is the first one taught in school and is most popular in functional magnetic resonance imaging (fMRI) studies. Division, typically taught last is least studied with fMRI. fMRI meta-analyses show that arithmetic operations activate brain areas in parietal, cingulate and insular cortices for children and adults. Critically, no meta-analysis examines concordance across brain correlates of separate arithmetic operations in children and adults. We review and examine using quantitative meta-analyses data from fMRI articles that report brain coordinates separately for addition, subtraction, multiplication, and division in children and adults. Results show that arithmetic operations elicit common areas of concordance in fronto-parietal and cingulo-opercular networks in adults and children. Between operations differences are observed primarily for adults. Interestingly, higher within-group concordance, expressed in activation likelihood estimates, is found in brain areas associated with the cingulo-opercular network rather than the fronto-parietal network in children, areas also common between adults and children. Findings are discussed in relation to constructivist cognitive theory and practical directions for future research.
Collapse
|
3
|
Casagrande WD, Nakamura-Palacios EM, Frizera-Neto A. Electroencephalography Neurofeedback Training with Focus on the State of Attention: An Investigation Using Source Localization and Effective Connectivity. SENSORS (BASEL, SWITZERLAND) 2024; 24:6056. [PMID: 39338801 PMCID: PMC11435502 DOI: 10.3390/s24186056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Identifying brain activity and flow direction can help in monitoring the effectiveness of neurofeedback tasks that aim to treat cognitive deficits. The goal of this study was to compare the neuronal electrical activity of the cortex between individuals from two groups-low and high difficulty-based on a spatial analysis of electroencephalography (EEG) acquired through neurofeedback sessions. These sessions require the subjects to maintain their state of attention when executing a task. EEG data were collected during three neurofeedback sessions for each person, including theta and beta frequencies, followed by a comprehensive preprocessing. The inverse solution based on cortical current density was applied to identify brain regions related to the state of attention. Thereafter, effective connectivity between those regions was estimated using the Directed Transfer Function. The average cortical current density of the high-difficulty group demonstrated that the medial prefrontal, dorsolateral prefrontal, and temporal regions are related to the attentional state. In contrast, the low-difficulty group presented higher current density values in the central regions. Furthermore, for both theta and beta frequencies, for the high-difficulty group, flows left and entered several regions, unlike the low-difficulty group, which presented flows leaving a single region. In this study, we identified which brain regions are related to the state of attention in individuals who perform more demanding tasks (high-difficulty group).
Collapse
Affiliation(s)
- Wagner Dias Casagrande
- Department of Electrical Engineering, Federal University of Espírito Santo, Vitoria 29075-910, Brazil;
| | | | - Anselmo Frizera-Neto
- Department of Electrical Engineering, Federal University of Espírito Santo, Vitoria 29075-910, Brazil;
| |
Collapse
|
4
|
Wang Z, Becker M, Kondla G, Gimpel H, Beer AL, Greenlee MW. Dynamic modulation of the processing of unpredicted technical errors by the posterior cingulate and the default mode network. Sci Rep 2024; 14:13467. [PMID: 38867061 PMCID: PMC11169251 DOI: 10.1038/s41598-024-64409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive use of information technologies (IT) has tremendously benefited our daily lives. However, unpredicted technical breakdowns and errors can lead to the experience of stress, which has been termed technostress. It remains poorly understood how people dynamically respond to unpredicted system runtime errors occurring while interacting with the IT systems on a behavioral and neuronal level. To elucidate the mechanisms underlying such processes, we conducted a functional magnetic resonance imaging (fMRI) study in which 15 young adults solved arithmetic problems of three difficulty levels (easy, medium and hard) while two types of system runtime errors (problem errors and feedback errors) occurred in an unexpected manner. The problem error condition consisted of apparently defective displays of the arithmetic problem and the feedback error condition involved erroneous feedback. We found that the problem errors positively influenced participants' problem-solving performance at the high difficulty level (i.e., hard tasks) at the initial stage of the session, while feedback errors disturbed their performance. These dynamic behavioral changes are mainly associated with brain activation changes in the posterior cingulate and the default mode network, including the posterior cingulate cortex, the mPFC, the retrosplenial cortex and the parahippocampal gyrus. Our study illustrates the regulatory role of the posterior cingulate in coping with unpredicted errors as well as with dynamic changes in the environment.
Collapse
Affiliation(s)
- Zhiyan Wang
- Faculty of Human Sciences, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Markus Becker
- Faculty of Human Sciences, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Gregor Kondla
- Faculty of Business, Economics and Social Sciences, University of Hohenheim, Schloss Hohenheim 1B, 70599, Stuttgart, Germany
| | - Henner Gimpel
- Faculty of Business, Economics and Social Sciences, University of Hohenheim, Schloss Hohenheim 1B, 70599, Stuttgart, Germany
| | - Anton L Beer
- Faculty of Human Sciences, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Mark W Greenlee
- Faculty of Human Sciences, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
- University of Regensburg, Sedanstraße 1, 93055, Regensburg, Germany.
| |
Collapse
|
5
|
Pan NC, Zhao C, Du J, Zhou Q, Xu C, Liu C, Yu T, Zhang D, Wang Y. Temporal-spatial deciphering mental subtraction in the human brain. Cogn Neurodyn 2024; 18:893-906. [PMID: 38826664 PMCID: PMC11143099 DOI: 10.1007/s11571-023-09937-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/17/2022] [Accepted: 01/29/2023] [Indexed: 03/02/2023] Open
Abstract
Mental subtraction, involving numerical processing and operation, requires a complex interplay among several brain regions. Diverse studies have utilized scalp electroencephalograph, electrocorticogram, or functional magnetic resonance imaging to resolve the structure pattern and functional activity during subtraction operation. However, a high resolution of the spatial-temporal understanding of the neural mechanisms involved in mental subtraction is unavailable. Thus, this study obtained intracranial stereoelectroencephalography recordings from 20 patients with pharmacologically resistant epilepsy. Specifically, two sample-delayed mismatch paradigms of numeric comparison and subtracting results comparison were used to help reveal the time frame of mental subtraction. The brain sub-regions were chronologically screened using the stereoelectroencephalography recording for mental subtraction. The results indicated that the anterior cortex, containing the frontal, insular, and parahippocampous, worked for preparing for mental subtraction; moreover, the posterior cortex, such as parietal, occipital, limbic, and temporal regions, cooperated during subtraction. Especially, the gamma band activities in core regions within the parietal-cingulate-temporal cortices mediated the critical mental subtraction. Overall, this research is the first to describe the spatiotemporal activities underlying mental subtraction in the human brain. It provides a comprehensive insight into the cognitive control activity underlying mental arithmetic. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09937-z.
Collapse
Affiliation(s)
- Na Clara Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, 100053 Beijing, China
- Beijing Key Laboratory of Neuromodulation, No. 45, Changchun Street, Xicheng District, 100053 Beijing, China
| | - Chengtian Zhao
- Department of Neurology, Aviation General Hospital, Courtyard 3, AnwaiBeiyuan, Chaoyang District, 100012 Beijing, China
| | - Jialin Du
- Department of Pharmacy Phase I Clinical Trial Center, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, 100053 Beijing, China
| | - Qilin Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, 100053 Beijing, China
- Beijing Key Laboratory of Neuromodulation, No. 45, Changchun Street, Xicheng District, 100053 Beijing, China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, 100053 Beijing, China
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, 100053 Beijing, China
- Beijing Key Laboratory of Neuromodulation, No. 45, Changchun Street, Xicheng District, 100053 Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, 100053 Beijing, China
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Haidian District, 100084 Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, 100053 Beijing, China
- Beijing Key Laboratory of Neuromodulation, No. 45, Changchun Street, Xicheng District, 100053 Beijing, China
- Institute of sleep and consciousness disorders, Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Fengtai District, 100069 Beijing, China
| |
Collapse
|
6
|
Liu Q, Cui H, Huang B, Huang Y, Sun H, Ru X, Zhang M, Chen W. Inter-brain neural mechanism and influencing factors underlying different cooperative behaviors: a hyperscanning study. Brain Struct Funct 2024; 229:75-95. [PMID: 37899406 DOI: 10.1007/s00429-023-02700-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 10/31/2023]
Abstract
Cooperative behavior is a vital social interaction which plays a vital role in improving human survival and reproduction. However, few empirical studies have examined the differences between cooperative behaviors and the underlying neural substrates. In the present study, the brain activity of familiar dyads of the same sex was measured using functional near-infrared spectroscopy during three cooperative tasks (cooperative button-press, tangram, and Jenga tasks). We also measured the dyads' empathic abilities and personality traits to investigate the relationships between individual characteristics and neural markers. The results showed that first, there were significant differences in intra-brain activation and inter-brain synchronization among different cooperative tasks in three dimensions: social cognition, behavioral response, and cognitive processing. Second, male participants require stronger intra-brain activation to achieve the same inter-brain synchronization level as women in cooperative tasks. Third, when performing cooperative tasks involving high cognitive demands, Big Five Neuroticism may be an important predictor of neural activation in female participants. Inter-brain synchronization plays an important role in the frontal and temporoparietal junctions during interpersonal cooperation. Furthermore, this study demonstrates that mutual prediction theory is crucial for understanding the neural mechanisms of cooperative behavior.
Collapse
Affiliation(s)
- Qingming Liu
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Huimin Cui
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Bincan Huang
- Department of Primary Education, Shaoxing University, Shaoxing, China
| | - Yingying Huang
- Department of Primary Education, Shaoxing University, Shaoxing, China
| | - Huimeng Sun
- Department of Primary Education, Shaoxing University, Shaoxing, China
| | - Xinyi Ru
- Department of Primary Education, Shaoxing University, Shaoxing, China
| | - Mingming Zhang
- Department of Psychology, College of Education, Shanghai Normal University, Shanghai, China.
| | - Wei Chen
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China.
- Department of Psychology, Shaoxing University, Shaoxing, China.
- Interdisciplinary Center for Philosophy and Cognitive Sciences, Renmin University of China, Beijing, China.
| |
Collapse
|
7
|
Shi C, Wang Y, Wu Y, Chen S, Hu R, Zhang M, Qiu B, Wang X. Self-supervised pretraining improves the performance of classification of task functional magnetic resonance imaging. Front Neurosci 2023; 17:1199312. [PMID: 37434766 PMCID: PMC10330812 DOI: 10.3389/fnins.2023.1199312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Decoding brain activities is one of the most popular topics in neuroscience in recent years. And deep learning has shown high performance in fMRI data classification and regression, but its requirement for large amounts of data conflicts with the high cost of acquiring fMRI data. Methods In this study, we propose an end-to-end temporal contrastive self-supervised learning algorithm, which learns internal spatiotemporal patterns within fMRI and allows the model to transfer learning to datasets of small size. For a given fMRI signal, we segmented it into three sections: the beginning, middle, and end. We then utilized contrastive learning by taking the end-middle (i.e., neighboring) pair as the positive pair, and the beginning-end (i.e., distant) pair as the negative pair. Results We pretrained the model on 5 out of 7 tasks from the Human Connectome Project (HCP) and applied it in a downstream classification of the remaining two tasks. The pretrained model converged on data from 12 subjects, while a randomly initialized model required 100 subjects. We then transferred the pretrained model to a dataset containing unpreprocessed whole-brain fMRI from 30 participants, achieving an accuracy of 80.2 ± 4.7%, while the randomly initialized model failed to converge. We further validated the model's performance on the Multiple Domain Task Dataset (MDTB), which contains fMRI data of 26 tasks from 24 participants. Thirteen tasks of fMRI were selected as inputs, and the results showed that the pre-trained model succeeded in classifying 11 of the 13 tasks. When using the 7 brain networks as input, variations of the performance were observed, with the visual network performed as well as whole brain inputs, while the limbic network almost failed in all 13 tasks. Discussion Our results demonstrated the potential of self-supervised learning for fMRI analysis with small datasets and unpreprocessed data, and for analysis of the correlation between regional fMRI activity and cognitive tasks.
Collapse
Affiliation(s)
- Chenwei Shi
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanming Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Yueyang Wu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Shishuo Chen
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongjie Hu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Min Zhang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiaoxiao Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
8
|
Nose D, Inoue H, Imaki K, Saku K, Miura SI. Effects of a 14-week community health program of exercise and learning/education in older adults: A single-arm pre-post comparison study. Geriatr Nurs 2023; 51:1-8. [PMID: 36871326 DOI: 10.1016/j.gerinurse.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
This study was initiated in 2022 in Miyaki Town, Saga Prefecture, Japan, to determine the impact of an intervention that combined brain and physical function training and health education in older residents. Miyaki has a population of approximately 26,000, 35% of whom are considered to be aging. A 14-week program consisting of strength training, brain function training, and health lectures was conducted with 34 older residents of the community. Body composition, motor function, brain function, and various blood tests were evaluated before and after the intervention. Brain function was assessed using the Trail Making Test-A. Physical function was assessed by Open-Close Stepping, Functional Reach Test, Open-Leg Standing Time, and Two-Step Test. The intervention group showed significant improvements in brain function (p< 0.0001), physical function (p = 0.0037), body composition (p = 0.0053), and LDL-C (p = 0.017). This study provides substantial evidence that community-based combined programs can be beneficial for older adults.
Collapse
Affiliation(s)
- Daisuke Nose
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; Department of Cardiology, Fukuoka Heartnet Hospital, Fukuoka 819-0002, Japan.
| | - Hideki Inoue
- Health and Fitness Training Care Club, Medical Community Center, Miyaki, Saga 849-0111, Japan
| | - Kota Imaki
- Mizokami Pharmacy, Medical Community Center, Miyaki, Saga 849-0111, Japan
| | | | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan.
| |
Collapse
|
9
|
Smaczny S, Sperber C, Jung S, Moeller K, Karnath HO, Klein E. Disconnection in a left-hemispheric temporo-parietal network impairs multiplication fact retrieval. Neuroimage 2023; 268:119840. [PMID: 36621582 DOI: 10.1016/j.neuroimage.2022.119840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
Arithmetic fact retrieval has been suggested to recruit a left-lateralized network comprising perisylvian language areas, parietal areas such as the angular gyrus (AG), and non-neocortical structures such as the hippocampus. However, the underlying white matter connectivity of these areas has not been evaluated systematically so far. Using simple multiplication problems, we evaluated how disconnections in parietal brain areas affected arithmetic fact retrieval following stroke. We derived disconnectivity measures by jointly considering data from n = 73 patients with acute unilateral lesions in either hemisphere and a white-matter tractography atlas (HCP-842) using the Lesion Quantification Toolbox (LQT). Whole-brain voxel-based analysis indicated a left-hemispheric cluster of white matter fibers connecting the AG and superior temporal areas to be associated with a fact retrieval deficit. Subsequent analyses of direct gray-to-gray matter disconnections revealed that disconnections of additional left-hemispheric areas (e.g., between the superior temporal gyrus and parietal areas) were significantly associated with the observed fact retrieval deficit. Results imply that disconnections of parietal areas (i.e., the AG) with language-related areas (i.e., superior and middle temporal gyri) seem specifically detrimental to arithmetic fact retrieval. This suggests that arithmetic fact retrieval recruits a widespread left-hemispheric network and emphasizes the relevance of white matter connectivity for number processing.
Collapse
Affiliation(s)
- S Smaczny
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - C Sperber
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - S Jung
- Department of Computer Science/Therapy Science, Trier University of Applied Science, Trier, Germany; Leibniz Institut fuer Wissensmedien, Tuebingen, Germany
| | - K Moeller
- Leibniz Institut fuer Wissensmedien, Tuebingen, Germany; Centre for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt, Germany; Centre for Mathematical Cognition, School of Science, Loughborough University, United Kingdom
| | - H O Karnath
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany; Department of Psychology, University of South Carolina, Columbia, SC, USA.
| | - E Klein
- Leibniz Institut fuer Wissensmedien, Tuebingen, Germany; University of Paris, LaPsyDÉ, CNRS, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
10
|
Avcu E, Newman O, Ahlfors SP, Gow DW. Neural evidence suggests phonological acceptability judgments reflect similarity, not constraint evaluation. Cognition 2023; 230:105322. [PMID: 36370613 PMCID: PMC9712273 DOI: 10.1016/j.cognition.2022.105322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
Acceptability judgments are a primary source of evidence in formal linguistic research. Within the generative linguistic tradition, these judgments are attributed to evaluation of novel forms based on implicit knowledge of rules or constraints governing well-formedness. In the domain of phonological acceptability judgments, other factors including ease of articulation and similarity to known forms have been hypothesized to influence evaluation. We used data-driven neural techniques to identify the relative contributions of these factors. Granger causality analysis of magnetic resonance imaging (MRI)-constrained magnetoencephalography (MEG) and electroencephalography (EEG) data revealed patterns of interaction between brain regions that support explicit judgments of the phonological acceptability of spoken nonwords. Comparisons of data obtained with nonwords that varied in terms of onset consonant cluster attestation and acceptability revealed different cortical regions and effective connectivity patterns associated with phonological acceptability judgments. Attested forms produced stronger influences of brain regions implicated in lexical representation and sensorimotor simulation on acoustic-phonetic regions, whereas unattested forms produced stronger influence of phonological control mechanisms on acoustic-phonetic processing. Unacceptable forms produced widespread patterns of interaction consistent with attempted search or repair. Together, these results suggest that speakers' phonological acceptability judgments reflect lexical and sensorimotor factors.
Collapse
Affiliation(s)
- Enes Avcu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Olivia Newman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Seppo P Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America; Department of Radiology, Harvard Medical School, Boston, MA, United States of America
| | - David W Gow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America; Department of Psychology, Salem State University, Salem, MA, United States of America; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, United States of America
| |
Collapse
|
11
|
Pinheiro-Chagas P, Chen F, Sabetfakhri N, Perry C, Parvizi J. Direct intracranial recordings in the human angular gyrus during arithmetic processing. Brain Struct Funct 2023; 228:305-319. [PMID: 35907987 DOI: 10.1007/s00429-022-02540-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
The role of angular gyrus (AG) in arithmetic processing remains a subject of debate. In the present study, we recorded from the AG, supramarginal gyrus (SMG), intraparietal sulcus (IPS), and superior parietal lobule (SPL) across 467 sites in 30 subjects performing addition or multiplication with digits or number words. We measured the power of high-frequency-broadband (HFB) signal, a surrogate marker for regional cortical engagement, and used single-subject anatomical boundaries to define the location of each recording site. Our recordings revealed the lowest proportion of sites with activation or deactivation within the AG compared to other subregions of the inferior parietal cortex during arithmetic processing. The few activated AG sites were mostly located at the border zones between AG and IPS, or AG and SMG. Additionally, we found that AG sites were more deactivated in trials with fast compared to slow response times. The increase or decrease of HFB within specific AG sites was the same when arithmetic trials were presented with number words versus digits and during multiplication as well as addition trials. Based on our findings, we conclude that the prior neuroimaging findings of so-called activations in the AG during arithmetic processing could have been due to group-based analyses that might have blurred the individual anatomical boundaries of AG or the subtractive nature of the neuroimaging methods in which lesser deactivations compared to the control condition have been interpreted as "activations". Our findings offer a new perspective with electrophysiological data about the engagement of AG during arithmetic processing.
Collapse
Affiliation(s)
- Pedro Pinheiro-Chagas
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Science, Stanford University, Stanford, CA, 94305, USA
| | - Fengyixuan Chen
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Science, Stanford University, Stanford, CA, 94305, USA
| | - Niki Sabetfakhri
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Science, Stanford University, Stanford, CA, 94305, USA
| | - Claire Perry
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Science, Stanford University, Stanford, CA, 94305, USA
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Sokolowski HM, Matejko AA, Ansari D. The role of the angular gyrus in arithmetic processing: a literature review. Brain Struct Funct 2023; 228:293-304. [PMID: 36376522 DOI: 10.1007/s00429-022-02594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022]
Abstract
Since the pioneering work of the early 20th century neuropsychologists, the angular gyrus (AG), particularly in the left hemisphere, has been associated with numerical and mathematical processing. The association between the AG and numerical and mathematical processing has been substantiated by neuroimaging research. In the present review article, we will examine what is currently known about the role of the AG in numerical and mathematical processing with a particular focus on arithmetic. Specifically, we will examine the role of the AG in the retrieval of arithmetic facts in both typically developing children and adults. The review article will consider alternative accounts that posit that the involvement of the AG is not specific to arithmetic processing and will consider how numerical and mathematical processing and their association with the AG overlap with other neurocognitive processes. The review closes with a discussion of future directions to further characterize the relationship between the angular gyrus and arithmetic processing.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Rotman Research Institute, Baycrest Hospital, North York, ON, M6A 2E1, Canada.,Numerical Cognition Laboratory, Department of Psychology & Brain and Mind Institute, University of Western Ontario, London, ON, N6A 3K, Canada
| | - Anna A Matejko
- Department of Psychology, Durham University, Durham, DH1 3LE, UK
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology & Brain and Mind Institute, University of Western Ontario, London, ON, N6A 3K, Canada.
| |
Collapse
|
13
|
Göbel SM, Terry R, Klein E, Hymers M, Kaufmann L. Impaired Arithmetic Fact Retrieval in an Adult with Developmental Dyscalculia: Evidence from Behavioral and Functional Brain Imaging Data. Brain Sci 2022; 12:735. [PMID: 35741620 PMCID: PMC9221370 DOI: 10.3390/brainsci12060735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Developmental dyscalculia (DD) is a developmental disorder characterized by arithmetic difficulties. Recently, it has been suggested that the neural networks supporting procedure-based calculation (e.g., in subtraction) and left-hemispheric verbal arithmetic fact retrieval (e.g., in multiplication) are partially distinct. Here we compared the neurofunctional correlates of subtraction and multiplication in a 19-year-old student (RM) with DD to 18 age-matched controls. Behaviorally, RM performed significantly worse than controls in multiplication, while subtraction was unaffected. Neurofunctional differences were most pronounced regarding multiplication: RM showed significantly stronger activation than controls not only in left angular gyrus but also in a fronto-parietal network (including left intraparietal sulcus and inferior frontal gyrus) typically activated during procedure-based calculation. Region-of-interest analyses indicated group differences in multiplication only, which, however, did not survive correction for multiple comparisons. Our results are consistent with dissociable and processing-specific, but not operation-specific neurofunctional networks. Procedure-based calculation is not only associated with subtraction but also with (untrained) multiplication facts. Only after rote learning, facts can be retrieved quasi automatically from memory. We suggest that this learning process and the associated shift in activation patterns has not fully occurred in RM, as reflected in her need to resort to procedure-based strategies to solve multiplication facts.
Collapse
Affiliation(s)
- Silke M. Göbel
- Department of Psychology, University of York, York YO10 5DD, UK;
- Department of Special Needs Education, University of Oslo, 0371 Oslo, Norway
- York Neuroimaging Centre and York Biomedical Research Institute, University of York, York YO10 5DD, UK;
| | - Rebecca Terry
- Department of Psychology, University of York, York YO10 5DD, UK;
| | - Elise Klein
- LaPsyDÉ, CNRS, Université Paris Cité, 75005 Paris, France;
- Leibniz-Institut fuer Wissensmedien, 72076 Tuebingen, Germany
| | - Mark Hymers
- York Neuroimaging Centre and York Biomedical Research Institute, University of York, York YO10 5DD, UK;
| | - Liane Kaufmann
- Department of Psychology, University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
14
|
Grossberg S. Toward Understanding the Brain Dynamics of Music: Learning and Conscious Performance of Lyrics and Melodies With Variable Rhythms and Beats. Front Syst Neurosci 2022; 16:766239. [PMID: 35465193 PMCID: PMC9028030 DOI: 10.3389/fnsys.2022.766239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
A neural network architecture models how humans learn and consciously perform musical lyrics and melodies with variable rhythms and beats, using brain design principles and mechanisms that evolved earlier than human musical capabilities, and that have explained and predicted many kinds of psychological and neurobiological data. One principle is called factorization of order and rhythm: Working memories store sequential information in a rate-invariant and speaker-invariant way to avoid using excessive memory and to support learning of language, spatial, and motor skills. Stored invariant representations can be flexibly performed in a rate-dependent and speaker-dependent way under volitional control. A canonical working memory design stores linguistic, spatial, motoric, and musical sequences, including sequences with repeated words in lyrics, or repeated pitches in songs. Stored sequences of individual word chunks and pitch chunks are categorized through learning into lyrics chunks and pitches chunks. Pitches chunks respond selectively to stored sequences of individual pitch chunks that categorize harmonics of each pitch, thereby supporting tonal music. Bottom-up and top-down learning between working memory and chunking networks dynamically stabilizes the memory of learned music. Songs are learned by associatively linking sequences of lyrics and pitches chunks. Performance begins when list chunks read word chunk and pitch chunk sequences into working memory. Learning and performance of regular rhythms exploits cortical modulation of beats that are generated in the basal ganglia. Arbitrary performance rhythms are learned by adaptive timing circuits in the cerebellum interacting with prefrontal cortex and basal ganglia. The same network design that controls walking, running, and finger tapping also generates beats and the urge to move with a beat.
Collapse
Affiliation(s)
- Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, Department of Mathematics & Statistics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
15
|
Rossini PM, Miraglia F, Vecchio F, Di Iorio R, Iodice F, Cotelli M. General principles of brain electromagnetic rhythmic oscillations and implications for neuroplasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:221-237. [PMID: 35034737 DOI: 10.1016/b978-0-12-819410-2.00012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neuro-plasticity describes the ability of the brain in achieving novel functions, either by transforming its internal connectivity, or by changing the elements of which it is made, meaning that, only those changes, that affect both structural and functional aspects of the system, can be defined as "plastic." The concept of plasticity can be applied to molecular as well as to environmental events that can be recognized as the basic mechanism by which our brain reacts to the internal and external stimuli. When considering brain plasticity within a clinical context-that is the process linked with changes of brain functions following a lesion- the term "reorganization" is somewhat synonymous, referring to the specific types of structural/functional modifications observed as axonal sprouting, long-term synaptic potentiation/inhibition or to the plasticity related genomic responses. Furthermore, brain rewires during maturation, and aging thus maintaining a remarkable learning capacity, allowing it to acquire a wide range of skills, from motor actions to complex abstract reasoning, in a lifelong expression. In this review, the contribution on the "neuroplasticity" topic coming from advanced analysis of EEG rhythms is put forward.
Collapse
Affiliation(s)
- Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience & Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy.
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience & Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience & Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Technical and Applied Sciences, eCampus University, Novedrate (Como), Italy
| | | | - Francesco Iodice
- Brain Connectivity Laboratory, Department of Neuroscience & Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
16
|
Ashkenazi S, Gliksman Y, Henik A. Understanding Estimations of Magnitudes: An fMRI Investigation. Brain Sci 2022; 12:brainsci12010104. [PMID: 35053847 PMCID: PMC8774251 DOI: 10.3390/brainsci12010104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The current study examined whether discrete numerical estimation is based on the same cognitive process as estimation of continuous magnitudes such as weight and time. While the verbal estimation of numerical quantities has a contingent unit of measurement (e.g., how many cookies fit in a cookie jar? _X_ cookies), estimation of time and weight does not (e.g., how much time does it take to fill a bath with water? _X_ minutes/hours/seconds). Therefore, estimation of the latter categories has another level of difficulty, requiring extensive involvement of cognitive control. During a functional magnetic resonance imaging (fMRI) scan, 18 students performed estimations with three estimation categories: number, time, and weight. Estimations elicited activity in multiple brain regions, mainly: (1) visual regions including bilateral lingual gyrus), (2) parietal regions including the left angular gyrus and right supramarginal gyrus, and (3) the frontal regions (cingulate gyrus and the inferior frontal cortex). Continuous magnitude estimations (mostly time) produced different frontal activity than discrete numerical estimations did, demonstrating different profiles of brain activations between discrete numerical estimations and estimations of continuous magnitudes. The activity level in the right middle and inferior frontal gyrus correlated with the tendency to give extreme responses, signifying the importance of the right prefrontal lobe in estimations.
Collapse
Affiliation(s)
- Sarit Ashkenazi
- The Seymour Fox School of Education, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence:
| | - Yarden Gliksman
- Department of Behavioral Sciences, Ruppin Academic Center, Emek Hefer 40250, Israel;
| | - Avishai Henik
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| |
Collapse
|
17
|
Abstract
Background. Contemporary neuroimaging techniques, particularly fMRI and PET, have demonstrated that cognitive abilities do not strictly depend on specific brain areas, but rather on complex brain circuits or systems.Methods. Using PubMed and Google Scholar databases, a search for functional studies (fMRI and PET) during the performance of several neuropsychological tests was done. The pattern of brain activity found during the solution of some executive functions, language, memory, calculation, and visuospatial/visuoconstructive abilities is reviewed.Results. Brain activity supporting the performance in these tests is usually quite extended, and involves not only those brain areas traditionally assumed in neuropsychology, but also other cortical and sometimes subcortical regions.Conclusions. Most neuropsychological tests are simultaneously evaluating different cognitive abilities associated with the activity of diverse brain areas. "Cognitive/anatomical" correlations could only be established for some relatively simple functions. This change in the understanding about the brain organization of cognition has not been reflected in the interpretation of the neuropsychological tests yet. The interpretation of neuropsychological tests should be based not only in clinical observations but also in functional studies. This is a necessary further step in clinical neuropsychology.
Collapse
Affiliation(s)
- Alfredo Ardila
- Institute of Linguistics and Intercultural Communication, Sechenov University, Moscow, Russia
- Doctoral Program, Albizu University, Miami, FL, USA
| | - Feggy Ostrosky
- Department of Psychology, National Autonomous University of Mexico, Mexico, Mexico
| |
Collapse
|
18
|
Suárez-Pellicioni M, Demir-Lira ÖE, Booth JR. Neurocognitive mechanisms explaining the role of math attitudes in predicting children's improvement in multiplication skill. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:917-935. [PMID: 33954927 PMCID: PMC8455431 DOI: 10.3758/s13415-021-00906-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 11/08/2022]
Abstract
Enhancing student's math achievement is a significant educational challenge. Numerous studies have shown that math attitudes can predict improvement in math performance, but no study has yet revealed the underlying neurocognitive mechanisms explaining this effect. To answer this question, 50 children underwent functional magnetic resonance imaging (fMRI) when they were 11 (time 1; T1) and 13 (time 2; T2) years old. Children solved a rhyming judgment and a single-digit multiplication task inside the scanner at T1. The rhyming task was used to independently define a verbal region of interest in the left inferior frontal gyrus (IFG). We focused on this region because of previous evidence showing math attitudes-related effects in the left IFG for children with low math skill (Demir-Lira et al., 2019). Children completed standardized testing of math attitudes at T1 and of multiplication skill both at T1 and T2. We performed a cluster-wise regression analysis to investigate the interaction between math attitudes and improvement in multiplication skill over time while controlling for the main effects of these variables, intelligence, and accuracy on the task. This analysis revealed a significant interaction in the left IFG, which was due to improvers with positive math attitudes showing enhanced activation. Our result suggests that IFG activation, possibly reflecting effort invested in retrieving multiplication facts, is one of the possible neurocognitive mechanism by which children with positive math attitudes improve in multiplication skill. Our finding suggests that teachers and parents can help children do better in math by promoting positive math attitudes.
Collapse
Affiliation(s)
- Macarena Suárez-Pellicioni
- Department of Educational Studies in Psychology, Research Methodology, and Counseling, University of Alabama, 270 Kilgore Ln, Tuscaloosa, AL, USA.
| | - Ö Ece Demir-Lira
- Department of Psychological and Brain Sciences, DeLTA Center, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
19
|
Cervantes-Henriquez ML, Acosta-López JE, Ahmad M, Sánchez-Rojas M, Jiménez-Figueroa G, Pineda-Alhucema W, Martinez-Banfi ML, Noguera-Machacón LM, Mejía-Segura E, De La Hoz M, Arcos-Holzinger M, Pineda DA, Puentes-Rozo PJ, Arcos-Burgos M, Vélez JI. ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD. Brain Sci 2021; 11:854. [PMID: 34206913 PMCID: PMC8301925 DOI: 10.3390/brainsci11070854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a highly heritable neurobehavioral disorder that affects children worldwide, with detrimental long-term consequences in affected individuals. ADHD-affected patients display visual-motor and visuospatial abilities and skills that depart from those exhibited by non-affected individuals and struggle with perceptual organization, which might partially explain impulsive responses. Endophenotypes (quantifiable or dimensional constructs that are closely related to the root cause of the disease) might provide a more powerful and objective framework for dissecting the underlying neurobiology of ADHD than that of categories offered by the syndromic classification. In here, we explore the potential presence of the linkage and association of single-nucleotide polymorphisms (SNPs), harbored in genes implicated in the etiology of ADHD (ADGRL3, DRD4, and FGF1), with cognitive endophenotypes related to working memory and perceptual organization in 113 nuclear families. These families were ascertained from a geographical area of the Caribbean coast, in the north of Colombia, where the community is characterized by its ethnic diversity and differential gene pool. We found a significant association and linkage of markers ADGRL3-rs1565902, DRD4-rs916457 and FGF1-rs2282794 to neuropsychological tasks outlining working memory and perceptual organization such as performance in the digits forward and backward, arithmetic, similarities, the completion of figures and the assembly of objects. Our results provide strong support to understand ADHD as a combination of working memory and perceptual organization deficits and highlight the importance of the genetic background shaping the neurobiology, clinical complexity, and physiopathology of ADHD. Further, this study supplements new information regarding an ethnically diverse community with a vast African American contribution, where ADHD studies are scarce.
Collapse
Affiliation(s)
- Martha L. Cervantes-Henriquez
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
- Universidad del Norte, Barranquilla 081007, Colombia
| | - Johan E. Acosta-López
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Mostapha Ahmad
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Manuel Sánchez-Rojas
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Giomar Jiménez-Figueroa
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Wilmar Pineda-Alhucema
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Martha L. Martinez-Banfi
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Luz M. Noguera-Machacón
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Elsy Mejía-Segura
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Moisés De La Hoz
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Mauricio Arcos-Holzinger
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Mxdicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia; (M.A.-H.); (M.A.-B.)
| | - David A. Pineda
- Grupo de Neuropsicología y Conducta, Universidad de San Buenaventura, Medellín 050010, Colombia;
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 081001, Colombia;
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Mxdicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia; (M.A.-H.); (M.A.-B.)
| | | |
Collapse
|
20
|
Deng X, Liu Z, Kang Q, Lu L, Zhu Y, Xu R. Cortical Structural Connectivity Alterations and Potential Pathogenesis in Mid-Stage Sporadic Parkinson's Disease. Front Aging Neurosci 2021; 13:650371. [PMID: 34135748 PMCID: PMC8200851 DOI: 10.3389/fnagi.2021.650371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Many clinical symptoms of sporadic Parkinson's disease (sPD) cannot be completely explained by a lesion of the simple typical extrapyramidal circuit between the striatum and substantia nigra. Therefore, this study aimed to explore the new potential damaged pathogenesis of other brain regions associated with the multiple and complex clinical symptoms of sPD through magnetic resonance imaging (MRI). A total of 65 patients with mid-stage sPD and 35 healthy controls were recruited in this study. Cortical structural connectivity was assessed by seed-based analysis using the vertex-based morphology of MRI. Seven different clusters in the brain regions of cortical thickness thinning derived from the regression analysis using brain size as covariates between sPD and control were selected as seeds. Results showed that the significant alteration of cortical structural connectivity mainly occurred in the bilateral frontal orbital, opercular, triangular, precentral, rectus, supplementary-motor, temporal pole, angular, Heschl, parietal, supramarginal, postcentral, precuneus, occipital, lingual, cuneus, Rolandic-opercular, cingulum, parahippocampal, calcarine, olfactory, insula, paracentral-lobule, and fusiform regions at the mid-stage of sPD. These findings suggested that the extensive alteration of cortical structural connectivity is one of possible pathogenesis resulting in the multiple and complex clinical symptoms in sPD.
Collapse
Affiliation(s)
- Xia Deng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qin Kang
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The Affiliated People’s Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Can the interference effect in multiplication fact retrieval be modulated by an arithmetic training? An fMRI study. Neuropsychologia 2021; 157:107849. [PMID: 33857529 DOI: 10.1016/j.neuropsychologia.2021.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/27/2021] [Accepted: 03/27/2021] [Indexed: 11/20/2022]
Abstract
Single-digit multiplications are thought to be associated with different levels of interference because they show different degrees of feature overlap (i.e., digits) with previously learnt problems. Recent behavioral and neuroimaging studies provided evidence for this interference effect and showed that individual differences in arithmetic fact retrieval are related to differences in sensitivity to interference (STI). The present study investigated whether and to what extent competence-related differences in STI and its neurophysiological correlates can be modulated by a multiplication facts training. Participants were 23 adults with high and 23 adults with low arithmetic competencies who underwent a five-day multiplication facts training in which they intensively practiced sets of low- and high-interfering multiplication problems. In a functional magnetic resonance imaging (fMRI) test session after the training, participants worked on a multiplication verification task that comprised trained and untrained problems. Analyses of the behavioral data revealed an interference effect only in the low competence group, which could be reduced but not resolved by training. On the neural level, competence-related differences in the interference effect were observed in the left supramarginal gyrus (SMG), showing activation differences between low- and high-interfering problems only in the low competent group. These findings support the idea that individuals' low arithmetic skills are related to the development of insufficient memory representations because of STI. Further, our results indicate that a short training by drill (i.e., learning associations between operands and solutions) was not fully effective to resolve existing interference effects in arithmetic fact knowledge.
Collapse
|
22
|
Benitez-Andonegui A, Lührs M, Nagels-Coune L, Ivanov D, Goebel R, Sorger B. Guiding functional near-infrared spectroscopy optode-layout design using individual (f)MRI data: effects on signal strength. NEUROPHOTONICS 2021; 8:025012. [PMID: 34155480 PMCID: PMC8211086 DOI: 10.1117/1.nph.8.2.025012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/11/2021] [Indexed: 05/20/2023]
Abstract
Significance: Designing optode layouts is an essential step for functional near-infrared spectroscopy (fNIRS) experiments as the quality of the measured signal and the sensitivity to cortical regions-of-interest depend on how optodes are arranged on the scalp. This becomes particularly relevant for fNIRS-based brain-computer interfaces (BCIs), where developing robust systems with few optodes is crucial for clinical applications. Aim: Available resources often dictate the approach researchers use for optode-layout design. We investigated whether guiding optode layout design using different amounts of subject-specific magnetic resonance imaging (MRI) data affects the fNIRS signal quality and sensitivity to brain activation when healthy participants perform mental-imagery tasks typically used in fNIRS-BCI experiments. Approach: We compared four approaches that incrementally incorporated subject-specific MRI information while participants performed mental-calculation, mental-rotation, and inner-speech tasks. The literature-based approach (LIT) used a literature review to guide the optode layout design. The probabilistic approach (PROB) employed individual anatomical data and probabilistic maps of functional MRI (fMRI)-activation from an independent dataset. The individual fMRI (iFMRI) approach used individual anatomical and fMRI data, and the fourth approach used individual anatomical, functional, and vascular information of the same subject (fVASC). Results: The four approaches resulted in different optode layouts and the more informed approaches outperformed the minimally informed approach (LIT) in terms of signal quality and sensitivity. Further, PROB, iFMRI, and fVASC approaches resulted in a similar outcome. Conclusions: We conclude that additional individual MRI data lead to a better outcome, but that not all the modalities tested here are required to achieve a robust setup. Finally, we give preliminary advice to efficiently using resources for developing robust optode layouts for BCI and neurofeedback applications.
Collapse
Affiliation(s)
- Amaia Benitez-Andonegui
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
- Maastricht University, Laboratory for Cognitive Robotics and Complex Self-Organizing Systems, Department of Data Science and Knowledge Engineering, Maastricht, The Netherlands
| | - Michael Lührs
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - Laurien Nagels-Coune
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
| | - Dimo Ivanov
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
| | - Rainer Goebel
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
- Brain Innovation B.V., Research Department, Maastricht, The Netherlands
| | - Bettina Sorger
- Maastricht University, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
23
|
Variance-dependent neural activity in an unvoluntary averaging task. Atten Percept Psychophys 2021; 83:1094-1105. [PMID: 33506351 DOI: 10.3758/s13414-020-02223-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 11/08/2022]
Abstract
Ensemble statistics of a visual scene can be estimated to provide a gist of the scene without detailed analysis of all individual items. The simplest and most widely studied ensemble statistic is mean estimation, which requires averaging an ensemble of elements. Averaging is useful to estimate the mean of an ensemble and discard the variance. The source of variance can be external (i.e., variance across the physical elements) or internal (i.e., imprecisions in the estimates of the elements by the visual system). The equivalent noise paradigm is often used to measure the impact of the internal variance (i.e., the equivalent input noise). This paradigm relies on the assumption that the averaging process is equally effective independently of the main source of variance, internal or external, so any difference between the processing when the main source of variance is internal or external must be assumed not to affect the averaging efficiency. The current fMRI study compared the neural activity when the main variance is caused by the stimulus (i.e., high variance) and when it is caused by imprecisions in the estimates of the elements by the visual system (i.e., low variance). The results showed that the right superior frontal and left middle frontal gyri can be significantly more activated when the variance in the orientation of the Gabors was high than when it was low. Consequently, the use of the equivalent noise paradigm requires the assumption that such additional neural activity in high variance does not affect the averaging efficiency.
Collapse
|
24
|
Salillas E, Piccione F, di Tomasso S, Zago S, Arcara G, Semenza C. Neurofunctional Components of Simple Calculation: A Magnetoencephalography Study. Cereb Cortex 2021; 31:1149-1162. [PMID: 33099605 DOI: 10.1093/cercor/bhaa283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 01/03/2023] Open
Abstract
Our ability to calculate implies more than the sole retrieval of the correct solution. Essential processes for simple calculation are related to the spreading of activation through arithmetic memory networks. There is behavioral and electrophysiological evidence for these mechanisms. Their brain location is, however, still uncertain. Here, we measured magnetoencephalographic brain activity during the verification of simple multiplication problems. Following the operands, the solutions to verify could be preactivated correct solutions, preactivated table-related incorrect solutions, or unrelated incorrect solutions. Brain source estimation, based on these event-related fields, revealed 3 main brain networks involved in simple calculation: 1) bilateral inferior frontal areas mainly activated in response to correct, matching solutions; 2) a left-lateralized frontoparietal network activated in response to incorrect table-related solutions; and (3) a strikingly similar frontoparietal network in the opposite hemisphere activated in response to unrelated solutions. Directional functional connectivity analyses revealed a bidirectional causal loop between left parietal and frontal areas for table-related solutions, with frontal areas explaining the resolution of arithmetic competition behaviorally. Hence, this study isolated at least 3 neurofunctional networks orchestrated between hemispheres during calculation.
Collapse
Affiliation(s)
- Elena Salillas
- Department of Neurosciences, University of Padova, 35128 Padova, Italy
| | | | | | - Sara Zago
- IRCCS San Camillo Hospital, 30126 Venice, Italy
| | | | - Carlo Semenza
- Department of Neurosciences, University of Padova, 35128 Padova, Italy.,IRCCS San Camillo Hospital, 30126 Venice, Italy
| |
Collapse
|
25
|
Rączy K, Czarnecka M, Paplińska M, Hesselmann G, Knops A, Szwed M. Tactile to visual number priming in the left intraparietal cortex of sighted Braille readers. Sci Rep 2020; 10:17571. [PMID: 33067492 PMCID: PMC7567860 DOI: 10.1038/s41598-020-72431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/16/2020] [Indexed: 11/13/2022] Open
Abstract
Numbers can be presented in different notations and sensory modalities. It is currently debated to what extent these formats overlap onto a single representation. We asked whether such an overlap exists between symbolic numbers represented in two sensory modalities: Arabic digits and Braille numbers. A unique group of sighted Braille readers underwent extensive Braille reading training and was tested in an fMRI repetition-suppression paradigm with tactile Braille digit primes and visual Arabic digit targets. Our results reveal cross-modal priming: compared to repetition of two different quantities (e.g., Braille “5” and Arabic “2”), repetition of the same quantity presented in two modalities (e.g., Braille “5” and Arabic “5”) led to a reduction of activation in several sub-regions of the Intraparietal Sulcus (IPS), a key cortical region for magnitude processing. Thus, in sighted Braille readers, the representations of numbers read by sight and by touch overlap to a degree sufficient to cause repetition suppression. This effect was modulated by the numerical prime-probe distance. Altogether this indicates that the left parietal cortex hosts neural assemblies that are sensitive to numerical information from different notations (number words or Arabic digits) and modalities (tactile and visual).
Collapse
Affiliation(s)
- Katarzyna Rączy
- Department of Psychology, Jagiellonian University, Krakow, Poland.
| | - Maria Czarnecka
- Department of Psychology, Jagiellonian University, Krakow, Poland
| | | | - Guido Hesselmann
- Department of General and Biological Psychology, Psychologische Hochschule Berlin, Berlin, Germany
| | - André Knops
- LaPsyDÉ, UMR CNRS 8240, Université de Paris, Paris, France
| | - Marcin Szwed
- Department of Psychology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
26
|
Context-dependency in the Cognitive Bias Task and Resting-state Functional Connectivity of the Dorsolateral Prefrontal Cortex. J Int Neuropsychol Soc 2020; 26:749-762. [PMID: 32342829 DOI: 10.1017/s1355617720000302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Goldberg, the author of the "novelty-routinization" framework, suggested a new pair of cognitive styles for agent-centered decision-making (DM), context-dependency/independency (CD/CI), quantified by the Cognitive Bias Task (CBT) and supposedly reflecting functional brain hemispheric specialization. To date, there are only three lesion and activation neuroimaging studies on the CBT with the largest sample of 12 participants. The present study is the first to analyze whole-brain functional connectivity (FC) of the dorsolateral prefrontal cortex (DLPFC), involved in contextual agent-centered DM. METHOD We compared whole-brain resting-state FC of the DLPFC between CD (n = 24) and CI (n = 22) healthy participants. Additionally, we investigated associations between CD/CI and different aspects of executive functions. RESULTS CD participants had stronger positive FC of the DLPFC with motor and visual regions; FC of the left DLPFC was more extensive. CI participants had stronger positive FC of the left DLPFC with right prefrontal and parietal-occipital areas and of the left and right DLPFC with ipsilateral cerebellar hemispheres. No sex differences were found. CD/CI had nonlinear associations with working memory. CONCLUSIONS The findings suggest that CD and CI are associated with different patterns of DLPFC FC. While CD is associated with FC between DLPFC and areas presumably involved in storing representations of current situation, CI is more likely to be associated with FC between DLPFC and right-lateralized associative regions, probably involved in the inhibition of the CD response and switching from processing of incoming perceptual information to creation of original response strategies.
Collapse
|
27
|
Suárez-Pellicioni M, Berteletti I, Booth JR. Early Engagement of Parietal Cortex for Subtraction Solving Predicts Longitudinal Gains in Behavioral Fluency in Children. Front Hum Neurosci 2020; 14:163. [PMID: 32528262 PMCID: PMC7264824 DOI: 10.3389/fnhum.2020.00163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
There is debate in the literature regarding how single-digit arithmetic fluency is achieved over development. While the Fact-retrieval hypothesis suggests that with practice, children shift from quantity-based procedures to verbally retrieving arithmetic problems from long-term memory, the Schema-based hypothesis claims that problems are solved through quantity-based procedures and that practice leads to these procedures becoming more automatic. To test these hypotheses, a sample of 46 typically developing children underwent functional magnetic resonance imaging (fMRI) when they were 11 years old (time 1), and 2 years later (time 2). We independently defined regions of interest (ROIs) involved in verbal and quantity processing using rhyming and numerosity judgment localizer tasks, respectively. The verbal ROIs consisted of left middle/superior temporal gyri (MTG/STG) and left inferior frontal gyrus (IFG), whereas the quantity ROIs consisted of bilateral inferior/superior parietal lobules (IPL/SPL) and bilateral middle frontal gyri (MFG)/right IFG. Participants also solved a single-digit subtraction task in the scanner. We defined the extent to which children relied on verbal vs. quantity mechanisms by selecting the 100 voxels showing maximal activation at time 1 from each ROI, separately for small and large subtractions. We studied the brain mechanisms at time 1 that predicted gains in subtraction fluency and how these mechanisms changed over time with improvement. When looking at brain activation at time 1, we found that improvers showed a larger neural problem size effect in bilateral parietal cortex, whereas no effects were found in verbal regions. Results also revealed that children who showed improvement in behavioral fluency for large subtraction problems showed decreased activation over time for large subtractions in both parietal and frontal regions implicated in quantity, whereas non-improvers maintained similar levels of activation. All children, regardless of improvement, showed decreased activation over time for large subtraction problems in verbal regions. The greater parietal problem size effect at time 1 and the reduction in activation over time for the improvers in parietal and frontal regions implicated in quantity processing is consistent with the Schema-based hypothesis arguing for more automatic procedures with increasing skill. The lack of a problem size effect at time 1 and the overall decrease in verbal regions, regardless of improvement, is inconsistent with the Fact-retrieval hypothesis.
Collapse
Affiliation(s)
- Macarena Suárez-Pellicioni
- Department of Educational Studies in Psychology, Research Methodology, and Counseling, The University of Alabama, Tuscaloosa, AL, United States
| | - Ilaria Berteletti
- Educational Neuroscience Program, Gallaudet University, Washington, DC, United States
| | - James R. Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
28
|
Arora A, Pletzer B, Aichhorn M, Perner J. What's in a Hub?-Representing Identity in Language and Mathematics. Neuroscience 2020; 432:104-114. [PMID: 32112913 PMCID: PMC7100012 DOI: 10.1016/j.neuroscience.2020.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 11/17/2022]
Abstract
Hubs emerge in structural and resting state network analysis as areas highly connected to other parts of the brain and have been shown to respond to several task domains in functional imaging studies. A cognitive explanation for this multi-functionality is still wanting. We propose, that hubs subserve domain-general meta-cognitive functions, relevant to a variety of domain-specific networks and test this hypothesis for the example of processing explicit identity information. To isolate this meta-cognitive function from the processing of domain-specific context, we investigate the overlapping activations to linguistic identity processes (e.g. Mr. Dietrich is the dentist) on the one hand and numerical identity processes (e.g. do "3 × 8" and "36-12" give the same number) on the other hand. The main question was, whether these overlapping activations would fall within areas, consistently identified as hubs by network-based analyses. Indeed, the two contrasts showed significant conjunctions in the left inferior parietal lobe (IPL), precuneus (PC), and posterior cingulate. Accordingly, identity processing may well be one domain-general meta-cognitive function that hub-areas provide to domain-specific networks. For the parietal lobe we back up our hypothesis further with existing reports of activation peaks for other tasks that depend on identity processing, e.g., episodic recollection, theory of mind, and visual perspective taking.
Collapse
Affiliation(s)
- Aditi Arora
- Centre for Cognitive Neuroscience, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
| | - Belinda Pletzer
- Centre for Cognitive Neuroscience, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
| | - Markus Aichhorn
- Centre for Cognitive Neuroscience, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
| | - Josef Perner
- Centre for Cognitive Neuroscience, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
29
|
Belkacem AN, Kiso K, Uokawa E, Goto T, Yorifuji S, Hirata M. Neural Processing Mechanism of Mental Calculation Based on Cerebral Oscillatory Changes: A Comparison Between Abacus Experts and Novices. Front Hum Neurosci 2020; 14:137. [PMID: 32351373 PMCID: PMC7176303 DOI: 10.3389/fnhum.2020.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/23/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Abacus experts could mentally calculate fast some mathematical operations using multi-digit numbers. The temporal dynamics of abacus mental calculation are still unknown although some behavioral and neuroimaging studies have suggested a visuospatial and visuomotor neural process during abacus mental calculation. Therefore, this contribution aims to clarify the significant similarities and the differences between experts and novices by investigating calculation-induced neuromagnetic responses based on cerebral oscillatory changes. Methods: Twelve to 13 healthy abacus experts and 17 non-experts participated in two experimental paradigms using non-invasive neuromagnetic measurements. In experiments 1 and 2, the spatial distribution of oscillatory changes presented mental calculations and temporal frequency profiles during addition while examining multiplication tasks. The MEG data were analyzed using synthetic aperture magnetometry (SAM) with an adaptive beamformer to calculate the group average of the spatial distribution of oscillatory changes and their temporal frequency profiles in source-level analyses. Results: Using a group average of the spatial distribution of oscillatory changes, we observed some common brain activities in both right-handed abacus experts and non-experts. In non-experts, we detected the right dorsolateral prefrontal cortex (DLPFC) and bilateral Intraparietal sulcus (IPS); whereas in experts, detected the bilateral parieto-occipital sulcus (POS), right inferior frontal gyrus (IFG), and left sensorimotor areas mainly. Based on the findings generated, we could propose calculation processing models for both abacus experts and non- experts conveniently. Conclusion: The proposed model of calculation processing in abacus experts and novices revealed that the novices could calculate logically depending on numerical processing in the left IPS. In contrast, abacus experts are utilizing spatial processing using a memorized imaginary abacus, which distributed over the bilateral hemispheres in the IFG and sensorimotor areas.
Collapse
Affiliation(s)
- Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kanako Kiso
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Etsuko Uokawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsu Goto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shiro Yorifuji
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan.,Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka University, Suita, Japan
| |
Collapse
|
30
|
Functional connectivity of the dorsolateral prefrontal cortex contributes to different components of executive functions. Int J Psychophysiol 2020; 151:70-79. [PMID: 32109499 DOI: 10.1016/j.ijpsycho.2020.02.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/28/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The dorsolateral prefrontal cortex (DLPFC) orchestrates other brain regions and plays a vital role for "the most uniquely human" executive functions (EFs), which are divided into distinct components. Components of EFs have been localized to different brain regions and at the same time the DLPFC was found to be involved in a majority of EF components. The possible mechanism of the DLPFC's contribution to EF components might be found in DLPFC functional connectivity (FC): this FC of the DLPFC with other brain regions contributes to different EF components. METHOD To explore the DLPFC FC contribution to different EFs, we used an integrative approach involving analysis of fMRI and neuropsychological assessment of EFs. Fifty healthy adults (27 females and 23 males, mean age 34.5 ± 16.6 years) underwent neuropsychological assessment of EFs as well as task-based and resting-state fMRI. Task-based fMRI was applied as a functional localizer for individually defined DLPFC ROIs that were further used for the FC seed-based correlation analysis of the resting-state data. Then we looked for associations between individual scores of different EF components and the whole-brain resting-state FC of the DLPFC. RESULTS Resting-state correlates of DLPFC FC were revealed for three out of the seven EF components derived from an extensive neuropsychological assessment: inhibition, switching, and the verbal EF component. CONCLUSIONS Our study is the first to reveal the contribution of the DLPFC FC to several distinct EF components. The obtained results give insight into the brain mechanisms of EFs.
Collapse
|
31
|
Artemenko C, Sitnikova MA, Soltanlou M, Dresler T, Nuerk HC. Functional lateralization of arithmetic processing in the intraparietal sulcus is associated with handedness. Sci Rep 2020; 10:1775. [PMID: 32020021 PMCID: PMC7000739 DOI: 10.1038/s41598-020-58477-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
Functional lateralization is established for various cognitive functions, but was hardly ever investigated for arithmetic processing. Most neurocognitive models assume a central role of the bilateral intraparietal sulcus (IPS) in arithmetic processing and there is some evidence for more pronounced left-hemispheric activation for symbolic arithmetic. However, evidence was mainly obtained by studies in right-handers. Therefore, we conducted a functional near-infrared spectroscopy (fNIRS) study, in which IPS activation of left-handed adults was compared to right-handed adults in a symbolic approximate calculation task. The results showed that left-handers had a stronger functional right-lateralization in the IPS than right-handers. This finding has important consequences, as the bilateral IPS activation pattern for arithmetic processing seems to be shaped by functional lateralization and thus differs between left- and right-handers. We propose three possible accounts for the observed functional lateralization of arithmetic processing.
Collapse
Affiliation(s)
- Christina Artemenko
- Department of Psychology, University of Tuebingen, Tuebingen, Germany.
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany.
| | - Maria A Sitnikova
- Department of Psychology, Pedagogical Institute, Belgorod National Research University, Belgorod, Russia
- Research and Project Centre for Cognitive Neuroscience and Neurotechnologies, Belgorod National Research University, Belgorod, Russia
| | - Mojtaba Soltanlou
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
| | - Thomas Dresler
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
- Research and Project Centre for Cognitive Neuroscience and Neurotechnologies, Belgorod National Research University, Belgorod, Russia
| |
Collapse
|
32
|
Polspoel B, Vandermosten M, De Smedt B. The association of grey matter volume and cortical complexity with individual differences in children's arithmetic fluency. Neuropsychologia 2019; 137:107293. [PMID: 31809780 DOI: 10.1016/j.neuropsychologia.2019.107293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/01/2019] [Accepted: 12/01/2019] [Indexed: 11/15/2022]
Abstract
Only a small amount of studies have looked at the structural neural correlates of children's arithmetic. Furthermore, these studies mainly implemented voxel-based morphometry, which only takes the volume of regions into account, without looking at other structural properties. The current study aimed to contribute knowledge on which brain regions are important for children's arithmetic on a structural level, by not only implementing voxel-based morphometry, but also cortical complexity analyses, based on the fractal dimension index. This complexity measure describes a characteristic of surface shape. Data of 43 typically developing 9-10 year-olds were analyzed. All children were asked to take part in two test sessions: behavioral data collection and MRI data acquisition. For data analysis, mean values for volume and cortical complexity were estimated within regions of interest (ROIs) and extracted for further analysis. The selected ROIs were based on regions found to be related to children's mathematical abilities in previous research. Results point towards associations between arithmetic fluency and the volume of the right fusiform gyrus, as well as the cortical complexity of the left postcentral gyrus, right insular sulcus, and left lateral orbital sulcus. Remarkably, no significant associations were observed between the children's arithmetic fluency and the volume or cortical complexity of typically arithmetic-associated parietal regions, such as the superior parietal lobe, intraparietal sulcus, or angular gyrus. Accordingly, the current study highlights the importance of structural characteristics of brain regions other than these typically arithmetic-associated parietal regions for children's arithmetic fluency.
Collapse
Affiliation(s)
- Brecht Polspoel
- Parenting and Special Education Research Unit, KU Leuven, Belgium
| | | | - Bert De Smedt
- Parenting and Special Education Research Unit, KU Leuven, Belgium.
| |
Collapse
|
33
|
Suárez-Pellicioni M, Fuchs L, Booth JR. Temporo-frontal activation during phonological processing predicts gains in arithmetic facts in young children. Dev Cogn Neurosci 2019; 40:100735. [PMID: 31785530 PMCID: PMC6974907 DOI: 10.1016/j.dcn.2019.100735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/15/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022] Open
Abstract
Behavioral studies have shown discrepant results regarding the role of phonology in predicting math gains. The objective of this study was to use fMRI to study the role of activation during a rhyming judgment task in predicting behavioral gains on math fluency, multiplication, and subtraction skill. We focused within the left middle/superior temporal gyrus and left inferior frontal gyrus, brain areas associated with the storage of phonological representations and with their access, respectively. We ran multiple regression analyses to determine whether activation predicted gains in the three math measures, separately for younger (i.e. 10 years old) and older (i.e 12 years old) children. Results showed that activation in both temporal and frontal cortex only predicted gains in fluency and multiplication skill, and only for younger children. This study suggests that both temporal and frontal cortex activation during phonological processing are important in predicting gains in math tasks that involve the retrieval of facts that are stored as phonological codes in memory. Moreover, these results were specific to younger children, suggesting that phonology is most important in the early stages of math development. When the math task involved subtractions, which relies on quantity representations, phonological processes were not important in driving gains.
Collapse
Affiliation(s)
| | - Lynn Fuchs
- Department of Special Education, Vanderbilt University, Nashville, TN, USA
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
34
|
Digma LA, Madsen JR, Reas ET, Dale AM, Brewer JB, Banks SJ. Tau and atrophy: domain-specific relationships with cognition. Alzheimers Res Ther 2019; 11:65. [PMID: 31351484 PMCID: PMC6661099 DOI: 10.1186/s13195-019-0518-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/08/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Late-onset Alzheimer's disease (AD) is characterized by primary memory impairment, which then progresses towards severe deficits across cognitive domains. Here, we report how performance in cognitive domains relates to patterns of tau deposition and cortical thickness. METHODS We analyzed data from 131 amyloid-β positive participants (55 cognitively normal, 46 mild cognitive impairment, 30 AD) of the Alzheimer's Disease Neuroimaging Initiative who underwent magnetic resonance imaging (MRI), flortaucipir (FTP) positron emission tomography, and neuropsychological testing. Surface-based vertex-wise and region-of-interest analyses were conducted between FTP and cognitive test scores, and between cortical thickness and cognitive test scores. RESULTS FTP and thickness were differentially related to cognitive performance in several domains. FTP-cognition associations were more widespread than thickness-cognition associations. Further, FTP-cognition patterns reflected cortical systems that underlie different aspects of cognition. CONCLUSIONS Our findings indicate that AD-related decline in domain-specific cognitive performance reflects underlying progression of tau and atrophy into associated brain circuits. They also suggest that tau-PET may have better sensitivity to this decline than MRI-derived measures of cortical thickness.
Collapse
Affiliation(s)
- Leonardino A. Digma
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - John R. Madsen
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Emilie T. Reas
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Anders M. Dale
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
- Center for Molecular Imaging and Genetics, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093 USA
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - James B. Brewer
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Sarah J. Banks
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
- Center for Molecular Imaging and Genetics, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093 USA
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
35
|
Matejko AA, Ansari D. The neural association between arithmetic and basic numerical processing depends on arithmetic problem size and not chronological age. Dev Cogn Neurosci 2019; 37:100653. [PMID: 31102959 PMCID: PMC6969316 DOI: 10.1016/j.dcn.2019.100653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 11/30/2022] Open
Abstract
The intraparietal sulcus (IPS) is thought to be an important region for basic number processing (e.g. symbol-quantity associations) and arithmetic (e.g. addition). Evidence for shared circuitry within the IPS is largely based on comparisons across studies, and little research has investigated number processing and arithmetic in the same individuals. It is also unclear how the neural overlap between number processing and arithmetic is influenced by age and arithmetic problem difficulty. This study investigated these unresolved questions by examining basic number processing (symbol-quantity matching) and arithmetic (addition) networks in 26 adults and 42 children. Number processing and arithmetic elicited overlapping activity in the IPS in children and adults, however, the overlap was influenced by arithmetic problem size (i.e. which modulated the need to use procedural strategies). The IPS was recruited for number processing, and for arithmetic problems more likely to be solved using procedural strategies. We also found that the overlap between number processing and small-problem addition in children was comparable to the overlap between number processing and large-problem addition in adults. This finding suggests that the association between number processing and arithmetic in the IPS is related to the cognitive operation being performed rather than age.
Collapse
Affiliation(s)
- Anna A Matejko
- Numerical Cognition Laboratory, Department of Psychology and Brain & Mind Institute, Western University, London, ON, Canada; Center for the Study of Learning, Department of Pediatrics, Building D, Georgetown University, Washington DC, USA.
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology and Brain & Mind Institute, Western University, London, ON, Canada.
| |
Collapse
|
36
|
Pitt W, Chou LS. Reliability and practical clinical application of an accelerometer-based dual-task gait balance control assessment. Gait Posture 2019; 71:279-283. [PMID: 31125835 DOI: 10.1016/j.gaitpost.2019.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gait balance control assessment using whole body center of mass (COM) kinematic measures in concussed individuals reveals persistent balance deficits up to two months post-injury. A reliable and clinically practical gait balance control assessment leveraging similar kinematic measures is necessary to improve concussion assessment and management. RESEARCH QUESTION Can peak accelerations collected during a dual-task (DT) gait assessment from a single low back placed accelerometer be measured reliably on different days, by different raters, in different environments, and be practically applied in a Division One (D1) athletics program? METHODS A single accelerometer placed on the low back over the L5 vertebra was utilized with a DT gait analysis protocol. Twenty (10 F) healthy participants performed the assessment in a laboratory and non-laboratory environment, on two separate days, and with two different raters. Eight gait event specific peak accelerations along three orthogonal axes were collected. In addition, data were collected from a cohort of 14 D1 female soccer players during a single assessment to explore the practical clinical application. RESULTS Cronbach's α values for the eight metrics ranged from 0.881 to 0.980 and ICC values from 0.868 to 0.987. Average assessment time for the 14 D1 female athletes was 8.50 ± 0.58 min, and significant differences between walking conditions were identified for Vert Accel 1 (p < .01), Vert Accel 2 (p = .01), and A-P Accel (p < .01). SIGNIFICANCE High Cronbach's α and ICC values coupled with a short assessment time and sensitivity to differences in gait balance control indicate our testing apparatus and protocol are both reliable and clinically practical. Additionally, gait event specific peak accelerations from a single accelerometer can detect subtle changes in gait balance control and may facilitate improvements in sport-related concussion diagnosis and return to activity decision making.
Collapse
Affiliation(s)
- Will Pitt
- Motion Analysis Laboratory, Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Li-Shan Chou
- Motion Analysis Laboratory, Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
37
|
Lin JFL, Imada T, Kuhl PK. Neuroplasticity, bilingualism, and mental mathematics: A behavior-MEG study. Brain Cogn 2019; 134:122-134. [PMID: 30975509 DOI: 10.1016/j.bandc.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/22/2018] [Accepted: 03/28/2019] [Indexed: 01/29/2023]
Abstract
Bilingual experience alters brain structure and enhances certain cognitive functions. Bilingualism can also affect mathematical processing. Reduced accuracy is commonly reported when arithmetic problems are presented in bilinguals' second (L2) vs. first (L1) language. We used MEG brain imaging during mental addition to characterize spatiotemporal dynamics during mental addition in bilingual adults. Numbers were presented auditorally and sequentially in bilinguals' L1 and L2, and brain and behavioral data were collected simultaneously. Behaviorally, bilinguals showed lower accuracy for two-digit addition in L2 compared to L1. Brain data showed stronger response magnitude in L2 versus L1 prior to calculation, especially when two-digit numbers were involved. Brain and behavioral data were significantly correlated. Taken together, our results suggest that differences between languages emerge prior to mathematical calculation, with implications for the role of language in mathematics.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA; Institute of Linguistics, National Tsing Hua University, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
38
|
Recruitment of the occipital cortex by arithmetic processing follows computational bias in the congenitally blind. Neuroimage 2019; 186:549-556. [DOI: 10.1016/j.neuroimage.2018.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/23/2022] Open
|
39
|
Le Guen Y, Amalric M, Pinel P, Pallier C, Frouin V. Shared genetic aetiology between cognitive performance and brain activations in language and math tasks. Sci Rep 2018; 8:17624. [PMID: 30514932 PMCID: PMC6279777 DOI: 10.1038/s41598-018-35665-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 11/10/2018] [Indexed: 01/14/2023] Open
Abstract
Cognitive performance is highly heritable. However, little is known about common genetic influences on cognitive ability and brain activation when engaged in a cognitive task. The Human Connectome Project (HCP) offers a unique opportunity to study this shared genetic etiology with an extended pedigree of 785 individuals. To investigate this common genetic origin, we took advantage of the HCP dataset, which includes both language and mathematics activation tasks. Using the HCP multimodal parcellation, we identified areals in which inter-individual functional MRI (fMRI) activation variance was significantly explained by genetics. Then, we performed bivariate genetic analyses between the neural activations and behavioral scores, corresponding to the fMRI task accuracies, fluid intelligence, working memory and language performance. We observed that several parts of the language network along the superior temporal sulcus, as well as the angular gyrus belonging to the math processing network, are significantly genetically correlated with these indicators of cognitive performance. This shared genetic etiology provides insights into the brain areas where the human-specific genetic repertoire is expressed. Studying the association of polygenic risk scores, using variants associated with human cognitive ability and brain activation, would provide an opportunity to better understand where these variants are influential.
Collapse
Affiliation(s)
- Yann Le Guen
- Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Marie Amalric
- Cognitive Neuroimaging Unit, U992, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Pinel
- Cognitive Neuroimaging Unit, U992, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christophe Pallier
- Cognitive Neuroimaging Unit, U992, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Vincent Frouin
- Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
40
|
Chang YT, Mori E, Suzuki M, Ikeda M, Huang CW, Lee JJ, Chang WN, Chang CC. APOE-MS4A genetic interactions are associated with executive dysfunction and network abnormality in clinically mild Alzheimer's disease. Neuroimage Clin 2018; 21:101621. [PMID: 30528368 PMCID: PMC6411654 DOI: 10.1016/j.nicl.2018.101621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/17/2018] [Accepted: 12/01/2018] [Indexed: 11/09/2022]
Abstract
PURPOSE OF THE RESEARCH Although single nucleotide polymorphisms of membrane-spanning 4A (MS4A) (rs670139) and several other susceptibility genes have shown interaction effects on the risk of Alzheimer's disease (AD), little is known about the interaction effects of apolipoprotein E (APOE) with MS4A (rs670139) on cognitive performances, and the underlying pathogenesis is unclear. The study aimed to investigate the APOE-MS4A (rs670139) interaction effects on cognitive performances, cortical volumes, and functional connectivity (FC) in brain networks. PRINCIPAL RESULTS Cognitive performances were characterized in each genotypic group, and were compared between normal controls and patients in each genotypic group. APOE-MS4A interaction effects on memory and executive function scores, cortical volumes, and FC in brain networks were demonstrated. Significant effects of APOE-MS4A interactions on FC were observed in executive control network (ECN) (T maxima = 4.99, false discovery rate-corrected p < .001), the calculation score (F3, 87 = 6.218; p = .015), and the volume in prefrontal (F3, 87 = 4.374; p = .039) and orbitofrontal cortices (F3, 87 = 6.022; p = .016). The calculation score was correlated with each frontal volume (cc) (ρ = 0.304; p = .004) and genetic interaction-associated FC in ECN (ρ = 0.282; p = .008). Variations in genotypes affected the relationship between the calculation score and each frontal volume (cc). MAJOR CONCLUSIONS These findings indicate that the genetic interaction effects on FC in ECN might contribute to pathogenic mechanisms underlying the interaction effects of APOE-MS4A on calculation ability in AD.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Etsuro Mori
- Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan
| | - Maki Suzuki
- Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chi-Wei Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jun-Jun Lee
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wen-Neng Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
41
|
Pinheiro-Chagas P, Daitch A, Parvizi J, Dehaene S. Brain Mechanisms of Arithmetic: A Crucial Role for Ventral Temporal Cortex. J Cogn Neurosci 2018; 30:1757-1772. [PMID: 30063177 DOI: 10.1162/jocn_a_01319] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Elementary arithmetic requires a complex interplay between several brain regions. The classical view, arising from fMRI, is that the intraparietal sulcus (IPS) and the superior parietal lobe (SPL) are the main hubs for arithmetic calculations. However, recent studies using intracranial electroencephalography have discovered a specific site, within the posterior inferior temporal cortex (pITG), that activates during visual perception of numerals, with widespread adjacent responses when numerals are used in calculation. Here, we reexamined the contribution of the IPS, SPL, and pITG to arithmetic by recording intracranial electroencephalography signals while participants solved addition problems. Behavioral results showed a classical problem size effect: RTs increased with the size of the operands. We then examined how high-frequency broadband (HFB) activity is modulated by problem size. As expected from previous fMRI findings, we showed that the total HFB activity in IPS and SPL sites increased with problem size. More surprisingly, pITG sites showed an initial burst of HFB activity that decreased as the operands got larger, yet with a constant integral over the whole trial, thus making these signals invisible to slow fMRI. Although parietal sites appear to have a more sustained function in arithmetic computations, the pITG may have a role of early identification of the problem difficulty, beyond merely digit recognition. Our results ask for a reevaluation of the current models of numerical cognition and reveal that the ventral temporal cortex contains regions specifically engaged in mathematical processing.
Collapse
Affiliation(s)
- Pedro Pinheiro-Chagas
- CEA DRF/12BM, INSERM, Université Paris-Sud, Université Paris-Saclay.,Stanford University
| | | | | | - Stanislas Dehaene
- CEA DRF/12BM, INSERM, Université Paris-Sud, Université Paris-Saclay.,Collège de France, Paris
| |
Collapse
|
42
|
Increased arithmetic complexity is associated with domain-general but not domain-specific magnitude processing in children: A simultaneous fNIRS-EEG study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 17:724-736. [PMID: 28474293 DOI: 10.3758/s13415-017-0508-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The investigation of the neural underpinnings of increased arithmetic complexity in children is essential for developing educational and therapeutic approaches and might provide novel measures to assess the effects of interventions. Although a few studies in adults and children have revealed the activation of bilateral brain regions during more complex calculations, little is known about children. We investigated 24 children undergoing one-digit and two-digit multiplication tasks while simultaneously recording functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) data. FNIRS data indicated that one-digit multiplication was associated with brain activity in the left superior parietal lobule (SPL) and intraparietal sulcus (IPS) extending to the left motor area, and two-digit multiplication was associated with activity in bilateral SPL, IPS, middle frontal gyrus (MFG), left inferior parietal lobule (IPL), and motor areas. Oscillatory EEG data indicated theta increase and alpha decrease in parieto-occipital sites for both one-digit and two-digit multiplication. The contrast of two-digit versus one-digit multiplication yielded greater activity in right MFG and greater theta increase in frontocentral sites. Activation in frontal areas and theta band data jointly indicate additional domain-general cognitive control and working memory demands for heightened arithmetic complexity in children. The similarity in parietal activation between conditions suggests that children rely on domain-specific magnitude processing not only for two-digit but-in contrast to adults-also for one-digit multiplication problem solving. We conclude that in children, increased arithmetic complexity tested in an ecologically valid setting is associated with domain-general processes but not with alteration of domain-specific magnitude processing.
Collapse
|
43
|
Chang H, Sprute L, Maloney EA, Beilock SL, Berman MG. Simple arithmetic: not so simple for highly math anxious individuals. Soc Cogn Affect Neurosci 2018; 12:1940-1949. [PMID: 29140499 PMCID: PMC5716197 DOI: 10.1093/scan/nsx121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/16/2017] [Indexed: 11/14/2022] Open
Abstract
Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low—compared to high—math anxious individuals perform better when they activate this network less—a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently.
Collapse
Affiliation(s)
- Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa Sprute
- Department of Psychology, The University of Chicago, Chicago, IL 60637, USA
| | - Erin A Maloney
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Sian L Beilock
- Department of Psychology, The University of Chicago, Chicago, IL 60637, USA.,Barnard College, Columbia University, New York, NY 10027, USA
| | - Marc G Berman
- Department of Psychology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
44
|
Towards using fNIRS recordings of mental arithmetic for the detection of residual cognitive activity in patients with disorders of consciousness (DOC). Brain Cogn 2018; 125:78-87. [PMID: 29909026 DOI: 10.1016/j.bandc.2018.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Recently, fNIRS has been proposed as a promising approach for awareness detection, and a possible method to establish basic communication in patients with disorders of consciousness (DOC). AIM Using fNIRS, the present study evaluated the applicability of auditory presented mental-arithmetic tasks in this respect. METHODS We investigated the applicability of active attention to serial subtractions for awareness detection in ten healthy controls (HC, 21-32 y/o), by comparing the measured patterns to patterns induced by self-performance of the same task. Furthermore, we examined the suitability of ignoring the given task as additional control signal to implement a two-class brain-computer interface (BCI) paradigm. Finally, we compared our findings in HC with recordings in one DOC patient (78 y/o). RESULTS AND CONCLUSION Results of the HC revealed no differences between the self-performance and the attention condition, making the attention task suitable for awareness detection. However, there was no general difference between the ignore and attend condition, making the tasks less suitable for BCI control. Despite inconsistent correlations between the patient data and the HC group, single runs of the patient recordings revealed task-synchronous patterns - however, we cannot conclude whether the measured activation derives from instruction based task performance and thus awareness.
Collapse
|
45
|
The neural correlates of arithmetic difficulty depend on mathematical ability: evidence from combined fNIRS and ERP. Brain Struct Funct 2018. [PMID: 29525887 DOI: 10.1007/s00429-018-1618-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mathematical abilities are essential for an individual, as they predict career prospects among many other abilities. However, little is known about whether neural correlates of arithmetic problem difficulty differ between individuals with high and low math ability. For instance, the difficulty of two-digit addition and subtraction increases whenever a carry or borrow operation is required. Therefore, we systematically investigated the spatial and temporal neural correlates of the carry and borrow effects for high and low performers in a written production paradigm using combined functional near-infrared spectroscopy (fNIRS) and event-related potential (ERP) measurements. Effects of arithmetic difficulty interacted with an individual's math ability. High performers showed increased frontal activation especially in the left inferior frontal gyrus associated with the carry and borrow effects, whereas low performers did not. Furthermore, high and low performers even differed in their early processing of the borrow effect, as reflected by differences in slow waves at 1000-1500 ms at frontal sites. We conclude that the processing of arithmetic difficulty relies on an individual's mathematical ability, and suggest that individual differences should be taken into account when investigating mental arithmetic in an ecologically valid assessment.
Collapse
|
46
|
Battista C, Evans TM, Ngoon TJ, Chen T, Chen L, Kochalka J, Menon V. Mechanisms of interactive specialization and emergence of functional brain circuits supporting cognitive development in children. NPJ SCIENCE OF LEARNING 2018; 3:1. [PMID: 30631462 PMCID: PMC6220196 DOI: 10.1038/s41539-017-0017-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 05/10/2023]
Abstract
Cognitive development is thought to depend on the refinement and specialization of functional circuits over time, yet little is known about how this process unfolds over the course of childhood. Here we investigated growth trajectories of functional brain circuits and tested an interactive specialization model of neurocognitive development which posits that the refinement of task-related functional networks is driven by a shared history of co-activation between cortical regions. We tested this model in a longitudinal cohort of 30 children with behavioral and task-related functional brain imaging data at multiple time points spanning childhood and adolescence, focusing on the maturation of parietal circuits associated with numerical problem solving and learning. Hierarchical linear modeling revealed selective strengthening as well as weakening of functional brain circuits. Connectivity between parietal and prefrontal cortex decreased over time, while connectivity within posterior brain regions, including intra-hemispheric and inter-hemispheric parietal connectivity, as well as parietal connectivity with ventral temporal occipital cortex regions implicated in quantity manipulation and numerical symbol recognition, increased over time. Our study provides insights into the longitudinal maturation of functional circuits in the human brain and the mechanisms by which interactive specialization shapes children's cognitive development and learning.
Collapse
Affiliation(s)
- Christian Battista
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA USA
| | - Tanya M. Evans
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA USA
| | - Tricia J. Ngoon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA USA
| | - Tianwen Chen
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA USA
| | - Lang Chen
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA USA
| | - John Kochalka
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA USA
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA USA
- Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, CA USA
- Symbolic Systems Program, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
47
|
Siemann J, Petermann F. Evaluation of the Triple Code Model of numerical processing-Reviewing past neuroimaging and clinical findings. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 72:106-117. [PMID: 29128782 DOI: 10.1016/j.ridd.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 06/27/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED This review reconciles past findings on numerical processing with key assumptions of the most predominant model of arithmetic in the literature, the Triple Code Model (TCM). This is implemented by reporting diverse findings in the literature ranging from behavioral studies on basic arithmetic operations over neuroimaging studies on numerical processing to developmental studies concerned with arithmetic acquisition, with a special focus on developmental dyscalculia (DD). We evaluate whether these studies corroborate the model and discuss possible reasons for contradictory findings. A separate section is dedicated to the transfer of TCM to arithmetic development and to alternative accounts focusing on developmental questions of numerical processing. We conclude with recommendations for future directions of arithmetic research, raising questions that require answers in models of healthy as well as abnormal mathematical development. WHAT THIS PAPER ADDS This review assesses the leading model in the field of arithmetic processing (Triple Code Model) by presenting knowledge from interdisciplinary research. It assesses the observed contradictory findings and integrates the resulting opposing viewpoints. The focus is on the development of arithmetic expertise as well as abnormal mathematical development. The original aspect of this article is that it points to a gap in research on these topics and provides possible solutions for future models.
Collapse
Affiliation(s)
- Julia Siemann
- Centre for Clinical Psychology and Rehabilitation (CCPR), University of Bremen, Bremen, Germany.
| | - Franz Petermann
- Centre for Clinical Psychology and Rehabilitation (CCPR), University of Bremen, Bremen, Germany.
| |
Collapse
|
48
|
Gender composition mediates social facilitation effect in co-action condition. Sci Rep 2017; 7:15073. [PMID: 29118377 PMCID: PMC5678178 DOI: 10.1038/s41598-017-15437-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Working with co-actors is a common work-organization mode. Whether the presence of opposite-sex co-actors (OCs) can induce social facilitation effect and how an actor's performance is influenced by the gender composition of co-actors remain unknown. The present study aims to examine the influence of the gender composition of co-actors on the intensity of the social facilitation effect. In Experiment 1, participants performed visual search tasks alone and in six co-action conditions with varying gender compositions. In Experiment 2, the participants performed modular arithmetic tasks in three conditions with electroencephalogram activity recorded and salivary cortisol measured: alone, with a same-sex co-actor (SC), and with an OC. Results indicated that the social facilitation effect was stronger in the presence of OCs than in the presence of only SCs. The intensities of social facilitation effect resulting from the varying gender composition of co-actors were obtained and compared. A participant's power of alpha band was lower, whereas power of beta band and normalised cortisol level were higher in the presence of an OC than in the presence of an SC. These findings provide insights into the influencing mechanisms of gender composition on the intensity of the social facilitation effect in the co-action condition.
Collapse
|
49
|
Hellrung L, Dietrich A, Hollmann M, Pleger B, Kalberlah C, Roggenhofer E, Villringer A, Horstmann A. Intermittent compared to continuous real-time fMRI neurofeedback boosts control over amygdala activation. Neuroimage 2017; 166:198-208. [PMID: 29100939 DOI: 10.1016/j.neuroimage.2017.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Real-time fMRI neurofeedback is a feasible tool to learn the volitional regulation of brain activity. So far, most studies provide continuous feedback information that is presented upon every volume acquisition. Although this maximizes the temporal resolution of feedback information, it may be accompanied by some disadvantages. Participants can be distracted from the regulation task due to (1) the intrinsic delay of the hemodynamic response and associated feedback and (2) limited cognitive resources available to simultaneously evaluate feedback information and stay engaged with the task. Here, we systematically investigate differences between groups presented with different variants of feedback (continuous vs. intermittent) and a control group receiving no feedback on their ability to regulate amygdala activity using positive memories and feelings. In contrast to the feedback groups, no learning effect was observed in the group without any feedback presentation. The group receiving intermittent feedback exhibited better amygdala regulation performance when compared with the group receiving continuous feedback. Behavioural measurements show that these effects were reflected in differences in task engagement. Overall, we not only demonstrate that the presentation of feedback is a prerequisite to learn volitional control of amygdala activity but also that intermittent feedback is superior to continuous feedback presentation.
Collapse
Affiliation(s)
- Lydia Hellrung
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland.
| | - Anja Dietrich
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Maurice Hollmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Burkhard Pleger
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Christian Kalberlah
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elisabeth Roggenhofer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Neuroscience Clinique's, University Hospital Genève, Genève, Switzerland
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinics for Cognitive Neurology, University Hospital, Leipzig, Germany; Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany; Mind and Brain Institute, Berlin School of Mind and Brain, Humboldt-University and Charité, Berlin, Germany
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| |
Collapse
|
50
|
Kitaura Y, Nishida K, Yoshimura M, Mii H, Katsura K, Ueda S, Ikeda S, Pascual-Marqui RD, Ishii R, Kinoshita T. Functional localization and effective connectivity of cortical theta and alpha oscillatory activity during an attention task. Clin Neurophysiol Pract 2017; 2:193-200. [PMID: 30214995 PMCID: PMC6123881 DOI: 10.1016/j.cnp.2017.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 09/11/2017] [Accepted: 09/23/2017] [Indexed: 12/31/2022] Open
Abstract
sLORETA analyses performed on 14 healthy adults at rest and during an arithmetic task. Theta and alpha directed connectivity revealed ACC and left IPL as hubs during task. Information flow between left IFG and STG suggested a feedback loop.
Objectives The aim of this paper is to investigate cortical electric neuronal activity as an indicator of brain function, in a mental arithmetic task that requires sustained attention, as compared to the resting state condition. The two questions of interest are the cortical localization of different oscillatory activities, and the directional effective flow of oscillatory activity between regions of interest, in the task condition compared to resting state. In particular, theta and alpha activity are of interest here, due to their important role in attention processing. Methods We adapted mental arithmetic as an attention ask in this study. Eyes closed 61-channel EEG was recorded in 14 participants during resting and in a mental arithmetic task (“serial sevens subtraction”). Functional localization and connectivity analyses were based on cortical signals of electric neuronal activity estimated with sLORETA (standardized low resolution electromagnetic tomography). Functional localization was based on the comparison of the cortical distributions of the generators of oscillatory activity between task and resting conditions. Assessment of effective connectivity was based on the iCoh (isolated effective coherence) method, which provides an appropriate frequency decomposition of the directional flow of oscillatory activity between brain regions. Nine regions of interest comprising nodes from the dorsal and ventral attention networks were selected for the connectivity analysis. Results Cortical spectral density distribution comparing task minus rest showed significant activity increase in medial prefrontal areas and decreased activity in left parietal lobe for the theta band, and decreased activity in parietal-occipital regions for the alpha1 band. At a global level, connections among right hemispheric nodes were predominantly decreased during the task condition, while connections among left hemispheric nodes were predominantly increased. At more detailed level, decreased flow from right inferior frontal gyrus to anterior cingulate cortex for theta, and low and high alpha oscillations, and increased feedback (bidirectional flow) between left superior temporal gyrus and left inferior frontal gyrus, were observed during the arithmetic task. Conclusions Task related medial prefrontal increase in theta oscillations possibly corresponds to frontal midline theta, while parietal decreased alpha1 activity indicates the active role of this region in the numerical task. Task related decrease of intracortical right hemispheric connectivity support the notion that these nodes need to disengage from one another in order to not interfere with the ongoing numerical processing. The bidirectional feedback between left frontal-temporal-parietal regions in the arithmetic task is very likely to be related to attention network working memory function. Significance The methods of analysis and the results presented here will hopefully contribute to clarify the roles of the different EEG oscillations during sustained attention, both in terms of their functional localization and in terms of how they integrate brain function by supporting information flow between different cortical regions. The methodology presented here might be clinically relevant in evaluating abnormal attention function.
Collapse
Affiliation(s)
- Yuichi Kitaura
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Keiichiro Nishida
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | | | - Hiroshi Mii
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan.,Setagawa Hospital, Otsu, Japan
| | - Koji Katsura
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Satsuki Ueda
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Shunichiro Ikeda
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Roberto D Pascual-Marqui
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan.,The Key Institute for Brain-Mind Research, University of Zurich, Zurich, Switzerland
| | - Ryouhei Ishii
- Osaka University Graduate School of Medicine, Department of Psychiatry and Clinical Neuroscience, Suita, Japan
| | | |
Collapse
|