1
|
Hervé FM, Borras E, Gibson P, McCartney MM, Kenyon NJ, Davis CE. A device for volatile organic compound (VOC) analysis from skin using heated dynamic headspace sampling. J Breath Res 2025; 19:036004. [PMID: 40233769 DOI: 10.1088/1752-7163/adccef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
Human skin is an important source of volatile organic compounds (VOCs) offering noninvasive methods to gain clinical metabolite information. This work was focused on the development of a skin sampling device based on a dynamic headspace sampling method with the addition of temperature to increase VOC metabolite recovery. The device preconcentrates skin VOC emissions onto a sorbent substrate, which can either be preserved for offline analysis or attached to a real time sensor downstream. In this work, skin VOC samples were analyzed offline using thermal desorption-gas chromatography-mass spectrometry. A list of 10 common skin VOCs was pre-selected to optimize parameters of sampling time, sampling temperature, and sorbent selection. Overall, this study highlights an effective skin VOC sampling technology with a heating dimension (40 °C, rather than 30 °C or no heating) with a sampling time of 15 min (rather than 5 or 30 mins) and onto Tenax TA sorbent (rather than PDMS), which collectively increases the recovery of compounds with lower vapor pressure and decreases the observed variability in skin VOC measurements. Finally, a list of 79 skin VOC compounds were detected and identified within a cohort of 20 young, healthy volunteers.
Collapse
Affiliation(s)
- Flore M Hervé
- Mechanical and Aerospace Engineering, UC Davis, Davis, CA, United States of America
- UC Davis Lung Center, Davis, CA, United States of America
| | - Eva Borras
- Mechanical and Aerospace Engineering, UC Davis, Davis, CA, United States of America
- UC Davis Lung Center, Davis, CA, United States of America
| | - Patrick Gibson
- Mechanical and Aerospace Engineering, UC Davis, Davis, CA, United States of America
- UC Davis Lung Center, Davis, CA, United States of America
| | - Mitchell M McCartney
- Mechanical and Aerospace Engineering, UC Davis, Davis, CA, United States of America
- UC Davis Lung Center, Davis, CA, United States of America
- VA Northern California Health Care System, Mather, CA, United States of America
| | - Nicholas J Kenyon
- UC Davis Lung Center, Davis, CA, United States of America
- VA Northern California Health Care System, Mather, CA, United States of America
- Department of Internal Medicine, UC Davis, Sacramento, CA, United States of America
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, UC Davis, Davis, CA, United States of America
- UC Davis Lung Center, Davis, CA, United States of America
- VA Northern California Health Care System, Mather, CA, United States of America
| |
Collapse
|
2
|
Nazemoroaia M, Bagheri F, Mirahmadi-Zare SZ, Eslami-Kaliji F, Derakhshan A. Asymmetric natural wound dressing based on porous chitosan-alginate hydrogel/electrospun PCL-silk sericin loaded by 10-HDA for skin wound healing: In vitro and in vivo studies. Int J Pharm 2025; 668:124976. [PMID: 39577507 DOI: 10.1016/j.ijpharm.2024.124976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
An asymmetric wound dressing introduced, inspired by the skin structure made of chitosan and alginate hydrogel as the bottom layer and electrospun PCL-silk sericin (PCL-SS) as the top layer. In addition, an anti-inflammatory, bactericidal and immunomodulatory substance, 10-hydroxydecanoic acid (10-HDA), known as queen bee acid, was loaded in inner layer. The wound dressing was thoroughly characterized and confirmed to meet the criteria of a standard wound dressing through in vitro and in vivo studies. Although the mesoporous hydrogel layer shows 175 % swelling after being immersed in PBS (pH = 7.4) for 60 min and 80 % degradation after 14 days, the top layer shows 28 % swelling and 19 % degradation in the same time intervals. The hydrogel layer supports rapid wound healing, while the top layer offers protection against infection and physical threats. The dressing demonstrated antibacterial properties and enhanced cell proliferation at 1 % 10-HDA. Finally, the wound healing performance of the complete dressing was investigated in vivo using wistar rat. Clinical and histopathological assessments, along with the analysis of biophysical parameters of the skin healing, confirm that wound dressing with 10-HDA significantly accelerates wound healing compared to control groups, without any inflammatory side effects.
Collapse
Affiliation(s)
- Maryam Nazemoroaia
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran.
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Farshid Eslami-Kaliji
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran
| | - Amin Derakhshan
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
3
|
Margutti P, D’Ambrosio A, Zamboni S. Microbiota-Derived Extracellular Vesicle as Emerging Actors in Host Interactions. Int J Mol Sci 2024; 25:8722. [PMID: 39201409 PMCID: PMC11354844 DOI: 10.3390/ijms25168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The human microbiota is an intricate micro-ecosystem comprising a diverse range of dynamic microbial populations mainly consisting of bacteria, whose interactions with hosts strongly affect several physiological and pathological processes. The gut microbiota is being increasingly recognized as a critical player in maintaining homeostasis, contributing to the main functions of the intestine and distal organs such as the brain. However, gut dysbiosis, characterized by composition and function alterations of microbiota with intestinal barrier dysfunction has been linked to the development and progression of several pathologies, including intestinal inflammatory diseases, systemic autoimmune diseases, such as rheumatic arthritis, and neurodegenerative diseases, such as Alzheimer's disease. Moreover, oral microbiota research has gained significant interest in recent years due to its potential impact on overall health. Emerging evidence on the role of microbiota-host interactions in health and disease has triggered a marked interest on the functional role of bacterial extracellular vesicles (BEVs) as mediators of inter-kingdom communication. Accumulating evidence reveals that BEVs mediate host interactions by transporting and delivering into host cells effector molecules that modulate host signaling pathways and cell processes, influencing health and disease. This review discusses the critical role of BEVs from the gut, lung, skin and oral cavity in the epithelium, immune system, and CNS interactions.
Collapse
Affiliation(s)
- Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.); (S.Z.)
| | | | | |
Collapse
|
4
|
Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, Theotokis P, Manthou ME. Skin Development and Disease: A Molecular Perspective. Curr Issues Mol Biol 2024; 46:8239-8267. [PMID: 39194704 DOI: 10.3390/cimb46080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Dermitzakis I, Kampitsi DD, Manthou ME, Evangelidis P, Vakirlis E, Meditskou S, Theotokis P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr Issues Mol Biol 2024; 46:8118-8147. [PMID: 39194698 DOI: 10.3390/cimb46080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Dimitria Kampitsi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Evangelidis
- Hematology Unit-Hemophilia Centre, 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
de Mello T, Argenta DF, Caon T. Revisiting the Effect of Aging on the Transport of Molecules through the Skin. Pharm Res 2024; 41:1031-1044. [PMID: 38740664 DOI: 10.1007/s11095-024-03710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Both intrinsic and extrinsic aging lead to a series of morphological changes in the skin including the flattening of the dermal-epidermal junction, increased stratum corneum dryness, reduction in sebaceous gland activity and enzyme activity as well as atrophy of blood vessels. In this study, the impact of these changes on the transport of molecules through the skin was revised. The increase in the number of transdermal formulations on the market in recent decades and life expectancy represent the main reasons for an in-depth discussion of this topic. Furthermore, elderly subjects have often been excluded from clinical trials due to polypharmacy, raising concerns in terms of efficacy and safety. In this way, ex vivo and in vivo studies comparing the transport of molecules through the mature and young skin were analyzed in detail. The reduced water content in mature skin had a significant impact on the transport rate of hydrophilic molecules. The lower enzymatic activity in aged skin, in turn, would explain changes in the activation of prodrugs. Interestingly, greater deposition of nanoparticles was also found in mature skin. In vivo models should be prioritized in future experimental studies as they allow to evaluate both absorption and metabolism simultaneously, providing more realistic information.
Collapse
Affiliation(s)
- Tamires de Mello
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Débora Fretes Argenta
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Thiago Caon
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
7
|
Yuan M, Wang J, Geng L, Wu N, Yang Y, Zhang Q. A review: Structure, bioactivity and potential application of algal polysaccharides in skin aging care and therapy. Int J Biol Macromol 2024; 272:132846. [PMID: 38834111 DOI: 10.1016/j.ijbiomac.2024.132846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Skin is the first barrier of body which stands guard for defending aggressive pathogens and environmental pressures all the time. Cutaneous metabolism changes in harmful exposure, following with skin dysfunctions and diseases. Lots of researches have reported that polysaccharides extracted from seaweeds exhibited multidimensional bioactivities in dealing with skin disorder. However, few literature systematically reviews them. The aim of the present paper is to summarize structure, bioactivities and structure-function relationship of algal polysaccharides acting on skin. Algal polysaccharides show antioxidant, immunomodulating, hydration regulating, anti-melanogenesis and extracellular matrix (ECM) regulating abilities via multipath ways in skin. These bioactivities are determined by various parameters, including seaweed species, molecular weight, monosaccharides composition and substitute groups. In addition, potential usages of algae-derived polysaccharides in skin care and therapy are also elaborated. Algal polysaccharides are potential ingredients in formulation that providing anti-aging efficacy for skin.
Collapse
Affiliation(s)
- Mengyao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China.
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Yue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
8
|
Song C, Wang Q, Song N. Hemorphin-Based Analgesia: A Mechanism of Cupping Technique? J Pain Res 2023; 16:1751-1754. [PMID: 37273272 PMCID: PMC10237328 DOI: 10.2147/jpr.s413021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Background and Objective Cupping is a time-honoured traditional healing modality for pain management and remains favoured by professionals and lay people across several cultures today. However, the analgesic mechanism of cupping is still poorly understood. In addition, clinical guidelines for standardized applications of cupping are currently lacking. The awareness of cupping marks has provoked curiosity about the connection between skin color changes and their benefit for local pain relief. Computer simulation is a promising approach for numerical modeling the cupping-evoked erythrocyte emigration. Quantitative proteomic profiling of cupping-induced blister fluid exhibited a significant decrease in the abundance of haemoglobin β subunit. This finding provides a critical clue to paint a novel picture of the mechanism behind cupping. The hemorphins are a set of non-classical opioid peptides derived from the proteolysis of haemoglobin β subunit. In the present study, a probable mechanism of hemorphin-based cupping analgesia is proposed. The hemorphin could also act as a potential biomarker for objective and timely quantitative clinical assessment of cupping in the management of pain conditions. A seminal theory may open a new avenue for future translational research on promoting the efficacy and safety of cupping analgesia. Conclusion The local analgesic effect of cupping is probable in the context of haemoglobin degradation that bestows the appearance of hemorphins along with engaging opioid receptor signalling. Exploring the potential novel mechanism of cupping analgesia facilitates seeking non-pharmacologic pain interventions.
Collapse
Affiliation(s)
- Changzheng Song
- Erythrocrine Research Initiative of Translational Medicine, Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Qingwei Wang
- Cancer Therapy Center, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Nianci Song
- Biodesign Lab, Geriatricare Biorobotics Studio, Baltimore, MD, USA
| |
Collapse
|
9
|
Hypoxia in Skin Cancer: Molecular Basis and Clinical Implications. Int J Mol Sci 2023; 24:ijms24054430. [PMID: 36901857 PMCID: PMC10003002 DOI: 10.3390/ijms24054430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Skin cancer is one of the most prevalent cancers in the Caucasian population. In the United States, it is estimated that at least one in five people will develop skin cancer in their lifetime, leading to significant morbidity and a healthcare burden. Skin cancer mainly arises from cells in the epidermal layer of the skin, where oxygen is scarce. There are three main types of skin cancer: malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. Accumulating evidence has revealed a critical role for hypoxia in the development and progression of these dermatologic malignancies. In this review, we discuss the role of hypoxia in treating and reconstructing skin cancers. We will summarize the molecular basis of hypoxia signaling pathways in relation to the major genetic variations of skin cancer.
Collapse
|
10
|
Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractSkin cancer affects the lives of millions of people every year, as it is considered the most popular form of cancer. In the USA alone, approximately three and a half million people are diagnosed with skin cancer annually. The survival rate diminishes steeply as the skin cancer progresses. Despite this, it is an expensive and difficult procedure to discover this cancer type in the early stages. In this study, a threshold-based automatic approach for skin cancer detection, classification, and segmentation utilizing a meta-heuristic optimizer named sparrow search algorithm (SpaSA) is proposed. Five U-Net models (i.e., U-Net, U-Net++, Attention U-Net, V-net, and Swin U-Net) with different configurations are utilized to perform the segmentation process. Besides this, the meta-heuristic SpaSA optimizer is used to perform the optimization of the hyperparameters using eight pre-trained CNN models (i.e., VGG16, VGG19, MobileNet, MobileNetV2, MobileNetV3Large, MobileNetV3Small, NASNetMobile, and NASNetLarge). The dataset is gathered from five public sources in which two types of datasets are generated (i.e., 2-classes and 10-classes). For the segmentation, concerning the “skin cancer segmentation and classification” dataset, the best reported scores by U-Net++ with DenseNet201 as a backbone architecture are 0.104, $$94.16\%$$
94.16
%
, $$91.39\%$$
91.39
%
, $$99.03\%$$
99.03
%
, $$96.08\%$$
96.08
%
, $$96.41\%$$
96.41
%
, $$77.19\%$$
77.19
%
, $$75.47\%$$
75.47
%
in terms of loss, accuracy, F1-score, AUC, IoU, dice, hinge, and squared hinge, respectively, while for the “PH2” dataset, the best reported scores by the Attention U-Net with DenseNet201 as backbone architecture are 0.137, $$94.75\%$$
94.75
%
, $$92.65\%$$
92.65
%
, $$92.56\%$$
92.56
%
, $$92.74\%$$
92.74
%
, $$96.20\%$$
96.20
%
, $$86.30\%$$
86.30
%
, $$92.65\%$$
92.65
%
, $$69.28\%$$
69.28
%
, and $$68.04\%$$
68.04
%
in terms of loss, accuracy, F1-score, precision, sensitivity, specificity, IoU, dice, hinge, and squared hinge, respectively. For the “ISIC 2019 and 2020 Melanoma” dataset, the best reported overall accuracy from the applied CNN experiments is $$98.27\%$$
98.27
%
by the MobileNet pre-trained model. Similarly, for the “Melanoma Classification (HAM10K)” dataset, the best reported overall accuracy from the applied CNN experiments is $$98.83\%$$
98.83
%
by the MobileNet pre-trained model. For the “skin diseases image” dataset, the best reported overall accuracy from the applied CNN experiments is $$85.87\%$$
85.87
%
by the MobileNetV2 pre-trained model. After computing the results, the suggested approach is compared with 13 related studies.
Collapse
|
11
|
Massella D, Argenziano M, Ferri A, Guan J, Giraud S, Cavalli R, Barresi AA, Salaün F. Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics 2019; 11:E403. [PMID: 31405229 PMCID: PMC6723157 DOI: 10.3390/pharmaceutics11080403] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
In the field of pharmaceutical technology, significant attention has been paid on exploiting skin as a drug administration route. Considering the structural and chemical complexity of the skin barrier, many research works focused on developing an innovative way to enhance skin drug permeation. In this context, a new class of materials called bio-functional textiles has been developed. Such materials consist of the combination of advanced pharmaceutical carriers with textile materials. Therefore, they own the possibility of providing a wearable platform for continuous and controlled drug release. Notwithstanding the great potential of these materials, their large-scale application still faces some challenges. The present review provides a state-of-the-art perspective on the bio-functional textile technology analyzing the several issues involved. Firstly, the skin physiology, together with the dermatological delivery strategy, is keenly described in order to provide an overview of the problems tackled by bio-functional textiles technology. Secondly, an overview of the main dermatological nanocarriers is provided; thereafter the application of these nanomaterial to textiles is presented. Finally, the bio-functional textile technology is framed in the context of the different dermatological administration strategies; a comparative analysis that also considers how pharmaceutical regulation is conducted.
Collapse
Affiliation(s)
- Daniele Massella
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France.
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Stéphane Giraud
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Antonello A Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Fabien Salaün
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| |
Collapse
|
12
|
Aljghami ME, Saboor S, Amini-Nik S. Emerging Innovative Wound Dressings. Ann Biomed Eng 2018; 47:659-675. [DOI: 10.1007/s10439-018-02186-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
|
13
|
Junkin J. PROMOTING HEALTHY SKIN IN VARIOUS SETTINGS. Nurs Clin North Am 2000. [DOI: 10.1016/s0029-6465(22)02472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|