1
|
Rey-Funes M, Contartese DS, Peláez R, García-Sanmartín J, Narro-Íñiguez J, Soliño M, Fernández JC, Sarotto A, Ciranna NS, López-Costa JJ, Dorfman VB, Larrayoz IM, Loidl CF, Martínez A. Hypothermic Shock Applied After Perinatal Asphyxia Prevents Retinal Damage in Rats. Front Pharmacol 2021; 12:651599. [PMID: 33897437 PMCID: PMC8060653 DOI: 10.3389/fphar.2021.651599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Perinatal asphyxia (PA) can cause retinopathy and different degrees of visual loss, including total blindness. In a rat model of PA, we have previously shown a protective effect of hypothermia on the retina when applied simultaneously with the hypoxic insult. In the present work, we evaluated the possible protective effect of hypothermia on the retina of PA rats when applied immediately after delivery. Four experimental groups were studied: Rats born naturally as controls (CTL), animals that were exposed to PA for 20 min at 37°C (PA), animals exposed to PA for 20 min at 15°C (HYP), and animals that were exposed to PA for 20 min at 37°C and, immediately after birth, kept for 15 min at 8°C (HYP-PA). To evaluate the integrity of the visual pathway, animals were subjected to electroretinography at 45 days of age. Molecular (real time PCR) and histological (immunohistochemistry, immunofluorescence, TUNEL assay) techniques were applied to the eyes of all experimental groups collected at 6, 12, 24, and 48 h, and 6 days after birth. PA resulted in a significant reduction in the amplitude of the a- and b-wave and oscillatory potentials (OP) of the electroretinogram. All animals treated with hypothermia had a significant correction of the a-wave and OP, but the b-wave was fully corrected in the HYP group but only partially in the HYP-PA group. The number of TUNEL-positive cells increased sharply in the ganglion cell layer of the PA animals and this increase was significantly prevented by both hypothermia treatments. Expression of the cold-shock proteins, cold-inducible RNA binding protein (CIRP) and RNA binding motif protein 3 (RBM3), was undetectable in retinas of the CTL and PA groups, but they were highly expressed in ganglion neurons and cells of the inner nuclear layer of the HYP and HYP-PA groups. In conclusion, our results suggest that a post-partum hypothermic shock could represent a useful and affordable method to prevent asphyxia-related vision disabling sequelae.
Collapse
Affiliation(s)
- Manuel Rey-Funes
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela S Contartese
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Josune García-Sanmartín
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Judit Narro-Íñiguez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Manuel Soliño
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Fernández
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aníbal Sarotto
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás S Ciranna
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan José López-Costa
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires, Argentina
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - C Fabián Loidl
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja, Logroño, Spain
| |
Collapse
|
2
|
Bratek E, Ziembowicz A, Salinska E. N-Acetylaspartylglutamate (NAAG) Pretreatment Reduces Hypoxic-Ischemic Brain Damage and Oxidative Stress in Neonatal Rats. Antioxidants (Basel) 2020; 9:antiox9090877. [PMID: 32957477 PMCID: PMC7555246 DOI: 10.3390/antiox9090877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
N-acetylaspartylglutamate (NAAG), the most abundant peptide transmitter in the mammalian nervous system, activates mGluR3 at presynaptic sites, inhibiting the release of glutamate, and acts on mGluR3 on astrocytes, stimulating the release of neuroprotective growth factors (TGF-β). NAAG can also affect N-methyl-d-aspartate (NMDA) receptors in both synaptic and extrasynaptic regions. NAAG reduces neurodegeneration in a neonatal rat model of hypoxia-ischemia (HI), although the exact mechanism is not fully recognized. In the present study, the effect of NAAG application 24 or 1 h before experimental birth asphyxia on oxidative stress markers and the potential mechanisms of neuroprotection on 7-day old rats was investigated. The intraperitoneal application of NAAG at either time point before HI significantly reduced the weight deficit of the ischemic brain hemisphere, radical oxygen species (ROS) content and activity of antioxidant enzymes, and increased the concentration of reduced glutathione (GSH). No additional increase in the TGF-β concentration was observed after NAAG application. The fast metabolism of NAAG and the decrease in TGF-β concentration that resulted from NAAG pretreatment, performed up to 24 h before HI, excluded the involvement mGluR3 in neuroprotection. The observed effect may be explained by the activation of NMDA receptors induced by NAAG pretreatment 24 h before HI. Inhibition of the NAAG effect by memantine supports this conclusion. NAAG preconditioning 1 h before HI results in a mixture of mGluR3 and NMDA receptor activation. Preconditioning with NAAG induces the antioxidative defense system triggered by mild excitotoxicity in neurons. Moreover, this response to NAAG pretreatment is consistent with the commonly accepted mechanism of preconditioning. However, this theory requires further investigation.
Collapse
|
3
|
Fernández JC, Peláez R, Rey-Funes M, Soliño M, Contartese DS, Dorfman VB, López-Costa JJ, Larrayoz IM, Loidl CF, Martínez A. Methylene Blue Prevents Retinal Damage Caused by Perinatal Asphyxia in the Rat. Front Cell Neurosci 2020; 14:157. [PMID: 32581722 PMCID: PMC7289067 DOI: 10.3389/fncel.2020.00157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/12/2020] [Indexed: 01/24/2023] Open
Abstract
Perinatal asphyxia (PA) is responsible for a large proportion of neonatal deaths and numerous neurological sequelae, including visual dysfunction and blindness. In PA, the retina is exposed to ischemia/reoxygenation, which results in nitric oxide (NO) overproduction and neurotoxicity. We hypothesized that methylene blue (MB), a guanylyl cyclase inhibitor, and free-radical scavenger currently used in the clinic, may block this pathway and prevent PA-induced retinal degeneration. Male rat pups were subjected to an experimental model of PA. Four groups were studied: normally delivered (CTL), normally delivered treated with 2 mg Kg-1 MB (MB), exposed to PA for 20 min at 37°C (PA), and exposed to PA and, then, treated with MB (PA-MB). Scotopic electroretinography performed 45 days after birth showed that PA animals had significant defects in the a- and b-waves and oscillatory potentials (OP). The same animals presented a significant increase in the thickness of the inner retina and a large number of TUNEL-positive cells. All these physiological and morphological parameters were significantly prevented by the treatment with MB. Gene expression analysis demonstrated significant increases in iNOS, MMP9, and VEGF in the eyes of PA animals, which were prevented by MB treatment. In conclusion, MB regulates key players of inflammation, matrix remodeling, gliosis, and angiogenesis in the eye and could be used as a treatment to prevent the deleterious visual consequences of PA. Given its safety profile and low cost, MB may be used clinically in places where alternative treatments may be unavailable.
Collapse
Affiliation(s)
- Juan Carlos Fernández
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Primera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Peláez
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Manuel Rey-Funes
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Manuel Soliño
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela S Contartese
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Juan José López-Costa
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - César F Loidl
- Instituto de Biología Celular y Neurociencia "Prof. E. de Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Martínez
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
4
|
Bustelo M, Bruno MA, Loidl CF, Rey-Funes M, Steinbusch HWM, Gavilanes AWD, van den Hove DLA. Statistical differences resulting from selection of stable reference genes after hypoxia and hypothermia in the neonatal rat brain. PLoS One 2020; 15:e0233387. [PMID: 32437382 PMCID: PMC7241816 DOI: 10.1371/journal.pone.0233387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Real-time reverse transcription PCR (qPCR) normalized to an internal reference gene (RG), is a frequently used method for quantifying gene expression changes in neuroscience. Although RG expression is assumed to be constant independent of physiological or experimental conditions, several studies have shown that commonly used RGs are not expressed stably. The use of unstable RGs has a profound effect on the conclusions drawn from studies on gene expression, and almost universally results in spurious estimation of target gene expression. Approaches aimed at selecting and validating RGs often make use of different statistical methods, which may lead to conflicting results. Based on published RG validation studies involving hypoxia the present study evaluates the expression of 5 candidate RGs (Actb, Pgk1, Sdha, Gapdh, Rnu6b) as a function of hypoxia exposure and hypothermic treatment in the neonatal rat cerebral cortex–in order to identify RGs that are stably expressed under these experimental conditions–using several statistical approaches that have been proposed to validate RGs. In doing so, we first analyzed RG ranking stability proposed by several widely used statistical methods and related tools, i.e. the Coefficient of Variation (CV) analysis, GeNorm, NormFinder, BestKeeper, and the ΔCt method. Using the Geometric mean rank, Pgk1 was identified as the most stable gene. Subsequently, we compared RG expression patterns between the various experimental groups. We found that these statistical methods, next to producing different rankings per se, all ranked RGs displaying significant differences in expression levels between groups as the most stable RG. As a consequence, when assessing the impact of RG selection on target gene expression quantification, substantial differences in target gene expression profiles were observed. Altogether, by assessing mRNA expression profiles within the neonatal rat brain cortex in hypoxia and hypothermia as a showcase, this study underlines the importance of further validating RGs for each individual experimental paradigm, considering the limitations of the statistical methods used for this aim.
Collapse
Affiliation(s)
- Martín Bustelo
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- * E-mail:
| | - Martín A. Bruno
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - César F. Loidl
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Manuel Rey-Funes
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Harry W. M. Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Antonio W. D. Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
- Instituto de Investigación e Innovación de Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - D. L. A. van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Mathewlynn S, Knutzen L, Impey L. Intrapartum hypoxia and sexual dimorphism in adverse perinatal outcomes. Eur J Obstet Gynecol Reprod Biol 2020; 248:9-13. [PMID: 32182502 DOI: 10.1016/j.ejogrb.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of this study is to evaluate whether markers of intrapartum hypoxia differ according to sex, and if this could explain the increased risk of adverse perinatal outcomes in males. STUDY DESIGN This is a retrospective observational cohort study of non-anomalous, singleton deliveries >36 completed weeks' gestation at a UK teaching hospital over a 4.5 year period. Absent or incomplete cord gas results were excluded and the remaining data were validated according to an established method. The relations between sex and both arterial pH and a composite variable, 'fetal distress' (cases in which operative delivery or caesarean section were undertaken for presumed fetal compromise), were examined using independent samples t-test and Chi-square test. Odds ratios with 95 % confidence intervals were calculated to describe the relation between fetal sex and intermediate-term adverse outcomes. Binary logistic regression was performed to generate odds ratios (with 95 % confidence intervals) adjusted for arterial pH and fetal distress. This was repeated to adjust for labor and induction of labor. RESULTS There were eligible 8758 cases, of which 4655 were male and 4103 female, from a total of 39,148 deliveries during the study period. Neonatal unit admission (OR 1.54, 95 % CI; 1.31-1.80), renal impairment (OR 1.63, 95 % CI; 1.15-2.32), neurological impairment (OR 1.73, 95 % CI; 1.06-2.84) and a composite adverse outcome (OR 1.73, 95 % CI; 1.29-2.33) were all more likely in males, even after adjusting for labor and induction of labor, both of which were more likely males. The mean cord arterial pH of males was lower (7.23 vs 7.24, P = 0.019) although they were not more likely to be acidemic with a pH <7.0 (males 43 (0.92 %) vs females 41 (1.00 %), P = 0.717), and males were also more likely to have fetal distress (834 (17.9 %) vs 588 (14.3 %), P = <0.001). Being male remained associated with adverse outcomes despite adjustment for arterial pH and fetal distress. CONCLUSION Despite a lower mean cord arterial pH and greater incidence of fetal distress in males, intrapartum hypoxia does not account for their worse neonatal outcomes.
Collapse
Affiliation(s)
- Sam Mathewlynn
- Fetal Medicine Unit, Women's Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK.
| | - Liv Knutzen
- British Columbia Women's Hospital, 4500 Oak Street, Vancouver, British Columbia, V6H 3N1, Canada
| | - Lawrence Impey
- Fetal Medicine Unit, Women's Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| |
Collapse
|
6
|
Barkhuizen M, Vles JSH, van Mechelen R, Vermeer M, Kramer BW, Chedraui P, Bergs P, van Kranen-Mastenbroek VHJM, Gavilanes AWD. Preterm Perinatal Hypoxia-Ischemia Does not Affect Somatosensory Evoked Potentials in Adult Rats. Diagnostics (Basel) 2019; 9:E123. [PMID: 31540369 PMCID: PMC6787632 DOI: 10.3390/diagnostics9030123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 11/17/2022] Open
Abstract
Somatosensory evoked potentials (SSEPs) are a valuable tool to assess functional integrity of the somatosensory pathways and for the prediction of sensorimotor outcome in perinatal injuries, such as perinatal hypoxia-ischemia (HI). In the present research, we studied the translational potential of SSEPs together with sensory function in the male adult rat with perinatal HI compared to the male healthy adult rat. Both somatosensory response and evoked potential were measured at 10-11 months after global perinatal HI. Clear evoked potentials were obtained, but there were no group differences in the amplitude or latency of the evoked potentials of the preceding sensory response. The bilateral tactile stimulation test was also normal in both groups. This lack of effect may be ascribed to the late age-of-testing and functional recovery of the rats.
Collapse
Affiliation(s)
- Melinda Barkhuizen
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), 6229HX, Maastricht, The Netherlands.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
- DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom 2531, South Africa.
| | - Johan S H Vles
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
- Child Neurology, Maastricht University Medical Centre, 6229 HX, Maastricht, The Netherlands.
| | - Ralph van Mechelen
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), 6229HX, Maastricht, The Netherlands.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
| | - Marijne Vermeer
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), 6229HX, Maastricht, The Netherlands.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), 6229HX, Maastricht, The Netherlands.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
| | - Peter Chedraui
- Instituto de Investigación e Innovación de Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil 090615, Ecuador.
| | - Paul Bergs
- Clinical Neurophysiology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands.
| | | | - Antonio W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), 6229HX, Maastricht, The Netherlands.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 HX, Maastricht, The Netherlands.
- Instituto de Investigación e Innovación de Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil 090615, Ecuador.
| |
Collapse
|
7
|
Barkhuizen M, van Mechelen R, Vermeer M, Chedraui P, Paes D, van den Hove DL, Vaes B, Mays RW, Steinbusch HW, Robertson NJ, Kramer BW, Gavilanes AW. Systemic multipotent adult progenitor cells improve long-term neurodevelopmental outcomes after preterm hypoxic-ischemic encephalopathy. Behav Brain Res 2019; 362:77-81. [DOI: 10.1016/j.bbr.2019.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/28/2018] [Accepted: 01/09/2019] [Indexed: 11/16/2022]
|
8
|
Barkhuizen M, van den Hove DLA, Vles JSH, Steinbusch HWM, Kramer BW, Gavilanes AWD. 25 years of research on global asphyxia in the immature rat brain. Neurosci Biobehav Rev 2017; 75:166-182. [PMID: 28161509 DOI: 10.1016/j.neubiorev.2017.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system.
Collapse
Affiliation(s)
- M Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa
| | - D L A van den Hove
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - J S H Vles
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Child Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H W M Steinbusch
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - B W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Institute of Biomedicine, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Ecuador.
| |
Collapse
|
9
|
Rey-Funes M, Larrayoz IM, Fernández JC, Contartese DS, Rolón F, Inserra PIF, Martínez-Murillo R, López-Costa JJ, Dorfman VB, Martínez A, Loidl CF. Methylene blue prevents retinal damage in an experimental model of ischemic proliferative retinopathy. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1011-9. [PMID: 26984891 DOI: 10.1152/ajpregu.00266.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/11/2016] [Indexed: 11/22/2022]
Abstract
Perinatal asphyxia induces retinal lesions, generating ischemic proliferative retinopathy, which may result in blindness. Previously, we showed that the nitrergic system was involved in the physiopathology of perinatal asphyxia. Here we analyze the application of methylene blue, a well-known soluble guanylate cyclase inhibitor, as a therapeutic strategy to prevent retinopathy. Male rats (n = 28 per group) were treated in different ways: 1) control group comprised born-to-term animals; 2) methylene blue group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery; 3) perinatal asphyxia (PA) group comprised rats exposed to perinatal asphyxia (20 min at 37°C); and 4) methylene blue-PA group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery, and then the pups were subjected to PA as above. For molecular studies, mRNA was obtained at different times after asphyxia, and tissue was collected at 30 days for morphological and biochemical analysis. Perinatal asphyxia produced significant gliosis, angiogenesis, and thickening of the inner retina. Methylene blue treatment reduced these parameters. Perinatal asphyxia resulted in a significant elevation of the nitrergic system as shown by NO synthase (NOS) activity assays, Western blotting, and (immuno)histochemistry for the neuronal isoform of NOS and NADPH-diaphorase activity. All these parameters were also normalized by the treatment. In addition, methylene blue induced the upregulation of the anti-angiogenic peptide, pigment epithelium-derived factor. Application of methylene blue reduced morphological and biochemical parameters of retinopathy. This finding suggests the use of methylene blue as a new treatment to prevent or decrease retinal damage in the context of ischemic proliferative retinopathy.
Collapse
Affiliation(s)
- Manuel Rey-Funes
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ignacio M Larrayoz
- Angiogenesis Study Group, Center for Biomedical Research of La Rioja, Logroño, Spain;
| | - Juan C Fernández
- Primera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela S Contartese
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Federico Rolón
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Pablo I F Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Buenos Aires, Argentina
| | - Ricardo Martínez-Murillo
- Neurovascular Research Group, Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior Investigaciones Científicas, Madrid, Spain; and
| | - Juan J López-Costa
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Study Group, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - César F Loidl
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Laboratorio de Neurociencia, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina
| |
Collapse
|
10
|
Blanco E, Galeano P, Holubiec MI, Romero JI, Logica T, Rivera P, Pavón FJ, Suarez J, Capani F, Rodríguez de Fonseca F. Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats. Front Neuroanat 2015; 9:141. [PMID: 26578900 PMCID: PMC4630311 DOI: 10.3389/fnana.2015.00141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 01/25/2023] Open
Abstract
Perinatal asphyxia (PA) is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS) is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory, and mood. Endocannabinoids, and other acylethanolamides (AEs) without endocannabinoid activity, have recently received growing attention due to their potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals delivered spontaneously or by cesarean section were employed as controls. At 1 month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and glial fibrillary acidic protein, enzymes responsible for synthesis (DAGLα and NAPE-PLD) and degradation (FAAH) of ECS/AEs and their receptors (CB1 and PPARα) in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since, NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA.
Collapse
Affiliation(s)
- Eduardo Blanco
- Unidad de Gestión Clínica de Salud Mental, Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga Málaga, Spain ; Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de Lleida Lleida, Spain
| | - Pablo Galeano
- Instituto de Investigaciones Bioquímicas de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Fundación Instituto Leloir Buenos Aires, Argentina ; Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Mariana I Holubiec
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Juan I Romero
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Tamara Logica
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental, Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga Málaga, Spain
| | - Juan Suarez
- Unidad de Gestión Clínica de Salud Mental, Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga Málaga, Spain
| | - Francisco Capani
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Laboratorio de Medicina Regenerativa, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga Málaga, Spain
| |
Collapse
|
11
|
Campanille V, Saraceno GE, Rivière S, Logica T, Kölliker R, Capani F, Castilla R. Long lasting cerebellar alterations after perinatal asphyxia in rats. Brain Res Bull 2015; 116:57-66. [DOI: 10.1016/j.brainresbull.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/27/2015] [Accepted: 06/20/2015] [Indexed: 12/18/2022]
|
12
|
Xu L, Dong W, Zhao J, Xu Y. Effect of Marine Collagen Peptides on Physiological and Neurobehavioral Development of Male Rats with Perinatal Asphyxia. Mar Drugs 2015; 13:3653-71. [PMID: 26058015 PMCID: PMC4483650 DOI: 10.3390/md13063653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/21/2015] [Accepted: 06/01/2015] [Indexed: 11/17/2022] Open
Abstract
Asphyxia during delivery produces long-term deficits in brain development. We investigated the neuroprotective effects of marine collagen peptides (MCPs), isolated from Chum Salmon skin by enzymatic hydrolysis, on male rats with perinatal asphyxia (PA). PA was performed by immersing rat fetuses with uterine horns removed from ready-to-deliver rats into a water bath for 15 min. Caesarean-delivered pups were used as controls. PA rats were intragastrically administered with 0.33 g/kg, 1.0 g/kg and 3.0 g/kg body weight MCPs from postnatal day 0 (PND 0) till the age of 90-days. Behavioral tests were carried out at PND21, PND 28 and PND 90. The results indicated that MCPs facilitated early body weight gain of the PA pups, however had little effects on early physiological development. Behavioral tests revealed that MCPs facilitated long-term learning and memory of the pups with PA through reducing oxidative damage and acetylcholinesterase (AChE) activity in the brain, and increasing hippocampus phosphorylated cAMP-response element binding protein (p-CREB) and brain derived neurotrophic factor (BDNF) expression.
Collapse
Affiliation(s)
- Linlin Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China.
| | - Wenhong Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China.
| | - Jie Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China.
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China.
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No. 38 Xue Yuan Road, Hai Dian District, Beijing 100191, China.
| |
Collapse
|
13
|
Dunn L, Prior T, Greer R, Kumar S. Gender specific intrapartum and neonatal outcomes for term babies. Eur J Obstet Gynecol Reprod Biol 2015; 185:19-22. [DOI: 10.1016/j.ejogrb.2014.11.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/16/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
|
14
|
Sexual dimorphism and brain lateralization impact behavioral and histological outcomes following hypoxia-ischemia in P3 and P7 rats. Neuroscience 2015; 290:581-93. [PMID: 25620049 DOI: 10.1016/j.neuroscience.2014.12.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/11/2014] [Accepted: 12/21/2014] [Indexed: 01/12/2023]
Abstract
Neonatal cerebral hypoxia-ischemia (HI) is a major cause of neurological disorders and the most common cause of death and permanent disability worldwide, affecting 1-2/1000 live term births and up to 60% of preterm births. The Levine-Rice is the main experimental HI model; however, critical variables such as the age of animals, sex and hemisphere damaged still receive little attention in experimental design. We here investigated the influence of sex and hemisphere injured on the functional outcomes and tissue damage following early (hypoxia-ischemia performed at postnatal day 3 (HIP3)) and late (hypoxia-ischemia performed at postnatalday 7 (HIP7)) HI injury in rats. Male and female 3- (P3) or 7-day-old (P7) Wistar rats had their right or left common carotid artery occluded and exposed to 8% O2 for 1.5h. Sham animals had their carotids exposed but not occluded nor submitted to the hypoxic atmosphere. Behavioral impairments were assessed in the open field arena, in the Morris water maze and in the inhibitory avoidance task; volumetric extent of tissue damage was assessed using cresyl violet staining at adult age, after completing behavioral assessment. The overall results demonstrate that: (1) HI performed at the two distinct ages cause different behavioral impairments and histological damage in adult rats (2) behavioral deficits following neonatal HIP3 and HIP7 are task-specific and dependent on sex and hemisphere injured (3) HIP7 animals presented the expected motor and cognitive deficits (4) HIP3 animals displayed discrete but significant cognitive impairments in the left hemisphere-injured females (5) HI brain injury and its consequences are determined by animal's sex and the damaged hemisphere, markedly in HIP3-injured animals.
Collapse
|
15
|
Short- and long-term consequences of perinatal asphyxia: looking for neuroprotective strategies. ADVANCES IN NEUROBIOLOGY 2015; 10:169-98. [PMID: 25287541 DOI: 10.1007/978-1-4939-1372-5_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. A primary insult is first produced by the length of the time without oxygenation, leading to hypoxia/ischemia and death if oxygenation is not promptly established. A second insult is produced by re-oxygenation, eliciting a cascade of biochemical events for restoring function, implying, however, improper homeostasis. The effects observed long after perinatal asphyxia can be explained by over-expression of sentinel proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1), competing for oxidised nicotinamide adenine dinucleotide (NAD(+)) during re-oxygenation. Asphyxia also induces transcriptional activation of pro-inflammatory factors, including nuclear factor κB (NFκB) and its subunit p65, whose translocation to the nucleus is significantly increased in brain tissue from asphyxia-exposed animals, in tandem with PARP-1 overactivation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. It is proposed that PARP-1 inhibition also down-regulates the expression of pro-inflammatory cytokines.Nicotinamide is a suitable PARP-1 inhibitor, whose effects have been studied in an experimental model of global perinatal asphyxia in rats, inducing the insult by immersing rat foetuses into a water bath for various periods of time. Following asphyxia, the pups are delivered, immediately treated, or given to surrogate dams for nursing, pending further experiments. Systemic administration of nicotinamide 1 h after the insult inhibited PARP-1 overactivity in peripheral and brain tissue, preventing several of the long-term consequences elicited by perinatal asphyxia, supporting the idea that it constitutes a lead for exploring compounds with similar or better pharmacological profiles.
Collapse
|
16
|
Muñiz J, Romero J, Holubiec M, Barreto G, González J, Saint-Martin M, Blanco E, Carlos Cavicchia J, Castilla R, Capani F. Neuroprotective effects of hypothermia on synaptic actin cytoskeletal changes induced by perinatal asphyxia. Brain Res 2014; 1563:81-90. [DOI: 10.1016/j.brainres.2014.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 01/28/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
17
|
Cox-Limpens KEM, Gavilanes AWD, Zimmermann LJI, Vles JSH. Endogenous brain protection: what the cerebral transcriptome teaches us. Brain Res 2014; 1564:85-100. [PMID: 24713346 DOI: 10.1016/j.brainres.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/23/2014] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
Despite efforts to reduce mortality caused by stroke and perinatal asphyxia, these are still the 2nd largest cause of death worldwide in the age groups they affect. Furthermore, survivors of cerebral hypoxia-ischemia often suffer neurological morbidities. A better understanding of pathophysiological mechanisms in focal and global brain ischemia will contribute to the development of tailored therapeutic strategies. Similarly, insight into molecular pathways involved in preconditioning-induced brain protection will provide possibilities for future treatment. Microarray technology is a great tool for investigating large scale gene expression, and has been used in many experimental studies of cerebral ischemia and preconditioning to unravel molecular (patho-) physiology. However, the amount of data across microarray studies can be daunting and hard to interpret which is why we aim to provide a clear overview of available data in experimental rodent models. Findings for both injurious ischemia and preconditioning are reviewed under separate subtopics such as cellular stress, inflammation, cytoskeleton and cell signaling. Finally, we investigated the transcriptome signature of brain protection across preconditioning studies in search of transcripts that were expressed similarly across studies. Strikingly, when comparing genes discovered by single-gene analysis we observed only 15 genes present in two studies or more. We subjected these 15 transcripts to DAVID Annotation Clustering analysis to derive their shared biological meaning. Interestingly, the MAPK signaling pathway and more specifically the ERK1/2 pathway geared toward cell survival/proliferation was significantly enriched. To conclude, we advocate incorporating pathway analysis into all microarray data analysis in order to improve the detection of similarities between independently derived datasets.
Collapse
Affiliation(s)
- K E M Cox-Limpens
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - L J I Zimmermann
- Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - J S H Vles
- Department of Pediatric Neurology, Maastricht University Medical Center (MUMC), P.Debyelaan 25, 6229 HX Maastricht, The Netherlands.
| |
Collapse
|
18
|
Herrera-Marschitz M, Neira-Pena T, Rojas-Mancilla E, Espina-Marchant P, Esmar D, Perez R, Muñoz V, Gutierrez-Hernandez M, Rivera B, Simola N, Bustamante D, Morales P, Gebicke-Haerter PJ. Perinatal asphyxia: CNS development and deficits with delayed onset. Front Neurosci 2014; 8:47. [PMID: 24723845 PMCID: PMC3972459 DOI: 10.3389/fnins.2014.00047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/22/2014] [Indexed: 12/21/2022] Open
Abstract
Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. The primary insult relates to the duration of the period lacking oxygenation, leading to death if not re-established. Re-oxygenation leads to a secondary insult, related to a cascade of biochemical events required for restoring proper function. Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated to mental and neurological diseases with delayed clinical onset, by mechanisms not yet clarified. In the experimental scenario, the effects observed long after perinatal asphyxia have been explained by overexpression of sentinel proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1), competing for NAD+ during re-oxygenation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. Asphyxia induces transcriptional activation of pro-inflammatory factors, in tandem with PARP-1 overactivation, and pharmacologically induced PARP-1 inhibition also down-regulates the expression of proinflammatory cytokines. Nicotinamide has been proposed as a suitable PARP-1 inhibitor. Its effect has been studied in an experimental model of global hypoxia in rats. In that model, the insult is induced by immersing rat fetus into a water bath for various periods of time. Following asphyxia, the pups are delivered, treated, and nursed by surrogate dams, pending further experiments. Nicotinamide rapidly distributes into the brain following systemic administration, reaching steady state concentrations sufficient to inhibit PARP-1 activity for several hours, preventing several of the long-term consequences of perinatal asphyxia, supporting the idea that nicotinamide constitutes a lead for exploring compounds with similar or better pharmacological profiles.
Collapse
Affiliation(s)
- Mario Herrera-Marschitz
- Millenium Institute BNI-Chile Santiago, Chile ; Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Tanya Neira-Pena
- Millenium Institute BNI-Chile Santiago, Chile ; Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile ; Department of Chemical-Biological Science, University Bernardo O'Higgins Santiago, Chile
| | | | | | - Daniela Esmar
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Ronald Perez
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Valentina Muñoz
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | | | - Benjamin Rivera
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University Cagliari, Italy
| | - Diego Bustamante
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Paola Morales
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Peter J Gebicke-Haerter
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile ; Department of Psychopharmacology, Central Institute of Mental Health J5 Mannheim, Germany
| |
Collapse
|
19
|
Subchronic perinatal asphyxia in rats: Embryo–foetal assessment of a new model of oxidative stress during critical period of development. Food Chem Toxicol 2013; 61:233-9. [DOI: 10.1016/j.fct.2013.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/10/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022]
|
20
|
Grimaldi M, Romer I, de Apodaca MTG, Iturbe L, Catania ID, González J, Kolliker-Fres R, Barreto G, Capani F. Early changes in the synapses of the neostriatum induced by perinatal asphyxia. Nutr Neurosci 2012; 15:103-10. [PMID: 22732353 DOI: 10.1179/1476830511y.0000000026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Perinatal asphyxia (PA) is a medical condition associated with a high short-term morbimortality and different long-term neurological diseases. In previous work we have observed at 6 months post-synaptic densities (PSDs) alterations compatible with neurodegeneration highly correlated with the increment in the ubiquitination. Although alterations in the synaptic organization and function have been related with neuronal death after hypoxia, little is known about the synaptic changes in young animals exposed to PA. The main aim of this work is to study the PSDs changes in striatum of 30-day-old rats subjected to PA. Using two-dimensional electron microscopic analyses of synapses staining with ethanolic phosphotungstic acid we observed an increment of PSD thickness in severe hypoxic rats. These data are consistent with the western blot analysis that showed an increment in ubiquitination levels in the synapses of severe hypoxic rat. We did observe any alterations neither in synaptic structure nor in ubiquitinization in mild asphyctic rats. These data suggest that hypoxia might cause early misfolding and aggregation of synaptic proteins in severe anoxic animas that could induce long-term neurodegeneration.
Collapse
Affiliation(s)
- M Grimaldi
- Universidad Argentina John F Kennedy, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fleiss B, Coleman HA, Castillo-Melendez M, Ireland Z, Walker DW, Parkington HC. Effects of birth asphyxia on neonatal hippocampal structure and function in the spiny mouse. Int J Dev Neurosci 2011; 29:757-66. [PMID: 21641987 DOI: 10.1016/j.ijdevneu.2011.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/11/2011] [Accepted: 05/18/2011] [Indexed: 12/16/2022] Open
Abstract
Studies of human neonates, and in animal experiments, suggest that birth asphyxia results in functional compromise of the hippocampus, even when structural damage is not observable or resolves in early postnatal life. The aim of this study was to determine if changes in hippocampal function occur in a model of birth asphyxia in the precocial spiny mouse where it is reported there is no major lesion or infarct. Further, to assess if, as in human infants, this functional deficit has a sex-dependent component. At 37 days gestation (term=39 days) spiny mice fetuses were either delivered immediately by caesarean section (control group) or exposed to 7.5min of in utero asphyxia causing systemic acidosis and hypoxia. At 5 days of age hippocampal function was assessed ex vivo in brain slices, or brains were collected for examination of structure or protein expression. This model of birth asphyxia did not cause infarct or cystic lesion in the postnatal day 5 (P5) hippocampus, and the number of proliferating or pyknotic cells in the hippocampus was unchanged, although neuronal density in the CA1 and CA3 was increased. Protein expression of synaptophysin, brain-derived neurotrophic factor (BDNF), and the inositol trisphosphate receptor 1 (IP(3)R1) were all significantly increased after birth asphyxia, while long-term potentiation (LTP), paired pulse facilitation (PPF), and post-tetanic potentiation (PTP) were all reduced at P5 by birth asphyxia. In control P5 pups, PPF and synaptic fatigue were greater in female compared to male pups, and after birth asphyxia PPF and synaptic fatigue were reduced to a greater extent in female vs. male pups. In contrast, the asphyxia-induced increase in synaptophysin expression and neuronal density were greater in male pups. Thus, birth asphyxia in this precocial species causes functional deficits without major structural damage, and there is a sex-dependent effect on the hippocampus. This may be a clinically relevant model for assessing treatments delivered either before or after birth to protect this vulnerable region of the developing brain.
Collapse
Affiliation(s)
- B Fleiss
- Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Galeano P, Calvo EB, Oliveira DM, Cuenya L, Kamenetzky GV, Mustaca AE, Barreto GE, Giraldez‐Alvarez LD, Milei J, Capani F. Long‐lasting effects of perinatal asphyxia on exploration, memory and incentive downshift. Int J Dev Neurosci 2011; 29:609-19. [DOI: 10.1016/j.ijdevneu.2011.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 04/25/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022] Open
Affiliation(s)
- Pablo Galeano
- Instituto de Investigaciones “Prof. Dr. Alberto C. Taquini” (ININCA)Facultad de Medicina, UBA‐CONICETMarcelo T. de Alvear 2270C1122AAJBuenos AiresArgentina
| | - Eduardo Blanco Calvo
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de PsicologíaUniversidad de MálagaCampus de Teatinos s/n29071MálagaSpain
- Laboratorio de Medicina Regenerativa, Fundación IMABISHospital Carlos HayaAvenida Carlos Haya 8229010MálagaSpain
| | - Diêgo Madureira Oliveira
- Laboratório de Neuroquímica e Biologia CelularInstituto de Ciências da SaúdeUniversidade Federal da Bahia (UFBA)Campus do Canela40110‐100SalvadorBahiaBrazil
| | - Lucas Cuenya
- Laboratorio de Psicología Experimental y Aplicada (PSEA)Instituto de Investigaciones Médicas (IDIM), UBA‐CONICETCombatientes de Malvinas 3150C1427AROBuenos AiresArgentina
| | - Giselle Vanesa Kamenetzky
- Laboratorio de Psicología Experimental y Aplicada (PSEA)Instituto de Investigaciones Médicas (IDIM), UBA‐CONICETCombatientes de Malvinas 3150C1427AROBuenos AiresArgentina
| | - Alba Elisabeth Mustaca
- Laboratorio de Psicología Experimental y Aplicada (PSEA)Instituto de Investigaciones Médicas (IDIM), UBA‐CONICETCombatientes de Malvinas 3150C1427AROBuenos AiresArgentina
| | - George Emilio Barreto
- Department of AnesthesiaStanford University School of MedicineStanford UniversityPalo Alto, StanfordCA94305‐5117USA
| | - Lisandro Diego Giraldez‐Alvarez
- Laboratório de Neuroquímica e Biologia CelularInstituto de Ciências da SaúdeUniversidade Federal da Bahia (UFBA)Campus do Canela40110‐100SalvadorBahiaBrazil
| | - José Milei
- Instituto de Investigaciones “Prof. Dr. Alberto C. Taquini” (ININCA)Facultad de Medicina, UBA‐CONICETMarcelo T. de Alvear 2270C1122AAJBuenos AiresArgentina
| | - Francisco Capani
- Instituto de Investigaciones “Prof. Dr. Alberto C. Taquini” (ININCA)Facultad de Medicina, UBA‐CONICETMarcelo T. de Alvear 2270C1122AAJBuenos AiresArgentina
| |
Collapse
|
23
|
Rey-Funes M, Ibarra ME, Dorfman VB, Serrano J, Fernández AP, Martínez-Murillo R, Martínez A, Coirini H, Rodrigo J, Loidl CF. Hypothermia prevents nitric oxide system changes in retina induced by severe perinatal asphyxia. J Neurosci Res 2011; 89:729-43. [DOI: 10.1002/jnr.22556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 11/06/2022]
|
24
|
Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Neurotox Res 2010; 19:603-27. [PMID: 20645042 PMCID: PMC3291837 DOI: 10.1007/s12640-010-9208-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/19/2010] [Accepted: 06/30/2010] [Indexed: 12/19/2022]
Abstract
Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase β, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care.
Collapse
|
25
|
Strackx E, Van den Hove DL, Prickaerts J, Zimmermann L, Steinbusch HW, Blanco CE, Danilo Gavilanes A, Vles JH. Fetal asphyctic preconditioning protects against perinatal asphyxia-induced behavioral consequences in adulthood. Behav Brain Res 2010; 208:343-51. [DOI: 10.1016/j.bbr.2009.11.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 11/23/2009] [Accepted: 11/30/2009] [Indexed: 01/21/2023]
|
26
|
Estradiol therapy in adulthood reverses glial and neuronal alterations caused by perinatal asphyxia. Exp Neurol 2010; 223:615-22. [PMID: 20206165 DOI: 10.1016/j.expneurol.2010.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/17/2010] [Accepted: 02/20/2010] [Indexed: 01/01/2023]
Abstract
The capacity of the ovarian hormone 17beta-estradiol to prevent neurodegeneration has been characterized in several animal models of brain and spinal cord pathology. However, the potential reparative activity of the hormone under chronic neurodegenerative conditions has received less attention. In this study we have assessed the effect of estradiol therapy in adulthood on chronic glial and neuronal alterations caused by perinatal asphyxia (PA) in rats. Four-month-old male Sprague-Dawley rats submitted to PA just after delivery, and their control littermates, were injected for 3 consecutive days with 17beta estradiol or vehicle. Animals subjected to PA and treated with vehicle showed an increased astrogliosis, focal swelling and fragmented appearance of MAP-2 immunoreactive dendrites, decreased MAP-2 immunoreactivity and decreased phosphorylation of high and medium molecular weight neurofilaments in the hippocampus, compared to control animals. Estradiol therapy reversed these alterations. These findings indicate that estradiol is able to reduce, in adult animals, chronic reactive astrogliosis and neuronal alterations caused by an early developmental neurodegenerative event, suggesting that the hormone might induce reparative actions in the Central Nervous System (CNS).
Collapse
|
27
|
Rey-Funes M, Ibarra ME, Dorfman VB, López EM, López-Costa JJ, Coirini H, Loidl CF. Hypothermia prevents the development of ischemic proliferative retinopathy induced by severe perinatal asphyxia. Exp Eye Res 2010; 90:113-20. [DOI: 10.1016/j.exer.2009.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/16/2009] [Accepted: 09/21/2009] [Indexed: 02/01/2023]
|
28
|
Morales P, Simola N, Bustamante D, Lisboa F, Fiedler J, Gebicke-Haerter PJ, Morelli M, Tasker RA, Herrera-Marschitz M. Nicotinamide prevents the long-term effects of perinatal asphyxia on apoptosis, non-spatial working memory and anxiety in rats. Exp Brain Res 2009; 202:1-14. [PMID: 20012537 DOI: 10.1007/s00221-009-2103-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/13/2009] [Indexed: 01/04/2023]
Abstract
There is no established treatment for the long-term effects produced by perinatal asphyxia. Thus, we investigated the neuroprotection provided by nicotinamide against the effects elicited by perinatal asphyxia on hippocampus and behaviour observed at 30-90 days of age. Asphyxia was induced by immersing foetuses-containing uterine horns, removed from ready-to-deliver rats into a water bath at 37 degrees C for 20 min. Caesarean-delivered siblings were used as controls. Saline or nicotinamide (0.8 mmol/kg, i.p.) was administered to control and asphyxia-exposed animals 24, 48, and 72 h after birth. The animals were examined for morphological changes in hippocampus, focusing on delayed cell death and mossy fibre sprouting, and behaviour, focusing on cognitive behaviour and anxiety. At the age of 30-45 days, asphyxia-exposed rats displayed (1) increased apoptosis, assessed in whole hippocampus by nuclear Hoechst staining, and (2) increased mossy fibre sprouting, restricted to the stratum oriens of dorsal hippocampus, assessed by Timm's staining. Rats from the same cohorts displayed (3) deficits in non-spatial working memory, assessed by a novel object recognition task, and (4) increased anxiety, assessed by an elevated plus-maze test when examined at the age of 90 days. Nicotinamide prevented the effects elicited by perinatal asphyxia on apoptosis, working memory, and anxiety.
Collapse
Affiliation(s)
- Paola Morales
- Programme of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70,000, Santiago 7, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cebral E, Capani F, Selvín-Testa A, Funes MR, Coirini H, Loidl CF. NEOSTRIATAL CYTOSKELETON CHANGES FOLLOWING PERINATAL ASPHYXIA: EFFECT OF HYPOTHERMIA TREATMENT. Int J Neurosci 2009; 116:697-714. [PMID: 16753896 DOI: 10.1080/00207450600674970] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Long-term changes of different types of neurofilaments (NF) and glial fibrillar acid protein (GFAP) were studied in neostriatal rat subjected to perinatal asphyxia (PA) under normothermic and hypothermic (15 degrees C) conditions, using immunohistochemistry for light and electron microscopy. Neostriatal neurons of 6-month-old rats that were subjected to 19 and 20 min of PA, showed an increase of NF 200 kDa immunostaining mainly in the axon fascicles in comparison with the control and hypothermia groups. In contrast, no alterations were seen with NF68 and NF160 neurofilament antibodies. Furthermore, the same PA groups showed astroglial cells with enhanced GFAP immunoreactivity, evidencing a typical astroglial reaction with a clear hypertrophy of these cells. A quantitative image analysis confirmed these observations. Hypothermic treated animals did show neither astroglial nor neuronal cytoskeletal changes in comparison to the control group. These findings showed that PA produces chronic cytoskeletal alterations in the neostriatum cells that can be prevented by hypothermia.
Collapse
Affiliation(s)
- Elisa Cebral
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, Facultad de Medicina Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
30
|
Protein ubiquitination in postsynaptic densities after hypoxia in rat neostriatum is blocked by hypothermia. Exp Neurol 2009; 219:404-13. [PMID: 19555686 DOI: 10.1016/j.expneurol.2009.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/24/2009] [Accepted: 06/14/2009] [Indexed: 11/23/2022]
Abstract
Synaptic dysfunction has been associated with neuronal cell death following hypoxia. The lack of knowledge on the mechanisms underlying this dysfunction prompted us to investigate the morphological changes in the postsynaptic densities (PSDs) induced by hypoxia. The results presented here demonstrate that PSDs of the rat neostriatum are highly modified and ubiquitinated 6 months after induction of hypoxia in a model of perinatal asphyxia. Using both two dimensional (2D) and three dimensional (3D) electron microscopic analyses of synapses stained with ethanolic phosphotungstic acid (E-PTA), we observed an increment of PSD thickness dependent on the duration and severity of the hypoxic insult. The PSDs showed clear signs of damage and intense staining for ubiquitin. These morphological and molecular changes were effectively blocked by hypothermia treatment, one of the most effective strategies for hypoxia-induced brain injury available today. Our data suggest that synaptic dysfunction following hypoxia may be caused by long-term misfolding and aggregation of proteins in the PSD.
Collapse
|
31
|
Dorfman VB, Rey-Funes M, Bayona JC, López EM, Coirini H, Loidl CF. Nitric oxide system alteration at spinal cord as a result of perinatal asphyxia is involved in behavioral disabilities: hypothermia as preventive treatment. J Neurosci Res 2009; 87:1260-9. [PMID: 19006088 DOI: 10.1002/jnr.21922] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perinatal asphyxia (PA) is able to induce sequelae such as spinal spasticity. Previously, we demonstrated hypothermia as a neuroprotective treatment against cell degeneration triggered by increased nitric oxide (NO) release. Because spinal motoneurons are implicated in spasticity, our aim was to analyze the involvement of NO system at cervical and lumbar motoneurons after PA as well as the application of hypothermia as treatment. PA was performed by immersion of both uterine horns containing full-term fetuses in a water bath at 37 degrees C for 19 or 20 min (PA19 or PA20) or at 15 degrees C for 20 min (hypothermia during PA-HYP). Some randomly chosen PA20 rats were immediately exposed for 5 min over grain ice (hypothermia after PA-HPA). Full-term vaginally delivered rats were used as control (CTL). We analyzed NO synthase (NOS) activity, expression and localization by nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) reactivity, inducible and neuronal NOS (iNOS and nNOS) by immunohistochemistry, and protein nitrotyrosilation state. We observed an increased NOS activity at cervical spinal cord of 60-day-old PA20 rats, with increased NADPH-d, iNOS, and nitrotyrosine expression in cervical motoneurons and increased NADPH-d in neurons of layer X. Lumbar neurons were not altered. Hypothermia was able to maintain CTL values. Also, we observed decreased forelimb motor potency in the PA20 group, which could be attributed to changes at cervical motoneurons. This study shows that PA can induce spasticity produced by alterations in the NO system of the cervical spinal cord. Moreover, this situation can be prevented by perinatal hypothermia.
Collapse
Affiliation(s)
- Verónica Berta Dorfman
- Laboratorio de Neuropatología Experimental-Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- E Nagy
- School of Psychology, The University of Dundee, Dundee, Scotland.
| | | | | | | |
Collapse
|
33
|
A combined behavioral and morphological study on the effects of fetal asphyxia on the nigrostriatal dopaminergic system in adult rats. Exp Neurol 2008; 211:413-22. [DOI: 10.1016/j.expneurol.2008.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/18/2008] [Accepted: 02/10/2008] [Indexed: 11/20/2022]
|
34
|
Simola N, Bustamante D, Pinna A, Pontis S, Morales P, Morelli M, Herrera-Marschitz M. Acute perinatal asphyxia impairs non-spatial memory and alters motor coordination in adult male rats. Exp Brain Res 2007; 185:595-601. [PMID: 17989968 DOI: 10.1007/s00221-007-1186-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 10/17/2007] [Indexed: 11/24/2022]
Abstract
A large body of clinical evidence suggests a possible association between perinatal asphyxia and the onset of early, as well as long-term, neurological and psychiatric disorders including cognitive deficits. The present study investigated cognitive and motor function modifications in a well characterized and clinically relevant experimental rat model of human perinatal asphyxia. The results reported here show that adult rats exposed to a single (20 min) asphyctic episode at delivery displayed: (a) a deficit in non-spatial memory, assessed in a novel object recognition task; (b) an impaired motor coordination, measured by the rotarod test. On the other hand, gross motor activity and spatial memory, evaluated in both the Y maze and the Barnes maze, were not affected by perinatal asphyxia. The results of this study provide further insights into the long-term effects of perinatal asphyxia on neurobehavioural functions.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Toxicology and Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Bonsignore LT, Venerosi A, Chiarotti F, Alleva E, Cirulli F. Acute perinatal asphyxia at birth has long-term effects on behavioural arousal and maternal behaviour in lactating rats. Behav Brain Res 2006; 172:54-62. [PMID: 16712975 DOI: 10.1016/j.bbr.2006.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/12/2006] [Accepted: 04/13/2006] [Indexed: 12/17/2022]
Abstract
This study analysed the long-term consequences of an asphyctic event at birth on maternal behaviour and emotionality in rats. Pregnant Wistar rats were delivered by Caesarean section and the pups, still in the uterus horns, were placed into a water bath at 37 degrees C for periods of 0 (Caesarean delivery, CD) or 20 min (asphyxia, CD+20). Control subjects were born by vaginal delivery (VD). Subsequently, pups were given to surrogate mothers, weaned at 21 days, and mated at adulthood. After giving birth, differences in maternal competence and behavioural arousal were assessed observing: (i) maternal behaviour after reunion with the pups following a 3h separation, on postpartum day (PPD) 4; (ii) behaviour in an elevated plus-maze test, on postpartum day 7; and (iii) performance in a fear conditioning test, in which subjects learned to associate a conditional stimulus with an aversive unconditioned stimulus (postpartum days 7-8). Results indicate that subjects in the CD+20 group showed a deficit in maternal care, taking a longer time to retrieve the whole litter and often failing to retrieve all pups. Both CD and CD+20 groups showed higher behavioural activity in the plus-maze. In addition, when tested in the fear conditioning paradigm, the CD+20 group showed a lower latency to perform freezing behaviour in the auditory cue trial. The changes in behavioural arousal described suggest that the dopaminergic system may be a potential neurochemical target for an early hypoxic insult and indicate maternal behaviour as a useful endpoint to study the effects of early birth insult on brain function.
Collapse
Affiliation(s)
- Luca T Bonsignore
- Section of Behavioural Neuroscience, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| | | | | | | | | |
Collapse
|
36
|
Caputa M, Rogalska J, Wentowska K, Nowakowska A. Perinatal asphyxia, hyperthermia and hyperferremia as factors inducing behavioural disturbances in adulthood: A rat model. Behav Brain Res 2005; 163:246-56. [PMID: 16038989 DOI: 10.1016/j.bbr.2005.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/16/2005] [Accepted: 05/19/2005] [Indexed: 11/19/2022]
Abstract
Alertness was studied in adult male Wistar rats after neonatal critical anoxia applied under three different thermal conditions: (i) at physiological neonatal body temperature of 33 degrees C, (ii) at body temperature elevated to 37 degrees C, and (iii) at body temperature elevated to 39 degrees C (both during anoxia and for 2 h postanoxia). To elucidate the effect of iron-dependent postanoxic oxidative damage to the brain, half of the group (iii) was injected with deferoxamine, a chelator of iron. Postanoxic behavioural disturbances were recorded in open-field, elevated plus-maze, and sudden silence tests when the rats reached the age of 4 month. Moreover, spontaneous motor activity of the rats was recorded radiotelemetrically in their home-cages. Both open-field stress-induced and spontaneous motor activity were reduced in rats subjected to neonatal anoxia under hyperthermic conditions. In contrast, these rats were hyperactive in the plus-maze test. Both the plus-maze and sudden silence tests revealed that these rats show reduced alertness to external stimuli signalling potential dangers. The behavioural disturbances were prevented by the body temperature of 33 degrees C and by postanoxic administration of deferoxamine. These data support the conclusion that permanent postanoxic behavioural disturbances are due to iron-dependent oxidative damage to the brain, which can be prevented by the reduced neonatal body temperature.
Collapse
Affiliation(s)
- Michał Caputa
- Department of Animal Physiology, Institute of General and Molecular Biology, N. Copernicus University, Toruń, Poland.
| | | | | | | |
Collapse
|
37
|
Fink EL, Marco CD, Donovan HA, Alexander H, Dixon CE, Jenkins LW, Stange CJ, Kochanek PM, Clark RSB. Brief induced hypothermia improves outcome after asphyxial cardiopulmonary arrest in juvenile rats. Dev Neurosci 2005; 27:191-9. [PMID: 16046854 DOI: 10.1159/000085992] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 10/20/2004] [Indexed: 11/19/2022] Open
Abstract
The American Heart Association has endorsed the use of mild hypothermia for adults after cardiopulmonary arrest. However, there are no contemporary trials testing hypothermia in children after cardiopulmonary arrest and extrapolation from adult studies is problematic given differences in brain development and primary etiology (asphyxia in children vs. ventricular arrhythmia in adults). Accordingly, we tested the effects of mild postresuscitative hypothermia on functional and histopathological outcome after asphyxial cardiac arrest in juvenile rats. Postnatal day 17 rats were subjected to 8 min of asphyxia-induced cardiac arrest followed by resuscitation. Rats were randomized to normothermic (37 degrees C), hypothermic (32 degrees C), or unregulated temperature groups (n = 7-8/group) to begin after return of spontaneous circulation for a duration of 1 h. Brain temperature in the unregulated group dropped to 34.0 +/- 0.4 degrees C at 1 h. The hypothermic group had improved motor function assessed using beam balance and inclined plane tests vs. the normothermic group. The depth of hypothermia was associated with increased CA1 hippocampal neuron survival at 5 weeks. Neurodegeneration in the CA1 hippocampus assessed using Fluoro-Jade B labeling at 5 weeks was not detected in the 32 degrees C group, whereas 2/7 and 4/7 rats in the 34 and 37 degrees C groups, respectively, showed neurodegeneration. Brief treatment with moderate induced hypothermia improved functional outcome and prevented long-term neurodegeneration in a model that mimics the clinical and histopathological scenario of pediatric cardiac arrest. Similar to adults, infants and children may benefit from induced hypothermia after cardiopulmonary arrest, warranting further study.
Collapse
Affiliation(s)
- Ericka L Fink
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rogalska J, Caputa M, Wentowska K, Nowakowska A. Stress-induced behaviour in juvenile rats: effects of neonatal asphyxia, body temperature and chelation of iron. Behav Brain Res 2004; 154:321-9. [PMID: 15313019 DOI: 10.1016/j.bbr.2004.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/20/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
Newborn mammals, showing reduced normal body temperature, might be protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we investigated the effects of (1) neonatal body temperature and neonatal critical anoxia as well as (2) postanoxic chelation of iron with deferoxamine, on open-field stress-induced behaviour in juvenile rats. The third aim of this study was to compare (after the above-mentioned treatments) circadian changes in spontaneous motor activity and body temperature in juvenile rats permanently protected from any stress. Neonatal anoxia at body temperature adjusted (both during anoxia and 2 h reoxygenation) to a level typical of healthy (37 degrees C) or febrile (39 degrees C) adults led to the stress-induced hyperactivity in juvenile (5-45 days old) rats. Both normal neonatal body temperature of 33 degrees C and chelation of iron prevented the hyperactivity in rats. Neither neonatal body temperature nor neonatal anoxia affected spontaneous motor activity or body temperature of juvenile rats, recorded in their home-cages with implantable transmitters. Circadian rhythmicity was also undisturbed. Presented data support the hypothesis that physiologically reduced neonatal body temperature can provide a protection against iron-mediated postanoxic disturbances of behavioural stress responses in juvenile rats.
Collapse
Affiliation(s)
- Justyna Rogalska
- Department of Animal Physiology, Institute of General and Molecular Biology, N. Copernicus University, ul. Gagarina 9, 87-100 Toruń, Poland.
| | | | | | | |
Collapse
|
39
|
Perri T, Ferber A, Digli A, Rabizadeh E, Weissmann-Brenner A, Divon MY. Nucleated Red Blood Cells in Uncomplicated Prolonged Pregnancy. Obstet Gynecol 2004; 104:372-6. [PMID: 15292014 DOI: 10.1097/01.aog.0000133483.94020.04] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Elevated counts of nucleated red blood cells (NRBCs), as well as prolongation of pregnancy, have been suggested as predictors of adverse perinatal outcome. However, the association between these 2 variables has received only minimal attention. We sought to evaluate fetal NRBCs in prolonged pregnancies. METHODS Umbilical cord blood was prospectively collected at delivery from 75 prolonged (at or beyond 287 days) pregnancies. One hundred and fifty term deliveries (260-286 days) served as controls. All pregnancies were accurately dated with the use of first-trimester sonography. Fetal biophysical profile testing was initiated at 40 weeks of gestation. Patients were delivered if they were in spontaneous labor or the biophysical profile was nonreassuring or by 42 weeks of gestation. Nucleated red blood cell counts were expressed per 100 white blood cells (WBC). Umbilical artery pH studies, as well as other demographic and clinical variables, were obtained. RESULTS Prolonged pregnancy was associated with a significantly increased incidence of induction of labor and a greater birth weight. There were no other differences between the study group and controls. The median NRBCs per 100 WBCs in prolonged pregnancy was not significantly elevated over the term values (median 3, range 0-35 versus median 3, range 0-34, respectively; P =.25). Neonatal outcome was also comparable between groups. The univariate regression analysis demonstrated a significant association between elevated NRBC counts and low arterial cord blood pH (P <.008, R = 0.175), elevated base excess (P =.02, R = 0.149), low platelet counts (P =.046, R = 0.134), and male gender (P =.028). Stepwise regression analysis revealed that low arterial cord blood pH and male gender were the only independent variables predicting elevated NRBC counts at birth. CONCLUSION The findings of this study suggest that elevated NRBC counts are associated with specific pregnancy complications rather than uncomplicated prolonged pregnancies in general.
Collapse
Affiliation(s)
- Tamar Perri
- Department of Obstetrics and Gynecology, Rabin Medical Center, Petah-Tikva, Israel
| | | | | | | | | | | |
Collapse
|
40
|
Weitzdoerfer R, Pollak A, Lubec B. Perinatal asphyxia in the rat has lifelong effects on morphology, cognitive functions, and behavior. Semin Perinatol 2004; 28:249-56. [PMID: 15565784 DOI: 10.1053/j.semperi.2004.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perinatal asphyxia (PA) is a major determinant of neurological morbidity and mortality in the neonatal period. Many studies have been investigating neurological deficits following PA, including seizures, cerebral palsy, mental retardation, as well as psychiatric deficits. Most research performed so far has been focusing on acute or subacute sequelae and has uncovered a variety of morphological, neurochemical, behavioral, and cognitive changes following PA. However, information on long-term sequelae of animals that underwent a period of PA is scanty. Perinatally asphyxiated rats at the end of their life span present with immunohistochemical and synaptic changes as well as changes in brain protein expression. Furthermore, deficits in cognitive function tested in the Morris water maze and changes in social behavior were described. In this review, we are summarizing and discussing reported effects of global PA on morphology, cognitive functions, and behavior in rats at the end of their life span.
Collapse
|
41
|
Weitzdoerfer R, Gerstl N, Pollak D, Hoeger H, Dreher W, Lubec G. Long-Term Influence of Perinatal Asphyxia on the Social Behavior in Aging Rats. Gerontology 2004; 50:200-5. [PMID: 15258424 DOI: 10.1159/000078348] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 07/06/2003] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Various groups have been addressing the question of whether perinatal asphyxia (PA) affects the behavior of young animals, but no information is available on long-term effects of PA on the behavior in aged rats, although it has been postulated that PA may lead to neurological and psychiatric deficits in adult life. OBJECTIVE We, therefore, decided to study the effects of PA on social and anxiety-related behaviors in 2-year-old rats, using a noninvasive animal model resembling the clinical situation. METHODS For the behavioral studies, the open-field test, the elevated plus-maze test, and a social interaction test in pairs were performed. Magnetic resonance imaging of the brain was selected to rule out neuropathological changes due to the aging process per se, as well as asphyxia-induced pathologies in the brain areas known to play an important role in the modulation of behavior. RESULTS The social interaction test revealed a statistically significant increase in the number of social grooming episodes and the time spent running alone, whereas the numbers of social sniffing and fighting episodes and the time spent running together were decreased in the asphyxiated group. The elevated plus- maze test revealed a higher presence of entries into the closed arm. Furthermore, sniffing and self-grooming episodes were significantly increased in the asphyxiated group. CONCLUSIONS We found a significantly decreased social aggressiveness and an increased social contact behavior as well as increased anxiety levels in the asphyxiated animals. The present findings may provide important information on the long-term behavioral sequelae of PA in the aged individual.
Collapse
|
42
|
Calamandrei G, Venerosi AP, Valanzano A, de Berardinis MA, Greco A, Puopolo M, Minghetti L. Increased brain levels of F2-isoprostane are an early marker of behavioral sequels in a rat model of global perinatal asphyxia. Pediatr Res 2004; 55:85-92. [PMID: 14561786 DOI: 10.1203/01.pdr.0000099774.17723.d4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Perinatal asphyxia is a major cause of immediate and postponed brain damage in the newborn. It may be responsible for several delayed neurologic disorders and, in this respect, early markers of brain injury would be relevant for therapeutic intervention as well as for identification of infants at high risk for developmental disabilities. Biochemical measurements (brain F2-isoprostane levels) and behavioral tests (ultrasonic vocalization pattern on postnatal days (pnd) 5, 8, and 11, spontaneous motor behaviors on pnd 7 and 12, and homing response on pnd 10) were performed in a rat model of global perinatal asphyxia in the immature neonate. Caesarean section was performed in rats and the pups, still in uterus horns, were placed into a water bath at 37 degrees C for either 10 or 20 min. Caesarean delivered pups were used as controls. Pups experiencing severe (20 min), in contrast to those undergoing the 10 min, asphyctic insult presented with detectable abnormalities including early (two hours after the insult) increase in brain F2-isoprostane (a direct marker of oxidative injury) without detectable changes in PGE2, COX-2 and iNOS levels, and delayed physical (reduced weight gain on pnd 5 and thereafter) and behavioral disturbances (alterations in ultrasound emission on pnd 11 and spontaneous motricity levels mainly). These findings suggest that increased brain F2-isoprostane levels shortly after the asphyctic insult are predictive of delayed behavioral disturbances in the newborn rat. The present 20-min asphyxia model might serve for the assessment of preventive and curative strategies to treat neurologic/behavioral disturbances associated with perinatal asphyxia.
Collapse
Affiliation(s)
- Gemma Calamandrei
- Section of Comparative Psychology, Laboratorio di Fisiopatologia, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Van de Berg WDJ, Kwaijtaal M, de Louw AJA, Lissone NPA, Schmitz C, Faull RLM, Blokland A, Blanco CE, Steinbusch HWM. Impact of perinatal asphyxia on the GABAergic and locomotor system. Neuroscience 2003; 117:83-96. [PMID: 12605895 DOI: 10.1016/s0306-4522(02)00787-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perinatal asphyxia can cause neuronal loss and depletion of neurotransmitters within the striatum. The striatum plays an important role in motor control, sensorimotor integration and learning. In the present study we investigated whether perinatal asphyxia leads to motor deficits related to striatal damage, and in particular to the loss of GABAergic neurons. Perinatal asphyxia was induced in time-pregnant Wistar rats on the day of delivery by placing the uterus horns, containing the pups, in a 37 degrees C water bath for 20 min. Three motor performance tasks (open field, grip test and walking pattern) were performed at 3 and 6 weeks of age. Antibodies against calbindin and parvalbumin were used to stain GABAergic striatal projection neurons and interneurons, respectively. The motor tests revealed subtle effects of perinatal asphyxia, i.e. small decrease in motor activity. Analysis of the walking pattern revealed an increase in stride width at 6 weeks of age after perinatal asphyxia. Furthermore, a substantial loss of calbindin-immunoreactive (-22%) and parvalbumin-immunoreactive (-43%) cells was found in the striatum following perinatal asphyxia at two months of age. GABA(A) receptor autoradiography revealed no changes in GABA binding activity within the striatum, globus pallidus or substantia nigra. We conclude that perinatal asphyxia resulted in a loss of GABAergic projection neurons and interneurons in the striatum without alteration of GABA(A) receptor affinity. Despite a considerable loss of striatal neurons, only minor deficits in motor performance were found after perinatal asphyxia.
Collapse
Affiliation(s)
- W D J Van de Berg
- Department of Pediatrics, Research Institute Growth and Development (GROW), University of Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Capani F, Loidl CF, Piehl LL, Facorro G, De Paoli T, Hager A. Long term production of reactive oxygen species during perinatal asphyxia in the rat central nervous system: effects of hypothermia. Int J Neurosci 2003; 113:641-54. [PMID: 12745625 DOI: 10.1080/00207450390200099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The formation of oxygen-derived free radicals in hypoxic and ischemic/reperfused brains has been proposed as an important step that links brain injury to neuronal death. Previously, we have demonstrated that reactive oxygen species (ROS) production was significantly increased in rat neostriatum during acute perinatal asphyxia (PA) in pups. In this article, we have studied the time course of ROS production in the neostriatum and neocortex of adult rats subjected to PA using electron spin resonance spectrometry (ESR) in order to record ROS production. Further more, we analyzed the actions of hypothermia on ROS release in pups and adult rats. We used for this study 6-month-old rats that suffered sub-severe and severe PA when they were pups. The most significant production of ROS was detected either in the neostriatum or neocortex at 19 and 20 min of PA. Hypothermia during 20 and 100 min at 15 degrees C prevented ROS formation either in pups and adult rats. These data further support the concept that free radicals may contribute to the brain injury alterations and that hypothermia can prevent long-term sequelae induced by PA.
Collapse
Affiliation(s)
- Francisco Capani
- Instituto de Biología Celular y Neurociencias, Prof. Eduardo De Robertis, Facultad de Medicina Universidad de Buenos, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
45
|
Scheepens A, Wassink G, Piersma MJ, Van de Berg WDJ, Blanco CE. A delayed increase in hippocampal proliferation following global asphyxia in the neonatal rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:67-76. [PMID: 12694945 DOI: 10.1016/s0165-3806(03)00032-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adult neurogenesis has been shown to be upregulated following a wide variety of brain injury paradigms. During the first weeks of postnatal life there is around 50 fold more neurogenesis occurring than in the adult CNS, yet little is known regarding the effect of neonatal brain injury on this developmental proliferation. We have investigated the effect of a global perinatal birth asphyxia on postnatal proliferation at 2, 5, 8, 11, 15, 21 and 28 days after birth (injury) using a 3H-thymidine tracer study. We found a specific upregulation of proliferation at 5 days after the injury within the injured hippocampus only, with an associated increase in hippocampal mass and without any changes in GFAP content at any timepoint. Perinatal asphyxia did not alter proliferation within the cerebellum, sub ventricular zone, olfactory bulb, cervical or thoracic spinal cord. Similarly, no changes in corticosterone levels were induced by the injury. Since there were no changes in GFAP content we hypothesize that this increased proliferation is likely neurogenetic, similar to what is seen in the adult brain following injury. Further we show that the dramatic increase in corticosterone at the end of the stress hyporesponsive period is not responsible for the equally dramatic decrease in postnatal proliferation within the CNS.
Collapse
Affiliation(s)
- Arjan Scheepens
- Department of Pediatrics, GROW Research Institute, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Scheepens A, Wassink G, Blanco CE. The effect of a global birth asphyxia on the ontogeny of BDNF and NGF protein expression in the juvenile brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 140:215-21. [PMID: 12586427 DOI: 10.1016/s0165-3806(02)00608-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurotrophic growth factors are strongly upregulated following brain injury in order to limit the amount of delayed apoptotic cell death. In particular, the neurotrophins NGF and BDNF are upregulated following injury and offer neuroprotection when administered after brain injury. Further, both growth factors are involved in the control of neural proliferation and plasticity during both development and recovery from injury. We used a model of global birth asphyxia in the rat to follow the ontogeny of BDNF and NGF protein levels within the normal and asphyctic hippocampus and cerebellum for the first 28 days of postnatal life. In contrast to what is seen in the injured adult brain, we see an early and long lasting decrease in NGF content within the asphyctic hippocampus, whereas cerebellar NGF content showed a delayed increase following asphyxia. Asphyxia also caused a delayed increase in BDNF content within the hippocampus but decreased BDNF levels within the cerebellum. Further, a comparison of the ontogeny of plasma corticosterone over development shows that endogenous BDNF protein levels are not sensitive to the dramatic increase in circulating corticosterone that occurs at the end of the stress hyporesponsive period. In summary, we find that perinatal birth asphyxia causes opposing changes in NGF and BDNF protein expression in a spatio-temporal-dependent manner. These results point to the need for more detailed studies on the mechanisms of action of BDNF and NGF within the developing brain before these can be used therapeutically following birth asphyxia in man.
Collapse
Affiliation(s)
- Arjan Scheepens
- Department of Pediatrics, GROW Research Institute, Universiteit of Maastricht, Maastricht, The Netherlands.
| | | | | |
Collapse
|
47
|
de Louw AJA, de Vente J, Steinbusch HPJ, Gavilanes AWD, Steinbusch HWM, Blanco CE, Troost J, Vles JSH. Apoptosis in the rat spinal cord during postnatal development; the effect of perinatal asphyxia on programmed cell death. Neuroscience 2002; 112:751-8. [PMID: 12088735 DOI: 10.1016/s0306-4522(02)00134-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of our study was to investigate the effect of perinatal asphyxia on developmental apoptosis in the cervical and lumbar spinal cord in the neonatal rat. Perinatal asphyxia was induced by keeping pups at term in utero in a water bath at 37 degrees C for 20 min, followed by resuscitation. Effects of this treatment on developmental apoptosis were studied on postnatal days 2, 5 and 8 using terminal deoxynucleotidyl transferase (TdT)-dUTP-biotin nick end labelling (TUNEL) and caspase-3 staining. TUNEL positive cells were identified using double immunostaining. On postnatal day 2 an increase of 215% in TUNEL positive cells was detected (P=0.005) in laminae IV-VII of the lumbar spinal cord of rats which underwent perinatal asphyxia compared to controls. An increase of 55% compared to controls (P=0.03) was seen in laminae I-III of the lumbar spinal cord at postnatal day 8. TUNEL positive cells could be partly identified as microglia cells (ED1 positive) and oligodendrocytes (O4 positive). The effect of perinatal asphyxia on programmed cell death in the neonatal rat spinal cord was mainly observed in the intermediate zone and dorsal horn of the lumbar spinal cord. We conclude that perinatal asphyxia has a pronounced effect on the survival of cells in a specific region of the spinal cord and thus may have a profound effect on the development of motor networks.
Collapse
Affiliation(s)
- A J A de Louw
- Department of Neurology, Academic Hospital Maastricht, P.O. Box 5800, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Van de Berg WD, Blokland A, Cuello AC, Schmitz C, Vreuls W, Steinbusch HW, Blanco CE. Perinatal asphyxia results in changes in presynaptic bouton number in striatum and cerebral cortex-a stereological and behavioral analysis. J Chem Neuroanat 2000; 20:71-82. [PMID: 11074345 DOI: 10.1016/s0891-0618(00)00078-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deficits in cognitive function have been related to quantitative changes in synaptic population, particularly in the cerebral cortex. Here, we used an established model of perinatal asphyxia that induces morphological changes, i.e. neuron loss in the cerebral cortex and striatum, as well as behavioural deficits. We hypothesized that perinatal asphyxia may lead to a neurodegenerative process resulting in cognitive impairment and altered presynaptic bouton numbers in adult rats. We studied cognitive performance at 18 months and presynaptic bouton numbers at 22 months following perinatal asphyxia. Data of the spatial Morris water escape task did not reveal clear memory or learning deficits in aged asphyctic rats compared to aged control rats. However, a memory impairment in aged rats versus young rats was observed, which was more pronounced in asphyctic rats. We found an increase in presynaptic bouton density in the parietal cortex, whereas no changes were found in striatum and frontal cortex in asphyctic rats. An increase of striatal volume was observed in asphyctic rats, leading to an increase in presynaptic bouton numbers in this area. These findings stress the issue that volume measurements have to be taken into account when determining presynaptic bouton density. Furthermore, perinatal asphyxia led to region-specific changes in presynaptic bouton numbers and it worsened the age-related cognitive impairment. These results suggest that perinatal asphyxia induced neuronal loss, which is compensated for by an increase in presynaptic bouton numbers.
Collapse
Affiliation(s)
- W D Van de Berg
- Department of Pediatrics, Maastricht University, P. Debyelaan 25, PO Box 5800, 6212 AZ, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|