1
|
Leuner LR, Hurley LM. What matters to a mouse? Effects of internal and external context on male vocal response to female squeaks. PLoS One 2025; 20:e0312789. [PMID: 39970156 PMCID: PMC11838898 DOI: 10.1371/journal.pone.0312789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/11/2025] [Indexed: 02/21/2025] Open
Abstract
House mice adjust their signaling behavior depending on the social context of an interaction, but which aspects of context elicit the strongest responses from these individuals is often difficult to determine. To explore how internal and external contextual factors influence how house mice produce and respond to social signals, we assessed how dominant and subordinate male mice differed in their ultrasonic vocalization (USV) production in response to playback of broadband vocalizations (BBVs, or squeaks) when given limited access to a stimulus female. We used a repeated measures design in which each male was exposed to two types of trials with different odor conditions: either just female odors (Fem condition) or female odors in addition to the odors of potential competitors, other males (Fem+Male condition). The presence of odors from other males in this assay served as a proxy for an "audience" as the male interacted with the stimulus female. These conditions were replicated for two distinct cohorts of individuals: males exposed to the odor of familiar competitors in the Fem+Male condition (Familiar odor cohort), and males exposed to the odor of unfamiliar competitors in the Fem+Male condition (Unfamiliar odor cohort). By assessing dominance status of the focal individual and familiarity of the "audience", we are able to explore how these factors may affect one another as males respond to BBVs. Dominants and subordinates did not differ in their baseline vocal production (vocalizations produced prior to squeak playback) or response to squeaks. However, all groups, regardless of dominance status or odor condition, reduced their vocal production in response to BBV playback. The presence of unfamiliar male odor prompted mice to decrease their baseline level of calling and decrease the complexity of their vocal repertoire compared to trials that only included female odor, and this effect also did not differ across dominance status. Importantly, the presence of male odor did not affect vocal behavior when the male odor was familiar to the focal individual. These findings suggest that mice alter their vocal behavior during courtship interactions in response to cues that indicate the presence of potential competitors, and this response is modulated by the familiarity of these competitor cues.
Collapse
Affiliation(s)
- Lauren R. Leuner
- Department of Biology, Hurley Laboratory, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - Laura M. Hurley
- Department of Biology, Hurley Laboratory, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
2
|
Shangase KB, Luvuno M, Mabandla M. Effects of combined postweaning social isolation and ketamine administration on schizophrenia-like behaviour in male Sprague Dawley rats. Behav Brain Res 2025; 476:115214. [PMID: 39182622 DOI: 10.1016/j.bbr.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The pathophysiology behind negative and cognitive symptoms of schizophrenia is not well understood, thus limiting the effectiveness of treatment on these symptoms. Developing reliable animal model of schizophrenia is vital to advance our understanding on the neurobiological basis of the disorder. Double hit is used to refer to the use of two schizophrenia inducing interventions viz ketamine exposure and social isolation. In this study we aim to investigate the robustness of double hit model of schizophrenia in inducing negative and cognitive symptoms of schizophrenia. On postnatal day (PND) 23, thirty-two male Sprague Dawley rats were randomly grouped into four equal groups as follows: group housed + saline (GH), group housed + ketamine (GHK), isolated + saline (SI), and isolated + ketamine (SIK). A single ketamine dose (16 mg/kg) was administered 3 times a week for four weeks. Isolated animals were housed singly throughout the study. The following behavioural tests were carried out: elevated plus maze, three chamber social interaction, resident intruder tests, and novel object recognition (NOR). The SIK group exhibited high anxiety levels, with increased ACTH, corticosterone and norepinephrine concentration when compared to the other groups. The SIK animals also presented with reduced social interaction and decreased oxytocin concentration. SIK rats were more aggressive towards a juvenile intruder but had low testosterone concentration. The SIK group or double hit model showed impaired visual learning and memory and increased expression of proinflammatory cytokines. This suggest that the double hit model is more robust in inducing negative and cognitive symptoms of schizophrenia than each treatment alone.
Collapse
Affiliation(s)
- Khanyiso Bright Shangase
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| | - Mluleki Luvuno
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Musa Mabandla
- Department of Human Physiology, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
3
|
Venkatraman A, Bretl M, Kim SI, Christensen L, Kelm-Nelson CA, Ciucci MR, Thibeault SL. Stress-Induced Ultrasonic Vocalization in Laboratory Rats and Mice: A Scoping Review. Brain Sci 2024; 14:1109. [PMID: 39595872 PMCID: PMC11591760 DOI: 10.3390/brainsci14111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction: Ultrasonic vocalization (USV) can indicate affective states-including psychosocial stress-in mice and rats. However, stress-induced USV changes could be confounded by laboratory experimental variables such as the type of behavioral stress paradigm, the elicitation method, rodent strain, etc. We sought to provide a review of the current literature to delineate how psychosocial stress-altered rodent USVs may be affected by factors of age, sex, strain, species, elicitation paradigm, and stressor. Methods: We used PubMed, Scopus (Elsevier), PsycINFO (EBSCO), and the following Web of Science (Clarivate) databases: Biological Abstracts, CAB Abstracts, Science Citation Index-Expanded, and Emerging Sources Citation Index. The studies identified by our search strategy were independently screened by two authors with the following inclusion criteria: peer-reviewed, in English, reported original data, and described USV in response to stress in rats or mice. The data extracted included USV acoustic parameters (mean peak frequency and mean amplitude (loudness)), details of the stress and USV elicitation paradigms, rodent species, age, and sex variables. Results: The following screening of 5309 titles/abstracts and 687 full-text articles revealed 148 articles. Footshock (20%), cold exposure (14%), and maternal separation (23.5%) were the most commonly used stress paradigms (duration and type of stressor varied across studies), with the total number of USV calls being the most commonly reported acoustic outcome. In rats, 121 articles described stress-altered USVs, while 25 studies reported the same in mice, and two reported multiple rodent species (rats and mice, alongside other rodent species such as gerbils). With respect to stress-altered USV changes with age, mice and rats increase USV rates after birth, with a peak around 6 to 10 days, and decrease USVs until weanling age. Of the five studies that reported sex-related differences in stress-induced USVs, females had an increased number of calls and lower average peak frequency in response to stress when compared to males. Only two to four studies reported strain-related differences in stress-induced vocalizations in rats and mice, respectively. Conclusions: The data from this review lay the groundwork for better understanding rodent USVs in response to psychosocial stress with effects of elicitation paradigm, stressor, age, and sex.
Collapse
Affiliation(s)
- Anumitha Venkatraman
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Michelle Bretl
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Se-in Kim
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Leslie Christensen
- Ebling Library for the Health Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Cynthia A. Kelm-Nelson
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Michelle R. Ciucci
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| | - Susan L. Thibeault
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.V.); (M.B.); (S.-i.K.); (C.A.K.-N.); (M.R.C.)
| |
Collapse
|
4
|
Bayless DW, Davis CHO, Yang R, Wei Y, de Andrade Carvalho VM, Knoedler JR, Yang T, Livingston O, Lomvardas A, Martins GJ, Vicente AM, Ding JB, Luo L, Shah NM. A neural circuit for male sexual behavior and reward. Cell 2023; 186:3862-3881.e28. [PMID: 37572660 PMCID: PMC10615179 DOI: 10.1016/j.cell.2023.07.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.
Collapse
Affiliation(s)
- Daniel W Bayless
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Chung-Ha O Davis
- Stanford Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Renzhi Yang
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Yichao Wei
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Joseph R Knoedler
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Taehong Yang
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Oscar Livingston
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Akira Lomvardas
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Ana Mafalda Vicente
- Allen Institute for Neural Dynamics, Seattle, WA 98109; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Departments of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Becker M, Gorobets D, Shmerkin E, Weinstein-Fudim L, Pinhasov A, Ornoy A. Prenatal SAMe Treatment Changes via Epigenetic Mechanism/s USVs in Young Mice and Hippocampal Monoamines Turnover at Adulthood in a Mouse Model of Social Hierarchy and Depression. Int J Mol Sci 2023; 24:10721. [PMID: 37445911 PMCID: PMC10361211 DOI: 10.3390/ijms241310721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The role of hippocampal monoamines and their related genes in the etiology and pathogenesis of depression-like behavior, particularly in impaired sociability traits and the meaning of changes in USVs emitted by pups, remains unknown. We assessed the effects of prenatal administration of S-adenosyl-methionine (SAMe) in Sub mice that exhibit depressive-like behavior on serotonergic, dopaminergic and noradrenergic metabolism and the activity of related genes in the hippocampus (HPC) in adulthood in comparison to saline-treated control Sub mice. During postnatal days 4 and 8, we recorded and analyzed the stress-induced USVs emitted by the pups and tried to understand how the changes in the USVs' calls may be related to the changes in the monoamines and the activity of related genes. The recordings of the USVs showed that SAMe induced a reduction in the emitted flat and one-frequency step-up call numbers in PND4 pups, whereas step-down type calls were significantly increased by SAMe in PND8 pups. The reduction in the number of calls induced by SAMe following separation from the mothers implies a reduction in anxiety, which is an additional sign of decreased depressive-like behavior. Prenatal SAMe increased the concentrations of serotonin in the HPC in both male and female mice without any change in the levels of 5HIAA. It also decreased the level of the dopamine metabolite DOPAC in females. There were no changes in the levels of norepinephrine and metabolites. Several changes in the expression of genes associated with monoamine metabolism were also induced by prenatal SAMe. The molecular and biochemical data obtained from the HPC studies are generally in accordance with our previously obtained data from the prefrontal cortex of similarly treated Sub mice on postnatal day 90. The changes in both monoamines and their gene expression observed 2-3 months after SAMe treatment are associated with the previously recorded behavioral improvement and seem to demonstrate that SAMe is effective via an epigenetic mechanism.
Collapse
Affiliation(s)
- Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Denis Gorobets
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Elena Shmerkin
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Liza Weinstein-Fudim
- Department of Medical Neurobiology Hebrew, University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Albert Pinhasov
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Department of Medical Neurobiology Hebrew, University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
6
|
Wölfl S, Zala SM, Penn DJ. Male scent but not courtship vocalizations induce estrus in wild female house mice. Physiol Behav 2023; 259:114053. [PMID: 36502894 DOI: 10.1016/j.physbeh.2022.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Exposure to males or male urinary scent can induce and accelerate the rate of female estrous cycling in house mice ("Whitten effect"), and this response has been replicated many times since its discovery over 60 years ago. Here, we tested whether exposing female mice to recordings of male courtship ultrasonic vocalizations (USVs) induces estrous cycling, and whether exposure to both male scent and USVs has a stronger effect than to either of these stimuli alone. We conducted our study with 60 wild-derived female house mice (Mus musculus musculus). After singly housing females for 14 days, we monitored estrous stages via vaginal cytology for two weeks while isolated from males or male stimuli. We continued monitoring estrus for two more weeks during experimental exposure to one of four different types of stimuli: (1) clean bedding and background noise playback (negative control); (2) recordings of male USVs (16 min per day) and clean bedding (male USV treatment); (3) soiled male bedding and background noise playback (male odor treatment; positive control); or (4) male USVs and soiled male bedding (male odor and USV treatment). Females were then paired with males to test whether any of the four treatments influenced female reproduction (especially latency to birth). We confirmed that exposure to male odor increased female cycling, as expected, but exposure to recordings of male USVs had no effect on estrus. Females exposed to both USVs and odor went through more cycles compared to controls, but did not differ significantly from exposure to male odor (and background noise). After pairing females with a male, females showing male odor-induced cycling produced their first litter sooner than controls, whereas USVs did not have such an effect. This is the first study to our knowledge to show that male odor induces estrus in wild house mice and to show functional effects on reproduction. Our results do not support the hypothesis that male vocalizations induce female estrus, although we suggest other approaches that could be used to further test this hypothesis.
Collapse
Affiliation(s)
- Simon Wölfl
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria
| | - Sarah M Zala
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria
| | - Dustin J Penn
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria.
| |
Collapse
|
7
|
Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism 2022; 13:41. [PMID: 36284353 PMCID: PMC9598038 DOI: 10.1186/s13229-022-00521-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022] Open
Abstract
MAIN: In recent years, substantial advances in social neuroscience have been realized, including the generation of numerous rodent models of autism spectrum disorder. Still, it can be argued that those methods currently being used to analyze animal social behavior create a bottleneck that significantly slows down progress in this field. Indeed, the bulk of research still relies on a small number of simple behavioral paradigms, the results of which are assessed without considering behavioral dynamics. Moreover, only few variables are examined in each paradigm, thus overlooking a significant portion of the complexity that characterizes social interaction between two conspecifics, subsequently hindering our understanding of the neural mechanisms governing different aspects of social behavior. We further demonstrate these constraints by discussing the most commonly used paradigm for assessing rodent social behavior, the three-chamber test. We also point to the fact that although emotions greatly influence human social behavior, we lack reliable means for assessing the emotional state of animals during social tasks. As such, we also discuss current evidence supporting the existence of pro-social emotions and emotional cognition in animal models. We further suggest that adequate social behavior analysis requires a novel multimodal approach that employs automated and simultaneous measurements of multiple behavioral and physiological variables at high temporal resolution in socially interacting animals. We accordingly describe several computerized systems and computational tools for acquiring and analyzing such measurements. Finally, we address several behavioral and physiological variables that can be used to assess socio-emotional states in animal models and thus elucidate intricacies of social behavior so as to attain deeper insight into the brain mechanisms that mediate such behaviors. CONCLUSIONS: In summary, we suggest that combining automated multimodal measurements with machine-learning algorithms will help define socio-emotional states and determine their dynamics during various types of social tasks, thus enabling a more thorough understanding of the complexity of social behavior.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
8
|
Rigney N, Zbib A, de Vries GJ, Petrulis A. Knockdown of sexually differentiated vasopressin expression in the bed nucleus of the stria terminalis reduces social and sexual behaviour in male, but not female, mice. J Neuroendocrinol 2022; 34:e13083. [PMID: 34978098 PMCID: PMC9213575 DOI: 10.1111/jne.13083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
The neuropeptide arginine-vasopressin (AVP) has long been implicated in the regulation of social behaviour and communication, but the sources of AVP release relevant for behaviour have not been precisely determined. Ablations of the sexually dimorphic AVP cells within the bed nucleus of the stria terminalis (BNST), which are more numerous in males, affect social behaviour differently in males and females. However, it is unknown whether these behavioural effects are caused by a reduction of AVP or of other factors associated with these cells. To test the role of AVP specifically, we used an shRNA viral construct to knock down AVP gene expression within the BNST of wild-type male and female mice, using scrambled sequence virus as a control, and evaluated subsequent changes in social behaviours (social investigation, ultrasonic vocalization (USV), scent marking, copulation, and aggression), or anxiety-like behaviours (elevated plus maze). We observed that, in males, knockdown of AVP expression in the BNST strongly reduced investigation of novel males, aggressive signalling towards other males (tail rattling, USV), and copulatory behaviour, but did not alter attack initiation, other measures of social communication, or anxiety-like behaviours. In females, however, BNST AVP knockdown did not alter any of these behaviours. These results point to differential involvement of AVP derived from the BNST in social behaviour.
Collapse
Affiliation(s)
- Nicole Rigney
- Center for Behavioral NeuroscienceNeuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| | - Adam Zbib
- Center for Behavioral NeuroscienceNeuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| | - Geert J. de Vries
- Center for Behavioral NeuroscienceNeuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| | - Aras Petrulis
- Center for Behavioral NeuroscienceNeuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
9
|
Guoynes CD, Marler CA. Intranasal oxytocin reduces pre-courtship aggression and increases paternal response in California mice (Peromyscus californicus). Physiol Behav 2022; 249:113773. [PMID: 35248556 DOI: 10.1016/j.physbeh.2022.113773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/22/2023]
Abstract
Oxytocin (OXT) is a neuropeptide that can facilitate prosocial behavior and decrease social stress and anxiety but can also increase aggression in some contexts. We investigated whether acute pulses of intranasal (IN) OXT influenced social behavior during social challenges that are likely to occur throughout the lifespan of a wild mouse. To test this, we examined the acute effects of IN OXT in the male California mouse (Peromyscus californicus), a monogamous, biparental, and territorial rodent, using a within-subjects longitudinal design. Social challenges included a pre-courtship male-female encounter conducted during the (1) initial aggressive and not the following affiliative phase of courtship, (2) same-sex resident intruder test, and (3) parental care test. Consecutive tests and doses were separated by at least two weeks. Males were treated with intranasal infusions of 0.8 IU/kg OXT or saline controls 5-min before each behavioral test, receiving a total of three treatments of either IN OXT or saline control. We predicted that IN OXT would 1) decrease aggression and increase affiliation during the pre-courtship aggression phase, 2) increase aggression during resident intruder paradigms, and 3) increase paternal care and vocalizations during a paternal care test. As predicted, during pre-courtship aggression with a novel female, IN OXT males displayed less contact aggression than control males, although with no change in affiliative behavior. However, post-pairing, during the resident intruder test, IN OXT males did not differ from control males in contact aggression. During the paternal care test, IN OXT males were quicker to approach their pups than control males but did not differ in vocalizations produced, unlike our previous research demonstrating an effect on vocalizations in females. In summary, during pre-courtship aggression and the paternal care test, IN OXT reduced antisocial behavior; however, during the resident intruder test, IN OXT did not alter antisocial behavior. These data suggest that IN OXT promotes prosocial behavior specifically in social contexts that can lead to affiliation.
Collapse
Affiliation(s)
- Caleigh D Guoynes
- Department of Psychology, University of Wisconsin-Madison - Madison, 1202 W Johnson Street, Madison, WI, 53703 USA.
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin-Madison - Madison, 1202 W Johnson Street, Madison, WI, 53703 USA
| |
Collapse
|
10
|
Roth JD, Dobson FS, Neuhaus P, Abebe A, Barra T, Boonstra R, Edwards PD, Gonzalez MA, Hammer TL, Harscouet E, McCaw LK, Mann M, Palme R, Tissier M, Uhlrich P, Saraux C, Viblanc VA. Territorial scent-marking effects on vigilance behavior, space use, and stress in female Columbian ground squirrels. Horm Behav 2022; 139:105111. [PMID: 35063725 DOI: 10.1016/j.yhbeh.2022.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
Social environments can profoundly affect the behavior and stress physiology of group-living animals. In many territorial species, territory owners advertise territorial boundaries to conspecifics by scent marking. Several studies have investigated the information that scent marks convey about donors' characteristics (e.g., dominance, age, sex, reproductive status), but less is known about whether scents affect the behavior and stress of recipients. We experimentally tested the hypothesis that scent marking may be a potent source of social stress in territorial species. We tested this hypothesis for Columbian ground squirrels (Urocitellus columbianus) during lactation, when territorial females defend individual nest-burrows against conspecifics. We exposed lactating females, on their territory, to the scent of other lactating females. Scents were either from unfamiliar females, kin relatives (a mother, daughter, or sister), or their own scent (control condition). We expected females to react strongly to novel scents from other females on their territory, displaying increased vigilance, and higher cortisol levels, indicative of behavioral and physiological stress. We further expected females to be more sensitive to unfamiliar female scents than to kin scents, given the matrilineal social structure of this species and known fitness benefits of co-breeding in female kin groups. Females were highly sensitive to intruder (both unfamiliar and kin) scents, but not to their own scent. Surprisingly, females reacted more strongly to the scent of close kin than to the scent of unfamiliar females. Vigilance behavior increased sharply in the presence of scents; this increase was more marked for kin than unfamiliar female scents, and was mirrored by a marked 131% increase in free plasma cortisol levels in the presence of kin (but not unfamiliar female) scents. Among kin scents, lactating females were more vigilant to the scent of sisters of equal age, but showed a marked 318% increase in plasma free cortisol levels in response to the scent of older and more dominant mothers. These results suggest that scent marks convey detailed information on the identity of intruders, directly affecting the stress axis of territory holders.
Collapse
Affiliation(s)
- Jeffrey D Roth
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - F Stephen Dobson
- Department of Biological Sciences, Auburn University, Auburn, AL, USA; Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; University of Strasbourg, Institute of Advanced Sciences (USIAS), 5 allée du Général Rouvillois, 67083 Strasbourg, France
| | - Peter Neuhaus
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Asheber Abebe
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA
| | - Thibaut Barra
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, ON M1C 1A4, Canada
| | - Phoebe D Edwards
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Manuel A Gonzalez
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tracey L Hammer
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Erwan Harscouet
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Laura K McCaw
- Department of Biological Sciences, University of Toronto Scarborough, ON M1C 1A4, Canada
| | - Maria Mann
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rupert Palme
- Department of Biological Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Mathilde Tissier
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Pierre Uhlrich
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Claire Saraux
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| |
Collapse
|
11
|
|
12
|
Osuch E, Ursano R, Li H, Webster M, Hough C, Fullerton C, Leskin G. Brain Environment Interactions: Stress, Posttraumatic Stress Disorder, and the Need for a Postmortem Brain Collection. Psychiatry 2022; 85:113-145. [PMID: 35588486 DOI: 10.1080/00332747.2022.2068916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stress, especially the extreme stress of traumatic events, can alter both neurobiology and behavior. Such extreme environmental situations provide a useful model for understanding environmental influences on human biology and behavior. This paper will review some of the evidence of brain alterations that occur with exposure to environmental stress. This will include recent studies using neuroimaging and will address the need for histological confirmation of imaging study results. We will review the current scientific approaches to understanding brain environment interactions, and then make the case for the collection and study of postmortem brain tissue for the advancement of our understanding of the effects of environment on the brain.Creating a brain tissue collection specifically for the investigation of the effects of extreme environmental stressors fills a gap in the current research; it will provide another of the important pieces to the puzzle that constitutes the scientific investigation of negative effects of environmental exposures. Such a resource will facilitate new discoveries related to the psychiatric illnesses of acute stress disorder and posttraumatic stress disorder, and can enable scientists to correlate structural and functional imaging findings with tissue abnormalities, which is essential to validate the results of recent imaging studies.
Collapse
|
13
|
Multidimensional nature of dominant behavior: Insights from behavioral neuroscience. Neurosci Biobehav Rev 2021; 132:603-620. [PMID: 34902440 DOI: 10.1016/j.neubiorev.2021.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
Social interactions for many species of animals are critical for survival, wellbeing, and reproduction. Optimal navigation of a social system increases chances for survival and reproduction, therefore there is strong incentive to fit into social structures. Social animals rely heavily on dominant-submissive behaviors in establishment of stable social hierarchies. There is a link between extreme manifestation of dominance/submissiveness and behavioral deviations. To understand neural substrates affiliated with a specific hierarchical rank, there is a real need for reliable animal behavioral models. Different paradigms have been consolidated over time to study the neurobiology of social rank behavior in a standardized manner using rodent models to unravel the neural pathways and substrates involved in normal and abnormal intraspecific social interactions. This review summarizes and discusses the commonly used behavioral tests and new directions for the assessment of dominance in rodents. We discuss the hierarchy inheritable nature and other critical issues regarding hierarchical rank manifestation which may help in designing social-rank-related studies that serve as promising pre-clinical tools in behavioral psychiatry.
Collapse
|
14
|
Whylings J, Rigney N, de Vries GJ, Petrulis A. Reduction in vasopressin cells in the suprachiasmatic nucleus in mice increases anxiety and alters fluid intake. Horm Behav 2021; 133:104997. [PMID: 34062279 PMCID: PMC8529700 DOI: 10.1016/j.yhbeh.2021.104997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Central vasopressin (AVP) has been implicated in the control of multiple behaviors, including social behavior, anxiety-like behavior, and sickness behavior. The extent to which the different AVP-producing cell groups contribute to regulating these behaviors has not been extensively investigated. Here we test the role of AVP cells in the suprachiasmatic nucleus (SCN) in these behaviors by ablating these cells using viral-mediated, Cre-dependent caspase in male and female AVP-Cre + mice and Cre-controls. We compared anxiety and social behaviors, as well as sickness behaviors (lethargy, anhedonia (indexed by sucrose consumption), and changes in anxiety-like- and social behavior) induced via injection of bacterial lipopolysaccharide (LPS). We found that SCN AVP cell ablation increased anxiety-like behavior and sucrose consumption in both sexes, as well as increased urine marking by males in a non-social context, but did not alter behavioral responses to sickness. Our data suggest that SCN AVP does not strongly affect LPS-induced behavioral changes, but may contribute to anxiety-like behavior, and may play a role in ingestive reward/motivation and fluid intake.
Collapse
Affiliation(s)
- Jack Whylings
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Nicole Rigney
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| |
Collapse
|
15
|
Rigney N, Whylings J, de Vries GJ, Petrulis A. Sex Differences in the Control of Social Investigation and Anxiety by Vasopressin Cells of the Paraventricular Nucleus of the Hypothalamus. Neuroendocrinology 2021; 111:521-535. [PMID: 32541145 PMCID: PMC7736187 DOI: 10.1159/000509421] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
The neuropeptide arginine-vasopressin (AVP) has long been implicated in the regulation of social behavior and communication in diverse taxa, but the source of AVP release relevant for behavior has not been precisely determined. Potential sources include hypothalamic cell populations such as the paraventricular (PVN), supraoptic, and suprachiasmatic nuclei, as well as extrahypothalamic cell groups in the extended amygdala. To address if AVP-expressing cells in the PVN are important for mouse social communication, we deleted PVN AVP-expressing cells using viral-mediated delivery of Cre-dependent caspase-9 cell death construct into the PVN of AVP-Cre-positive mice (expressing Cre-recombinase under the control of the AVP promoter) or AVP-Cre-negative littermate controls, and assessed their levels of social investigation, social communication, anxiety, sex behavior, and aggressive behavior. We found that these lesions increased social investigation in females, but not in males. However, in males but not in females, these lesions increased non-social anxiety-related behaviors in the elevated-plus maze. These results therefore point at differential involvement of PVN AVP-expressing cells in the context of social and emotional behavior in the two sexes, which may contribute to sex differences in social communication and anxiety disorders.
Collapse
Affiliation(s)
- Nicole Rigney
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA,
| | - Jack Whylings
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Geert J de Vries
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Aras Petrulis
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Rigney N, Beaumont R, Petrulis A. Sex differences in vasopressin 1a receptor regulation of social communication within the lateral habenula and dorsal raphe of mice. Horm Behav 2020; 121:104715. [PMID: 32067962 PMCID: PMC7249673 DOI: 10.1016/j.yhbeh.2020.104715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
The neuropeptide arginine-vasopressin (AVP) has long been implicated in the regulation of social behavior and communication in diverse taxa, often through its actions on the V1a receptor (V1aR) and in a sex-different and steroid-dependent way. One source of sex-different brain AVP is the steroid-sensitive and sexually-dimorphic AVP neurons in the bed nucleus of the stria terminalis (BNST), a cell population that regulates social behavior in a sex-dependent manner. Potential targets of these BNST-AVP cells include the lateral habenula (LHb) and dorsal raphe (DR), areas known to be important for social behavior, yet few studies have investigated AVP action within these regions. Consequently, to test if V1aR action in the LHb or DR controls social behavior in a sexually dimorphic manner, we administered a highly-specific V1aR antagonist (or saline vehicle) in the LHb or DR of C57BL/6 male and female mice and tested its effects on social investigation, social communication (urine marking, ultrasonic vocalizations), and territorial aggression. V1aR antagonism of the LHb or DR decreased male urine marking toward unfamiliar males, but not toward unfamiliar females. Additionally, V1aR blockade of the LHb decreased ultrasonic vocalizations generated in the presence of females. Social investigation, locomotion and aggressive behavior were not altered by V1aR antagonism in either area. Blocking V1aR in the LHb or DR of females had no effect, indicating V1aR action in the DR and LHb drives sex differences in social communication.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Rachael Beaumont
- Neuroscience Institute, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA.
| | - Aras Petrulis
- Neuroscience Institute, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
17
|
Lefebvre E, Granon S, Chauveau F. Social context increases ultrasonic vocalizations during restraint in adult mice. Anim Cogn 2020; 23:351-359. [PMID: 31925602 DOI: 10.1007/s10071-019-01338-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
Adult mice emit many ultrasonic vocalizations (USVs) during social interaction tasks, but only a few studies have yet reported USVs in stressed adult mice. Our aim was to study which experimental conditions favor USV emission during behaviors associated with different emotional states. As USVs likely mediate social communication, we hypothesized that temporary social isolation followed by exposure to a novel social congener would promote USV emission. USVs were recorded in three different behavioral paradigms: restraint, free moving in a new environment, and during a social interaction task. We compared USV emission, with or without the presence of a social congener, in animals socially isolated during different periods (0, 6 or 21 days). Social isolation decreased the number of USVs during free moving, whereas it increased during restraint. During the social interaction task, animals produced high-frequency USVs (median: 72.6 kHz, 25-75% range: 67.6-78.2 kHz), especially when the social partner was active and social motivation was high. During restraint, presence of a social congener increased the call rate of low-frequency USVs (median: 52.4 kHz, 25-75% range: 44.8-56.5 kHz). USV frequency followed two unimodal distributions that distinguished low-frequency USVs (≤ 60 kHz) mainly emitted during free-moving (90.9% of total USVs) and restraint (93.1%) conditions, from high-frequency USVs (> 60 kHz) mainly emitted during the social interaction task (85.1% of total USVs). The present study confirms that USV call rate and frequency depend on behavioral states, and provides evidence that the presence of a congener promotes ultrasonic vocalizations in restrained adult mice.
Collapse
Affiliation(s)
- E Lefebvre
- Neurobiology of Decision Making, Institute of Neuroscience Paris-Saclay, UMR9197, Université Paris Sud-CNRS, Orsay, France
| | - S Granon
- Neurobiology of Decision Making, Institute of Neuroscience Paris-Saclay, UMR9197, Université Paris Sud-CNRS, Orsay, France
| | - F Chauveau
- IRBA (Institut de Recherches Biomédicales Des Armées) BP73, 91223, Bretigny-sur-Orge Cedex, France.
| |
Collapse
|
18
|
Sexually Dimorphic Vasopressin Cells Modulate Social Investigation and Communication in Sex-Specific Ways. eNeuro 2019; 6:eN-NWR-0415-18. [PMID: 30693316 PMCID: PMC6348451 DOI: 10.1523/eneuro.0415-18.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide arginine vasopressin (AVP) has long been implicated in the regulation of social behavior and communication, but precisely which AVP cell groups are involved is largely unknown. To address whether the sexually dimorphic AVP cell group in the bed nucleus of the stria terminalis (BNST) is important for social communication, we deleted BNST AVP cells by viral delivery of a Cre-dependent caspase-3 cell-death construct in AVP-iCre-positive mice using AVP-iCre negative littermate as controls, and assessed social, sexual, aggressive and anxiety-related behaviors. In males, lesioning BNST AVP cells reduced social investigation of other males and increased urine marking (UM) in the presence of a live female, without altering ultrasonic vocalizations (USVs), resident-intruder aggression, copulatory behavior, anxiety, or investigation of females or their odor cues. In females, which have significantly fewer AVP cells in the BNST, these injections influenced copulatory behavior but otherwise had minimal effects on social behavior and communication, indicating that these cells contribute to sex differences in social behavioral function.
Collapse
|
19
|
Thoß M, Luzynski KC, Enk VM, Razzazi-Fazeli E, Kwak J, Ortner I, Penn DJ. Regulation of volatile and non-volatile pheromone attractants depends upon male social status. Sci Rep 2019; 9:489. [PMID: 30679546 PMCID: PMC6346026 DOI: 10.1038/s41598-018-36887-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
We investigated the regulation of chemical signals of house mice living in seminatural social conditions. We found that male mice more than doubled the excretion of major urinary proteins (MUPs) after they acquired a territory and become socially dominant. MUPs bind and stabilize the release of volatile pheromone ligands, and some MUPs exhibit pheromonal properties themselves. We conducted olfactory assays and found that female mice were more attracted to the scent of dominant than subordinate males when they were in estrus. Yet, when male status was controlled, females were not attracted to urine with high MUP concentration, despite being comparable to levels of dominant males. To determine which compounds influence female attraction, we conducted additional analyses and found that dominant males differentially upregulated the excretion of particular MUPs, including the pheromone MUP20 (darcin), and a volatile pheromone that influences female reproductive physiology and behavior. Our findings show that once male house mice become territorial and socially dominant, they upregulate the amount and types of excreted MUPs, which increases the intensities of volatiles and the attractiveness of their urinary scent to sexually receptive females.
Collapse
Affiliation(s)
- M Thoß
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - K C Luzynski
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - V M Enk
- Proteomics Unit, VetCORE Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - E Razzazi-Fazeli
- Proteomics Unit, VetCORE Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - J Kwak
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
- International Flavors & Fragrances Inc., Union Beach, New Jersey, USA
| | - I Ortner
- Institute of Statistics and Mathematical Methods in Economics, TU Wien, Vienna, Austria
- Department of Mathematics, Statistics Section, KU Leuven, Leuven, Belgium
| | - D J Penn
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
20
|
Simola N, Granon S. Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology 2018; 159:107420. [PMID: 30445100 DOI: 10.1016/j.neuropharm.2018.11.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Rodents emit ultrasonic vocalizations (USVs) to communicate the presence of positive or negative emotional states and to coordinate social interactions. On this basis, USVs are increasingly being used as a behavioral readout in rodent studies of affect, motivation and social behavior. Notably, several investigations have demonstrated that rodents emit USVs when tested in experimental paradigms that are used in preclinical studies of psychiatric and neurological diseases. Moreover, it has been shown that calling behavior may be influenced by genetic and/or environmental factors (i.e., stress), early rearing conditions that have been implicated in brain disease, as well as psychoactive drugs. Hence, measuring USV emissions has emerged as a useful tool in studying the mechanisms that underlie the emotional disturbances featuring certain brain diseases, as well as in the development of suited pharmacological therapies. This review provides an overview of the behavioral significance of USV emissions and describes the contexts that promote calling behavior in rats and mice. Moreover, the review summarizes the current evidence concerning the use of USVs as a marker of affect in rat and mouse models of sociability, psychiatric diseases and neurological diseases, and discusses the strengths and current limitations of using USVs as a behavioral readout in rodent studies of emotional behavior. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Sylvie Granon
- Neurobiology of Decision Making, Institute of Neuroscience Paris-Saclay, UMR9197, Université Paris-Sud, Centre National de la Recherche Scientifique, Orsay, France
| |
Collapse
|
21
|
Fernández-Vargas M. Presence of a potential competitor and its individual identity modulate ultrasonic vocalizations in male hamsters. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Montagud-Romero S, Blanco-Gandía MC, Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, Rodríguez-Arias M. Social defeat stress: Mechanisms underlying the increase in rewarding effects of drugs of abuse. Eur J Neurosci 2018; 48:2948-2970. [PMID: 30144331 DOI: 10.1111/ejn.14127] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022]
Abstract
Social interaction is known to be the main source of stress in human beings, which explains the translational importance of this research in animals. Evidence reported over the last decade has revealed that, when exposed to social defeat experiences (brief episodes of social confrontations during adolescence and adulthood), the rodent brain undergoes remodeling and functional modifications, which in turn lead to an increase in the rewarding and reinstating effects of different drugs of abuse. The mechanisms by which social stress cause changes in the brain and behavior are unknown, and so the objective of this review is to contemplate how social defeat stress induces long-lasting consequences that modify the reward system. First of all, we will describe the most characteristic results of the short- and long-term consequences of social defeat stress on the rewarding effects of drugs of abuse such as psychostimulants and alcohol. Secondly, and throughout the review, we will carefully assess the neurobiological mechanisms underlying these effects, including changes in the dopaminergic system, corticotrophin releasing factor signaling, epigenetic modifications and the neuroinflammatory response. To conclude, we will consider the advantages and disadvantages and the translational value of the social defeat stress model, and will discuss challenges and future directions.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | | | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Raul Ballestín
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
23
|
Hill WG, Zeidel ML, Bjorling DE, Vezina CM. Void spot assay: recommendations on the use of a simple micturition assay for mice. Am J Physiol Renal Physiol 2018; 315:F1422-F1429. [PMID: 30156116 DOI: 10.1152/ajprenal.00350.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigators have for decades used mouse voiding patterns as end points for studying behavioral biology. It is only recently that mouse voiding patterns were adopted for study of lower urinary tract physiology. The spontaneous void spot assay (VSA), a popular micturition assessment tool, involves placing a mouse in an enclosure lined by filter paper and quantifying the resulting urine spot pattern. The VSA has advantages of being inexpensive and noninvasive, but some investigators challenge its ability to distinguish lower urinary tract function from behavioral voiding. A consensus group of investigators who regularly use the VSA was established by the National Institutes of Health in 2015 to address the strengths and weaknesses of the assay, determine whether it can be standardized across laboratories, and determine whether it can be used as a surrogate for evaluating urinary function. Here we leverage experience from the consensus group to review the history of the VSA and its uses, summarize experiments to optimize assay design for urinary physiology assessment, and make best practice recommendations for performing the assay and analyzing its results.
Collapse
Affiliation(s)
- Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin.,University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts
| | - Chad M Vezina
- University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
24
|
Wegner KA, Abler LL, Oakes SR, Mehta GS, Ritter KE, Hill WG, Zwaans BM, Lamb LE, Wang Z, Bjorling DE, Ricke WA, Macoska J, Marker PC, Southard-Smith EM, Eliceiri KW, Vezina CM. Void spot assay procedural optimization and software for rapid and objective quantification of rodent voiding function, including overlapping urine spots. Am J Physiol Renal Physiol 2018; 315:F1067-F1080. [PMID: 29972322 DOI: 10.1152/ajprenal.00245.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mouse urinary behavior is quantifiable and is used to pinpoint mechanisms of voiding dysfunction and evaluate potential human therapies. Approaches to evaluate mouse urinary function vary widely among laboratories, however, complicating cross-study comparisons. Here, we describe development and multi-institutional validation of a new tool for objective, consistent, and rapid analysis of mouse void spot assay (VSA) data. Void Whizzard is a freely available software plugin for FIJI (a distribution of ImageJ) that facilitates VSA image batch processing and data extraction. We describe its features, demonstrate them by evaluating how specific VSA method parameters influence voiding behavior, and establish Void Whizzard as an expedited method for VSA analysis. This study includes control and obese diabetic mice as models of urinary dysfunction to increase rigor and ensure relevance across distinct voiding patterns. In particular, we show that Void Whizzard is an effective tool for quantifying nonconcentric overlapping void spots, which commonly confound analyses. We also show that mouse genetics are consistently more influential than assay design parameters when it comes to VSA outcomes. None of the following procedural modifications to reduce overlapping spots masked these genetic-related differences: reduction of VSA testing duration, water access during the assay period, placement of a wire mesh cage bottom on top of or elevated over the filter paper, treatment of mesh with a hydrophobic spray, and size of wire mesh opening. The Void Whizzard software and rigorous validation of VSA methodological parameters described here advance the goal of standardizing mouse urinary phenotyping for comprehensive urinary phenome analyses.
Collapse
Affiliation(s)
- Kyle A Wegner
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Lisa L Abler
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Steven R Oakes
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Guneet S Mehta
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - K Elaine Ritter
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Bernadette M Zwaans
- Department of Urology, Beaumont Health System, Royal Oak, Michigan.,Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Laura E Lamb
- Department of Urology, Beaumont Health System, Royal Oak, Michigan.,Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan
| | - Zunyi Wang
- Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan
| | - Dale E Bjorling
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - William A Ricke
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Urology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jill Macoska
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Biology, University of Massachusetts Boston , Boston, Massachusetts
| | - Paul C Marker
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Division of Pharmaceutical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Kevin W Eliceiri
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Chad M Vezina
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
25
|
Williamson CM, Klein IS, Lee W, Curley JP. Immediate early gene activation throughout the brain is associated with dynamic changes in social context. Soc Neurosci 2018; 14:253-265. [PMID: 29781376 DOI: 10.1080/17470919.2018.1479303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Social competence is dependent on successful processing of social context information. The social opportunity paradigm is a methodology in which dynamic shifts in social context are induced through removal of the alpha male in a dominance hierarchy, leading to rapid ascent in the hierarchy of the beta male and of other subordinate males in the social group. In the current study, we use the social opportunity paradigm to determine what brain regions respond to this dynamic change in social context, allowing an individual to recognize the absence of the alpha male and subsequently perform status-appropriate social behaviors. Replicating our previous work, we show that following removal of the alpha male, beta males rapidly ascend the social hierarchy and attain dominant status by increasing aggression towards more subordinate individuals. Analysis of patterns of Fos immunoreactivity throughout the brain indicates that in individuals undergoing social ascent, there is increased activity in regions of the social behavior network, as well as the infralimbic and prelimbic regions of the prefrontal cortex and areas of the hippocampus. Our findings demonstrate that male mice are able to respond to changes in social context and provide insight into the how the brain processes these complex behavioral changes.
Collapse
Affiliation(s)
- Cait M Williamson
- a Department of Psychology , Columbia University , New York , NY , USA
| | - Inbal S Klein
- a Department of Psychology , Columbia University , New York , NY , USA
| | - Won Lee
- a Department of Psychology , Columbia University , New York , NY , USA
| | - James P Curley
- a Department of Psychology , Columbia University , New York , NY , USA.,b Department of Psychology , UT Austin , Austin , TX , USA
| |
Collapse
|
26
|
Sex-dependent modulation of ultrasonic vocalizations in house mice (Mus musculus musculus). PLoS One 2017; 12:e0188647. [PMID: 29236704 PMCID: PMC5728457 DOI: 10.1371/journal.pone.0188647] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/10/2017] [Indexed: 12/04/2022] Open
Abstract
House mice (Mus musculus) emit ultrasonic vocalizations (USVs), which are surprisingly complex and have features of bird song, but their functions are not well understood. Previous studies have reported mixed evidence on whether there are sex differences in USV emission, though vocalization rate or other features may depend upon whether potential receivers are of the same or opposite sex. We recorded the USVs of wild-derived adult house mice (F1 of wild-caught Mus musculus musculus), and we compared the vocalizations of males and females in response to a stimulus mouse of the same- or opposite-sex. To detect and quantify vocalizations, we used an algorithm that automatically detects USVs (Automatic Mouse Ultrasound Detector or A-MUD). We found high individual variation in USV emission rates (4 to 2083 elements/10 min trial) and a skewed distribution, with most mice (60%) emitting few (≤50) elements. We found no differences in the rates of calling between the sexes overall, but mice of both sexes emitted vocalizations at a higher rate and higher frequencies during opposite- compared to same-sex interactions. We also observed a trend toward higher amplitudes by males when presented with a male compared to a female stimulus. Our results suggest that mice modulate the rate and frequency of vocalizations depending upon the sex of potential receivers.
Collapse
|
27
|
Butler S, Luz S, McFadden K, Fesi J, Long C, Spruce L, Seeholzer S, Canning D, Valentino R, Zderic S. Murine social stress results in long lasting voiding dysfunction. Physiol Behav 2017; 183:10-17. [PMID: 28988966 DOI: 10.1016/j.physbeh.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/21/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Repeated exposure to social stress shifts the voiding phenotype in male mice leading to bladder wall remodeling and is associated with increased expression of the stress neuropeptide, corticotropin-releasing factor (CRF) in Barrington's nucleus neurons. In these studies, we set out to determine if the voiding phenotype could recover upon removal from the stressor. Male mice were exposed for 1h daily to an aggressor and the voiding phenotype was assessed at one month followed by randomization to three groups. One group underwent immediate sacrifice. Two groups were allowed a one month recovery from the social stress exposure with or without the addition of fluoxetine (1.2mg/ml) in their drinking water and repeat voiding patterns were measured prior to sacrifice. Social stress significantly increased bladder mass, bladder mass corrected for body weight, voided volumes, and decreased urinary frequency. The abnormal voiding phenotype persisted after a 1month recovery with no effect from the addition of fluoxetine. CRF mRNA in Barrington's nucleus was increased by social stress and remained elevated following recovery with no effect from the addition of fluoxetine. The mRNA and protein expression for the alpha 1 chains of type 1 and type III collagen was unchanged across all groups suggesting that changes in the extracellular matrix of the bladder are not responsible for the voiding phenotype. This persisting voiding dysfunction correlates with the persistent elevation of CRF mRNA expression in Barrington's nucleus.
Collapse
Affiliation(s)
- Stephan Butler
- The John W. Duckett Center for Pediatric Urology, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, United States
| | - Sandra Luz
- The Department of Anethesiology and Critical Care Medicine, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, United States
| | - Kile McFadden
- The Department of Anethesiology and Critical Care Medicine, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, United States
| | - Joanna Fesi
- The John W. Duckett Center for Pediatric Urology, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, United States
| | - Christopher Long
- The John W. Duckett Center for Pediatric Urology, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, United States
| | - Lynn Spruce
- The Proteomics Core Laboratory, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, United States
| | - Steven Seeholzer
- The Proteomics Core Laboratory, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, United States
| | - Douglas Canning
- The John W. Duckett Center for Pediatric Urology, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, United States
| | - Rita Valentino
- The Department of Anethesiology and Critical Care Medicine, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, United States
| | - Stephen Zderic
- The John W. Duckett Center for Pediatric Urology, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
28
|
Keesom SM, Finton CJ, Sell GL, Hurley LM. Early-Life Social Isolation Influences Mouse Ultrasonic Vocalizations during Male-Male Social Encounters. PLoS One 2017; 12:e0169705. [PMID: 28056078 PMCID: PMC5215938 DOI: 10.1371/journal.pone.0169705] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Early-life social isolation has profound effects on adult social competence. This is often expressed as increased aggression or inappropriate displays of courtship-related behaviors. The social incompetence exhibited by isolated animals could be in part due to an altered ability to participate in communicatory exchanges. House mice (Mus musculus) present an excellent model for exploring this idea, because social isolation has a well-established influence on their social behavior, and mice engage in communication via multiple sensory modalities. Here, we tested the prediction that social isolation during early life would influence ultrasonic vocalizations (USVs) emitted by adult male mice during same-sex social encounters. Starting at three weeks of age, male mice were housed individually or in social groups of four males for five weeks, after which they were placed in one of three types of paired social encounters. Pair types consisted of: two individually housed males, two socially housed males, or an individually housed and a socially housed male (“mixed” pairs). Vocal behavior (USVs) and non-vocal behaviors were recorded from these 15-minute social interactions. Pairs of mice consisting of at least one individually housed male emitted more and longer USVs, with a greater proportional use of USVs containing frequency jumps and 50-kHz components. Individually housed males in the mixed social pairs exhibited increased levels of mounting behavior towards the socially housed males. Mounting in these pairs was positively correlated with increased number and duration of USVs as well as increased proportional use of spectrally more complex USVs. These findings demonstrate that USVs are part of the suite of social behaviors influenced by early-life social isolation, and suggest that altered vocal communication following isolation reflects reduced social competence.
Collapse
Affiliation(s)
- Sarah M. Keesom
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| | - Caitlyn J. Finton
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Gabrielle L. Sell
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Laura M. Hurley
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
29
|
Chakraborty N, Meyerhoff J, Jett M, Hammamieh R. Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model. Methods Mol Biol 2017; 1598:117-154. [PMID: 28508360 DOI: 10.1007/978-1-4939-6952-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating illness that imposes significant emotional and financial burdens on military families. The understanding of PTSD etiology remains elusive; nonetheless, it is clear that PTSD is manifested by a cluster of symptoms including hyperarousal, reexperiencing of traumatic events, and avoidance of trauma reminders. With these characteristics in mind, several rodent models have been developed eliciting PTSD-like features. Animal models with social dimensions are of particular interest, since the social context plays a major role in the development and manifestation of PTSD.For civilians, a core trauma that elicits PTSD might be characterized by a singular life-threatening event such as a car accident. In contrast, among war veterans, PTSD might be triggered by repeated threats and a cumulative psychological burden that coalesced in the combat zone. In capturing this fundamental difference, the aggressor-exposed social stress (Agg-E SS) model imposes highly threatening conspecific trauma on naïve mice repeatedly and randomly.There is abundant evidence that suggests the potential role of genetic contributions to risk factors for PTSD. Specific observations include putatively heritable attributes of the disorder, the cited cases of atypical brain morphology, and the observed neuroendocrine shifts away from normative. Taken together, these features underscore the importance of multi-omics investigations to develop a comprehensive picture. More daunting will be the task of downstream analysis with integration of these heterogeneous genotypic and phenotypic data types to deliver putative clinical biomarkers. Researchers are advocating for a systems biology approach, which has demonstrated an increasingly robust potential for integrating multidisciplinary data. By applying a systems biology approach here, we have connected the tissue-specific molecular perturbations to the behaviors displayed by mice subjected to Agg-E SS. A molecular pattern that links the atypical fear plasticity to energy deficiency was thereby identified to be causally associated with many behavioral shifts and transformations.PTSD is a multifactorial illness sensitive to environmental influence. Accordingly, it is essential to employ the optimal animal model approximating the environmental condition that elicits PTSD-like symptoms. Integration of an optimal animal model with a systems biology approach can contribute to a more knowledge-driven and efficient next-generation care management system and, potentially, prevention of PTSD.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - James Meyerhoff
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - Marti Jett
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA.
| |
Collapse
|
30
|
Weiner B, Hertz S, Perets N, London M. Social Ultrasonic Vocalization in Awake Head-Restrained Mouse. Front Behav Neurosci 2016; 10:236. [PMID: 28066202 PMCID: PMC5165246 DOI: 10.3389/fnbeh.2016.00236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
Numerous animal species emit vocalizations in response to various social stimuli. The neural basis of vocal communication has been investigated in monkeys, songbirds, rats, bats, and invertebrates resulting in deep insights into motor control, neural coding, and learning. Mice, which recently became very popular as a model system for mammalian neuroscience, also utilize ultrasonic vocalizations (USVs) during mating behavior. However, our knowledge is lacking of both the behavior and its underlying neural mechanism. We developed a novel method for head-restrained male mice (HRMM) to interact with non-restrained female mice (NRFM) and show that mice can emit USVs in this context. We first recorded USVs in a free arena with non-restrained male mice (NRMM) and NRFM. Of the NRMM, which vocalized in the free arena, the majority could be habituated to also vocalize while head-restrained but only when a female mouse was present in proximity. The USVs emitted by HRMM are similar to the USVs of NRMM in the presence of a female mouse in their spectral structure, inter-syllable interval distribution, and USV sequence length, and therefore are interpreted as social USVs. By analyzing the vocalizations of NRMM, we established criteria to predict which individuals are likely to vocalize while head fixed based on the USV rate and average syllable duration. To characterize the USVs emitted by HRMM, we analyzed the syllable composition of HRMM and NRMM and found that USVs emitted by HRMM have a higher proportion of USVs with complex spectral representation, supporting previous studies showing that mice social USVs are context dependent. Our results suggest a way to study the neural mechanisms of production and control of social vocalization in mice using advanced methods requiring head fixation.
Collapse
Affiliation(s)
- Benjamin Weiner
- Edmond and Lily Safra Center for Brain Sciences and Life Science Institute, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Stav Hertz
- Edmond and Lily Safra Center for Brain Sciences and Life Science Institute, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Nisim Perets
- Edmond and Lily Safra Center for Brain Sciences and Life Science Institute, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Michael London
- Edmond and Lily Safra Center for Brain Sciences and Life Science Institute, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
31
|
Yang M, Lewis F, Foley G, Crawley JN. In tribute to Bob Blanchard: Divergent behavioral phenotypes of 16p11.2 deletion mice reared in same-genotype versus mixed-genotype cages. Physiol Behav 2016; 146:16-27. [PMID: 26066718 DOI: 10.1016/j.physbeh.2015.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 01/19/2023]
Abstract
Mouse models offer indispensable heuristic tools for studying genetic and environmental causes of neuropsychiatric disorders, including autism. Development of useful animal models of complex human behaviors depends not only on extensive knowledge of the human disease, but also on a deep understanding of animal behavior and ethology. Robert and Caroline Blanchard pioneered a number of elegant social paradigms in rodents. Their early work led to systematic delineations of rodent naturalist defensive behaviors,which were proven to be highly useful models of human psychiatric disorders, including fear and anxiety. Their work using the Visible Burrow System to study social stress in rats represented an unprecedented approach to study biological mechanisms of depression. In recent years, their extensive knowledge of mouse behavior and ethology enabled them to quickly become leading figures in the field of behavioral genetics of autism. To commemorate Robert Blanchard's influences on animal models of human psychiatric disorders, here we describe a study conceptualized and led by Mu Yang who was trained as a graduate student in the Blanchard laboratory in the early 2000s. This investigation focuses on social housing in a genetic mouse model of 16p11.2 deletion syndrome. Heterozygous deletions and duplications of a segment containing about 29 genes on human chromosome 16 appear in approximately 0.5–1% of all cases of autism. 16p11.2 deletion syndrome is also associated with intellectual disabilities and speech impairments. Our previous studies showed that a mouse model of 16p11.2 deletion syndrome exhibited deficits in vocalizations and novel object recognition, as compared to wildtype littermate control cagemates. In the spirit of Bob Blanchard's careful attention to the role of social dominance in rodent behaviors, we became interested in the question of whether behavioral outcomes of a mutation differ when mutants are housed in mixed genotype cages, versus housing only mutants together in one group cage, and only wildtype littermates together in another group cage after weaning. 16p11.2 deletion presented a particularly good model organism to investigate this question, because the heterozygotes are smaller than their wildtype littermates, and may therefore become subordinate to their larger cagemates.Wildtype and heterozygotes were housed with cagemates of the same genotype (same-genotype cage) or with cagemates of the opposite genotype (mixed-genotype cage). Current results replicated social vocalization and object recognition deficits that we previously found in heterozygotes living in mixed-genotype cages. In contrast, heterozygotes that lived in same-genotype cages emitted normal numbers of vocalizations during male–female interactions, and displayed normal novel object recognition, indicating that the deletion per se was not sufficient to cause cognitive or social deficits. Social approach, same-sex social interaction, anxiety-related behavior, depression-related behavior, and open field exploration were not different between genotypes, and were not affected by housing in mixed versus in same-genotype cages. These findings suggest that elements of the home cage social environment could interact with genotype to impact aspects of disease phenotypes. Current findings are discussed as potentially reflecting behavioral deficits resulted from social stress, as inspired by a seminal paper by Bob and Caroline Blanchard [1].
Collapse
|
32
|
Takezawa K, Kondo M, Kiuchi H, Ueda N, Soda T, Fukuhara S, Takao T, Miyagawa Y, Tsujimura A, Matsumoto-Miyai K, Ishida Y, Negoro H, Ogawa O, Nonomura N, Shimada S. Authentic role of ATP signaling in micturition reflex. Sci Rep 2016; 6:19585. [PMID: 26795755 PMCID: PMC4726294 DOI: 10.1038/srep19585] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/15/2015] [Indexed: 01/23/2023] Open
Abstract
Adenosine triphosphate (ATP) is a signaling molecule that regulates cellular processes. Based on previous studies of bladder function over the past decade, bladder ATP signaling was thought to have an essential role in the normal micturition reflex. In this study, we performed detailed analyses of bladder function in purinergic receptor-deficient mice using the automated voided stain on paper method and video-urodynamics. Unexpectedly, a lack of P2X2 or P2X3 receptors did not affect bladder function under normal physiological conditions, indicating that bladder ATP signaling is not essential for normal micturition reflex. In contrast, we found that lipopolysaccharide (LPS) induced markedly high levels of ATP release from the urothelium. In addition, LPS-induced rapid bladder hyperactivity was attenuated in P2X2−/− and P2X3−/− mice. Contrary to the previous interpretation, our present findings indicate that bladder ATP signaling has a fundamental role in the micturition reflex, especially in bladder dysfunction, under pathological conditions. Therefore, the bladder ATP signaling pathway might be a highly promising therapeutic target for functional bladder disorders. This study newly defines an authentic role for bladder ATP signaling in the micturition reflex.
Collapse
Affiliation(s)
- Kentaro Takezawa
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.,Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiroshi Kiuchi
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Norichika Ueda
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tetsuji Soda
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tetsuya Takao
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akira Tsujimura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazumasa Matsumoto-Miyai
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yusuke Ishida
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiromitsu Negoro
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Rodriguez-Arias M, Navarrete F, Blanco-Gandia MC, Arenas MC, Bartoll-Andrés A, Aguilar MA, Rubio G, Miñarro J, Manzanares J. Social defeat in adolescent mice increases vulnerability to alcohol consumption. Addict Biol 2016; 21:87-97. [PMID: 25219790 DOI: 10.1111/adb.12184] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study employs an oral operant conditioning paradigm to evaluate the effects of repeated social defeat during adolescence on the reinforcing and motivational actions of ethanol in adult OF1 mice. Social interaction, emotional and cognitive behavioral aspects were also analyzed, and real-time polymerase chain reaction (PCR) experiments were performed to study gene expression changes in the mesocorticolimbic and hypothalamus-hypophysis-adrenal (HHA) axis. Social defeat did not alter anxiety-like behavior in the elevated plus maze or cognitive performance in the passive avoidance and Hebb-Williams tests. A social interaction test revealed depression-like symptoms and social subordination behavior in defeated OF1 mice. Interestingly, social defeat in adolescence significantly increased the number of effective responses, ethanol consumption values and motivation to drink. Finally, real-time PCR analyses revealed that social defeat significantly increased tyrosine hydroxylase and corticotropin-releasing hormone in the ventral tegmental area and paraventricular nucleus, respectively. In contrast, mu-opioid receptor gene expression was decreased in the nucleus accumbens of socially defeated mice. In summary, these findings suggest that exposure to social defeat during adolescence increases vulnerability to the rewarding effects of ethanol without affecting emotional or cognitive performance. The gene expression alterations we have observed in the mesocorticolimbic and HHA axis systems of defeated mice could be related with their increased ethanol consumption. These results endorse future research into pharmacological strategies that modulate these systems for the treatment of social stress-related alcohol consumption problems.
Collapse
Affiliation(s)
- Marta Rodriguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Francisco Navarrete
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Spain
| | - Maria Carmen Blanco-Gandia
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Maria Carmen Arenas
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | | | - Maria A. Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
- Unidad de Psiquiatría; Hospital Universitario ‘12 de Octubre’; Spain
- Instituto de Investigación ‘12 de Octubre’; Spain
| | - José Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Jorge Manzanares
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Spain
| |
Collapse
|
34
|
Musolf K, Meindl S, Larsen AL, Kalcounis-Rueppell MC, Penn DJ. Ultrasonic Vocalizations of Male Mice Differ among Species and Females Show Assortative Preferences for Male Calls. PLoS One 2015; 10:e0134123. [PMID: 26309246 PMCID: PMC4550448 DOI: 10.1371/journal.pone.0134123] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/06/2015] [Indexed: 11/29/2022] Open
Abstract
Male house mice (Mus musculus) emit ultrasonic vocalizations (USVs) during courtship, which attract females, and we aimed to test whether females use these vocalizations for species or subspecies recognition of potential mates. We recorded courtship USVs of males from different Mus species, Mus musculus subspecies, and populations (F1 offspring of wild-caught Mus musculus musculus, Mus musculus domesticus (and F1 hybrid crosses), and Mus spicilegus), and we conducted playback experiments to measure female preferences for male USVs. Male vocalizations contained at least seven distinct syllable types, whose frequency of occurrence varied among species, subspecies, and populations. Detailed analyses of multiple common syllable types indicated that Mus musculus and Mus spicilegus could be discriminated based on spectral and temporal characteristics of their vocalizations, and populations of Mus musculus were also distinctive regardless of the classification model used. Females were able to discriminate USVs from different species, and showed assortative preferences for conspecific males. We found no evidence that females discriminate USVs of males from a different subspecies or separate populations of the same species, even though our spectral analyses identified acoustic features that differ between species, subspecies, and populations of the same species. Our results provide the first comparison of USVs between Mus species or between Mus musculus subspecies, and the first evidence that male USVs potentially facilitate species recognition.
Collapse
Affiliation(s)
- Kerstin Musolf
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
- Department of Biology, Brooklyn College, Brooklyn, New York, United States of America
- * E-mail:
| | - Stefanie Meindl
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Angela L. Larsen
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Matina C. Kalcounis-Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Dustin J. Penn
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
35
|
Putting the past behind us: Social stress-induced urinary retention can be overcome. J Pediatr Urol 2015; 11:188-94. [PMID: 26052002 DOI: 10.1016/j.jpurol.2015.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/21/2015] [Indexed: 01/28/2023]
Abstract
INTRODUCTION To study the pathophysiology of dysfunctional voiding, we have previously developed a model of stress-induced voiding dysfunction. We have shown that cyclosporine A (CsA), an inhibitor of the Ca(2+)-calmodulin complex, can prevent social stress-induced urinary retention. However, treatment with cyclosporine has not had an effect on the increase in the stress peptide corticotrophin-releasing factor (CRF) in Barrington's nucleus, which is involved in the micturition pathway. OBJECTIVE We now investigate whether cyclosporine administered after stress can reverse the abnormal voiding phenotype, and whether it has effects on the bladder wall itself, or on the stress response within Barrington's nucleus. MATERIALS AND METHODS Six-week old Swiss-Webster mice were exposed to aggressor males for 1 h a day, followed by 23 h of barrier separation. In a long-term trial, 1 month of stress was followed by single-cage housing for 6 months. In a separate CsA reversal trial, mice either received CsA in drinking water or had plain drinking water during 1 month of single-cage housing during recovery. Bladder contractile function was examined on a Guth myograph. Nuclear translocation of myocyte enhancing factor (MEF)-2 and NFAT (nuclear factor of activated T cells) in the bladder was assessed using electrophoretic mobility shift assays (EMSAs). The expression of CRF was determined in Barrington's nucleus using in situ hybridization. RESULTS Voiding dysfunction persisted for up to 6 months after stress exposure while mice recovered in single-cage housing. In the CsA reversal trial, voiding patterns improved when they received CsA in water during single-cage housing following stress, whereas those that underwent single-cage housing alone had persistent abnormal voiding (Fig. A). There was no difference between CRF levels in Barrington's nucleus between reversal groups (p = 0.42) (Fig. B), possibly indicating a direct effect on the bladder rather than a persistent stress effect. There were no differences in the contractility of bladder wall muscle. CsA decreased the nuclear translocation of MEF-2 and NFAT induced by stress (Fig. C,D). CONCLUSION CsA reverses stress-induced urinary retention, but does not change the stress-induced CRF increase in Barrington's nucleus. Furthermore, bladder smooth muscle contractility is unchanged by CsA; however, there are changes in the levels of the downstream transcription factors MEF-2 and NFAT. We suspect that additional CsA responsive neural changes play a pivotal role in the abnormal voiding phenotype following social stress.
Collapse
|
36
|
Chai TC. Continence and micturition: physiological mechanisms under behavioral control. Am J Physiol Renal Physiol 2015; 309:F33-4. [DOI: 10.1152/ajprenal.00193.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Toby C. Chai
- Department of Urology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
37
|
Chakraborty N, Meyerhoff J, Gautam A, Muhie S, Jibitu M, De Lima TCM, Hammamieh R, Jett M. Gene and stress history interplay in emergence of PTSD-like features. Behav Brain Res 2015; 292:266-77. [PMID: 26025510 DOI: 10.1016/j.bbr.2015.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/09/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022]
Abstract
Systematically distinguishing genetic liability from other contributing factors is critical for designing a preventive strategy for post-traumatic stress disorder (PTSD). To address this issue, we investigated a murine model exposing C57BL/6j, DBA/2j and BALB/cj mice to repeated stress via exposure to conspecific aggressors (Agg-E). Naïve mice from each strain were subjected to the proximity of aggressor (Agg) mice for 6h using a 'cage-within-a-cage' paradigm, which was repeated for 5 or 10 days with intermittent and unpredictable direct contact with Agg mice. During the Agg-E stress, DBA/2j developed a different strategy to evade Agg mice, which potentially contributed to its phenotypic resilience to Agg-E stress. Although Agg mice inflicted C57BL/6j and BALB/cj with equivalent numbers of strikes, BALB/cj displayed a distinct behavioral phenotype with delayed exhibition of a number of PTSD-like features. By contrast, C57BL/6j mice displayed unique vulnerability to Agg-E stress induced myocardopathy, possibly attributable to their particular susceptibility to hypoxia. A group of genes (Bdnf, Ngf, Zwint, Cckbr, Slc6a4, Fkbp5) linked to PTSD and synaptic plasticity were significantly altered in C57BL/6j and BALB/cj Agg-E mice. Contributions of Agg-E stress history and genotypic heterogeneity emerged as the key mediators of PTSD-like features. Linking genetic components to specific phenotypic and pathological features could have potential clinical implications.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| | - James Meyerhoff
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| | - Aarti Gautam
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| | - Seid Muhie
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| | - Meskerem Jibitu
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| | - Thereza C M De Lima
- Federal University of Santa Catarina - Department of Pharmacology, Florianopolis, SC, Brazil
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA.
| | - Marti Jett
- US Army Center for Environmental Health Research, Fort Detrick, MD 21702-5010, USA
| |
Collapse
|
38
|
Mann EA, Alam Z, Hufgard JR, Mogle M, Williams MT, Vorhees CV, Reddy P. Chronic social defeat, but not restraint stress, alters bladder function in mice. Physiol Behav 2015; 150:83-92. [PMID: 25689100 DOI: 10.1016/j.physbeh.2015.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Voiding disorders in humans, particularly in children are associated with increased incidence of behavioral issues as well as past history of childhood abuse. We hypothesized that creating stress in mice, utilizing either a chronic social defeat model (SD) or restraint stress in shallow water model (RSSW) would engender changes in bladder function, morphology, and behavior, thereby enabling us to study the resultant voiding dysfunction. METHODS For SD stress (14 days), C57BL/6 male mice were exposed daily to a larger aggressive CD-1 male for 10 min, followed by sensory exposure in a barrier cage for 24h. Control mice were similarly housed with no exposure. For RSSW (21 days), C57BL/6 mice were put in a perforated conical tube with feet immersed in water daily for 4h, then returned to single housing cages. Control mice were also in single housing. After the stress period, voiding patterns were obtained on filter paper, followed by behavioral tests. At necropsy, blood was taken for corticosterone analysis, and bladder and body weights measured. Bladder cryosections were stained with hematoxylin and eosin (H&E) for morphological assessment. Sequential sections were immunostained with antibodies to Ki-67 as a proliferation marker, CD31 (endothelial cell marker), and uroplakin-II. ImageJ software was used to measure bladder wall thickness on blinded H&E photomicrographs as well as quantitate CD31 staining. Both Ki-67-positive and -negative nuclei were counted with Imaris software to obtain a proliferation index. RESULTS Only SD mice had a single large void pattern. Bladder-to-body weight ratios increased in SD mice (p≤0.02) but not in RSSW mice. Plasma corticosterone levels were elevated in all stressed mice. SD mice exhibited lower levels of locomotor activity compared with controls; RSSW mice were hyperactive. In SD mice, bladder wall thickness was increased (p ≤ 0.003) but no change was seen in Ki-67 proliferation index, consistent with hypertrophy. No difference with control mice was seen in vascularity as visualized by CD31 staining. Uniform uroplakin-II staining lined the urothelium of both SD and control mice. CONCLUSIONS Mice exposed to repeated SD (14 days) respond with altered voiding indicative of urine retention, and exhibit bladder wall changes consistent with hypertrophy while the urothelial barrier is maintained. These changes were not observed with repeated RSSW. SD, in contrast to RSSW, provides a model of psychological stress to further study the interplay of behavior and bladder dysfunction, enabling an improved understanding of voiding dysfunction, and the ability to create innovative and more effective management pathways for children who present with voiding dysfunction.
Collapse
Affiliation(s)
- Elizabeth A Mann
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | - Zaheer Alam
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | - Jillian R Hufgard
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | - Melissa Mogle
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | - Michael T Williams
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | - Charles V Vorhees
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | - Pramod Reddy
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| |
Collapse
|
39
|
Lombana K, Middleton N, Coddington E. Suppression of sex behavior by kappa opiates and stress steroids occurs via independent neuroendocrine pathways. Gen Comp Endocrinol 2015; 210:81-6. [PMID: 25307952 DOI: 10.1016/j.ygcen.2014.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/17/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
Endocannabinoids and their receptors are found throughout the brain of all vertebrates. By virtue of their wide distribution, endocannabinoids have the potential to affect many behaviors. Prior research has shown that cannabinoids inhibit courtship-clasping and mediate behavioral responses to stress in male rough-skinned newts, Taricha granulosa, and cannabinoid signaling is initiated by rapid actions of the steroid corticosterone (CORT) at its specific membrane receptor (mCR). This same mCR also recognizes κ-opioid receptor agonists and antagonists. Prior behavioral studies show that κ-opioid agonists suppress clasping behavior in a dose dependent manner. Combined, these studies suggest that κ-opioid agonists might suppress clasping behavior via the same pathway initiated by CORT: up-regulation of endocannabinoid signaling. We examined whether pretreatment with a CB1 antagonist, AM281, would block κ-opioid-mediated suppression of clasping. We found that the CB1 antagonist did not reverse κ-opioid-induced suppression of clasping, revealing that while endocannabinoids mediate CORT-induced suppression of clasping, endocannabinoids do not mediate the κ-opioid-induced suppression of clasping.
Collapse
|
40
|
Lehmann ML, Geddes CE, Lee JL, Herkenham M. Urine scent marking (USM): a novel test for depressive-like behavior and a predictor of stress resiliency in mice. PLoS One 2013; 8:e69822. [PMID: 23875001 PMCID: PMC3713058 DOI: 10.1371/journal.pone.0069822] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 06/17/2013] [Indexed: 12/04/2022] Open
Abstract
Decreased interest in pleasurable stimuli including social withdrawal and reduced libido are some of the key symptomatic criteria for major depression, and thus assays that measure social and sexual behavior in rodents may be highly appropriate for modeling depressive states. Here we present a novel approach for validating rodent models of depression by assessing male urine scent marking (USM) made in consequence to a spot of urine from a proestrous female. USM is an ethologically important form of sexual communication expressed by males to attract females. The expression of this behavior is highly sensitive and adaptive to environmental cues and social status. We hypothesized that male USM behavior offers a naturalistic measure of social motivation that can be used to evaluate hedonic behaviors relevant to the study of mood disorders. We demonstrated that 1) adult male mice displayed a strong preference for marking proestrous female urine with a high degree of specificity, 2) exposure to chronic social defeat profoundly decreased USM whereas exposure to environmental enrichment increased USM, 3) the standard antidepressant fluoxetine reversed declines in USM induced by social defeat, 4) USM behavior closely correlated with other hedonic measures, and 5) USM scores in non-stressed mice predicted behavioral outcomes after defeat exposure such that mice displaying high preference for marking female urine prior to social defeat showed behavioral resiliency after social defeat. The findings indicate that the USM test is a sensitive, validated measure of psychosocial stress effects that has high predictive value for examination of stress resiliency and vulnerability and their neurobiological substrates.
Collapse
Affiliation(s)
- Michael L Lehmann
- Section on Functional Neuroanatomy, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | |
Collapse
|
41
|
Wood SK, McFadden K, Griffin T, Wolfe JH, Zderic S, Valentino RJ. A corticotropin-releasing factor receptor antagonist improves urodynamic dysfunction produced by social stress or partial bladder outlet obstruction in male rats. Am J Physiol Regul Integr Comp Physiol 2013; 304:R940-50. [PMID: 23552576 DOI: 10.1152/ajpregu.00257.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Barrington's nucleus, in the pons, regulates micturition through spinal projections to preganglionic parasympathetic neurons. The stress neuropeptide CRF is prominent in these projections and has an inhibitory influence. Social stress in rats causes urinary retention and abnormal urodynamics resembling those produced by partial bladder outlet obstruction (pBOO), and this is associated with CRF upregulation in Barrington's nucleus. Here, we examined the role of CRF in social stress- and pBOO-induced urodynamic dysfunction by assessing the ability of a CRF₁ receptor antagonist to alter these effects. Male rats exposed to repeated resident-intruder stress were administered vehicle or a CRF₁ antagonist (NBI-30775) daily prior to the stress. Urodynamic function was recorded in the unanesthetized state 72 h after the final stress. NBI-30775 prevented the increased intermicturition interval, micturition volume, and bladder capacity produced by social stress, but not the increase in CRF expression in Barrington's nucleus neurons. The urinary dysfunction was also partly prevented by shRNA targeting of CRF in Barrington's nucleus, suggesting that stress-induced urinary dysfunction results, in part, from CRF upregulation in Barrington's nucleus and enhanced postsynaptic effects in the spinal cord. Finally, NBI-30775 improved urodynamic function of rats that had pBOO of 2-wk duration when administered daily during the second week but did not block the increase in CRF expression in Barrington's nucleus neurons. These findings implicate a role for Barrington's nucleus CRF in stress- and pBOO-induced urodynamic changes and suggest that CRF₁ antagonists may be useful therapeutic agents for the treatment of urinary dysfunction.
Collapse
Affiliation(s)
- Susan K Wood
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Burrows EL, Hannan AJ. Characterizing social behavior in genetically targeted mouse models of brain disorders. Methods Mol Biol 2013; 1017:95-104. [PMID: 23719910 DOI: 10.1007/978-1-62703-438-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fragile X syndrome, the leading inherited cause of mental retardation and autism spectrum disorders worldwide, is caused by a tandem repeat expansion in the FMR1 (fragile X mental retardation 1) gene. It presents with a distinct behavioral phenotype which overlaps significantly with that of autism. Emerging evidence suggests that tandem repeat polymorphisms (TRPs) might also play a key role in modulating disease susceptibility for a range of common polygenic disorders, including the broader autism spectrum of disorders (ASD) and other forms of psychiatric illness such as schizophrenia, depression, and bipolar disorder [1]. In order to understand how TRPs and associated gene mutations mediate pathogenesis, various mouse models have been generated. A crucial step in such functional genomics is high-quality behavioral and cognitive phenotyping. This chapter presents a basic behavioral battery for standardized tests for assaying social phenotypes in mouse models of brain disorders, with a focus on aggression.
Collapse
Affiliation(s)
- Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
43
|
Murine model of repeated exposures to conspecific trained aggressors simulates features of post-traumatic stress disorder. Behav Brain Res 2012; 235:55-66. [PMID: 22824590 DOI: 10.1016/j.bbr.2012.07.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/07/2012] [Accepted: 07/12/2012] [Indexed: 12/12/2022]
Abstract
We evaluated repeated exposures of mice to a trained aggressor mouse as a model (adapted from "social stress" models of traumatic stress) for aspects of post-traumatic stress disorder (PTSD). Using a "cage-within-cage resident-intruder" protocol, subject C57BL/6J mice were exposed to aggressors for 6 h daily for 5 or 10 days. At one to three random times during each 6-h session, subjects were exposed directly to aggressor for 1 min or 10 bites, whichever came first. Behavioral, physiological, and histological changes associated with aggressor-exposure were assessed for up to 6 weeks. During aggressor exposure, subjects displayed less territorial behavior, gained weight, and increased body temperature. One day after the last aggressor exposure, inflammatory cardiac histopathologies were prevalent; after 10 days, only mild myocardial degeneration with fibrosis or fibroplasias was evident, while controls showed almost no cardiac abnormalities at any time. After 4 weeks, the medial prefrontal cortex of control mice showed increased dendritic spine density, but aggressor-exposed mice showed no increase. Behaviors affected by aggressor exposure were evaluated in a partition test wherein the subject mouse is separated from the aggressor by a fenestrated partition that permits sensory cues to pass but prevents direct physical interaction. For up to 4-6 weeks after the last aggressor exposure, subjects showed prolonged grooming, freezing, retarded locomotion and no tail rattling. PTSD and its co-morbidities are often consequent to repeated aggravated "social" assaults (e.g., combat) and manifest socially over time, suggesting the relevance of this repeated aggressor-exposure model to clinical aspects of PTSD.
Collapse
|
44
|
Cunningham RL, Lumia AR, McGinnis MY. Androgen receptors, sex behavior, and aggression. Neuroendocrinology 2012; 96:131-40. [PMID: 22414851 PMCID: PMC3474193 DOI: 10.1159/000337663] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/28/2012] [Indexed: 11/19/2022]
Abstract
Androgens are intricately involved in reproductive and aggressive behaviors, but the role of the androgen receptor in mediating these behaviors is less defined. Further, activity of the hypothalamic-pituitary-gonadal axis and hypothalamic-pituitary-adrenal axis can influence each other at the level of the androgen receptor. Knowledge of the mechanisms for androgens' effects on behaviors through the androgen receptor will guide future studies in elucidating male reproductive and aggressive behavior repertoires.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Centre at Fort Worth, Fort Worth, TX 76107, USA.
| | | | | |
Collapse
|
45
|
Roullet FI, Wöhr M, Crawley JN. Female urine-induced male mice ultrasonic vocalizations, but not scent-marking, is modulated by social experience. Behav Brain Res 2011; 216:19-28. [PMID: 20540967 PMCID: PMC3094925 DOI: 10.1016/j.bbr.2010.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 12/20/2022]
Abstract
Despite the evidence for a communicative function of rodent scent marks and ultrasonic vocalizations, relatively little is known about the impact of social factors on these two forms of communication. Here, we tested the effects of two important social factors, prior exposure to a female and freshness of female urine, on male scent marks and ultrasonic vocalizations elicited by female urine. We also asked whether a recently reported strain difference between the highly social strain C57BL/6J (B6) and the mouse model of autism BTBR T+tf/J (BTBR) herein is specifically seen in response to female urine or also detectable in response to male urine traces. Results show that the emission of female urine-elicited ultrasonic vocalizations was dependent on previous female experience, while scent-marking behavior was not affected. A positive correlation was detected between scent-marking behavior and ultrasonic calling in the most biologically relevant context, male mice exposed to fresh female urine after female experience. Correlations were less prominent or missing in less biologically relevant contexts, e.g. in male mice exposed to fresh female urine without previous female experience, indicating that previous female experience is affecting both the emission of female urine-elicited ultrasonic vocalizations and the correlation between olfactory and acoustic communication. The strain difference in scent-marking behavior and ultrasonic calling between B6 and BTBR appears to be specific to female urine-elicited behavior as it was not seen in response to male urine traces, highlighting the relevance of the social context in which mouse communication is evaluated.
Collapse
Affiliation(s)
- Florence I Roullet
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
46
|
Abstract
The coordination of pelvic visceral activity with appropriate elimination behaviors is a complex task that requires reciprocal communication between the brain and pelvic organs. Barrington's nucleus, located in the pons, is central to a circuit involved in this function. Barrington's nucleus neurons project to both pelvic visceral motorneurons and cerebral norepinephrine neurons that modulate behavior. This circuit coordinates the descending limb of the micturition reflex with a central limb that initiates arousal and shifts the focus of attention to facilitate elimination behavior. The same circuitry that links the bladder and brain enables pathological processes in one target of the circuit to be expressed in the other. Urological disorders can, therefore, have cognitive and behavioral consequences by affecting components of this circuit; and in the opposing direction, psychosocial stressors can produce voiding dysfunctions and bladder pathology. The stress-related neuropeptide, corticotropin-releasing factor, which is prominent in Barrington's nucleus neurons, is a potential mediator of these effects.
Collapse
|
47
|
Razzoli M, Carboni L, Andreoli M, Ballottari A, Arban R. Different susceptibility to social defeat stress of BalbC and C57BL6/J mice. Behav Brain Res 2010; 216:100-8. [PMID: 20654656 DOI: 10.1016/j.bbr.2010.07.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/16/2022]
Abstract
Social stress may precipitate psychopathological disorders in susceptible individuals. The present experiments were focused on the biology beyond the differential susceptibility to social stress. Social defeat, an ethologically relevant stressor known to elicit different coping strategies, was used in two mouse strains differing for baseline emotionality, such as C57BL6/J and BalbC. In separate experiments, in both strains a single social defeat decreased home-cage activity without altering social aversion; it diminished body weight only in defeated BalbC mice. In longitudinal experiments, mice experienced repeated social defeats that induced multiple long-term consequences. Defeated C57BL6/J increased their body weight and food intake; defeated BalbC mice diminished their metabolic efficiency. Only defeated BalbC subjects exhibited increased social avoidance levels; no differences from controls were seen on forced swim test response in defeated mice of either strain. No long-term effects of social defeat were detected in peripheral biomarkers of stress, metabolic, and immune responses, although the analysis of selected internal organs revealed decreases in abdominal fat and gonadal organs in all defeated subjects. These results demonstrated a strain-distinctive profile in the susceptibility to social defeat stress, either acutely or chronically, with metabolic consequences more consistently found in C57BL6/J while social aversion induced predominantly in BalbC subjects.
Collapse
Affiliation(s)
- Maria Razzoli
- Neurosciences CEDD, GlaxoSmithKline Medicine Research Centre, via Alessandro Fleming 4, 37135 Verona, Italy.
| | | | | | | | | |
Collapse
|
48
|
Caldwell EE, Riccio DC. Alcohol self-administration in rats: Modulation by temporal parameters related to repeated mild social defeat stress. Alcohol 2010; 44:265-74. [PMID: 20682194 DOI: 10.1016/j.alcohol.2010.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 11/24/2009] [Accepted: 02/10/2010] [Indexed: 02/04/2023]
Abstract
Clinical evidence often points to stress as a cause or an antecedent to the development of drinking problems. Yet, animal models of alcohol drinking have yielded inconsistent evidence for a direct contribution of stress, and many studies have shown that stress suppresses alcohol consumption. The aim of the present study was to examine alcohol reward in animals exposed to repeated, mild social stress, and to determine whether alcohol drinking changes as a function of the temporal parameters of alcohol access relative to the stressor. Male Long-Evans rats, trained to self-administer a 6% (wt/vol) alcohol solution using a sucrose-fading procedure, were exposed to five brief (5min) episodes of contact with an aggressive male. Full contact with the resident was limited to a single episode of defeat, whereas the following four encounters occurred with the subjects behind a protective wire mesh cage. Alcohol self-administration was measured 1 week prior to stress (baseline), on each day of stress exposure, and 1 week following stress. Separate groups of animals were randomly assigned to self-administer alcohol immediately prior, immediately following, or 2h following defeat stress. Stress preferentially increased alcohol drinking on stress-exposure days, and further elevated the amount consumed 1 week following stress. Temporal parameters of alcohol access relative to the stressor were found to be important. Average alcohol consumption was greatest for animals drinking 2h postdefeat, whereas animals drinking immediately prior to or following the stressor did not show a significant increase in alcohol consumption. Results suggest that mild social defeat stress is sufficient to elicit increases in alcohol consumption in nonpreferring strains of rodents, provided alcohol access occurs at an optimal time interval after the social defeat experience.
Collapse
|
49
|
Chang A, Butler S, Sliwoski J, Valentino R, Canning D, Zderic S. Social stress in mice induces voiding dysfunction and bladder wall remodeling. Am J Physiol Renal Physiol 2009; 297:F1101-8. [PMID: 19587139 DOI: 10.1152/ajprenal.90749.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Several studies have anecdotally reported the occurrence of altered urinary voiding patterns in rodents exposed to social stress. A recent study characterized the urodynamic and central changes in a rat model of social defeat. Here, we describe a similar voiding phenotype induced in mice by social stress and in addition we describe potential molecular mechanisms underlying the resulting bladder wall remodeling. The mechanism leading to the altered voiding habits and underlying bladder phenotype may be relevant to the human syndrome of dysfunctional voiding which is thought to have a psychological component. To better characterize and investigate social stress-induced bladder wall hypertrophy, FVB mice (6 wk old) were randomized to either social stress or control manipulation. The stress involved repeated cycles of a 1-h direct exposure to a larger aggressive C57Bl6 breeder mouse followed by a 23-h period of barrier separation over 4 wk. Social stress resulted in altered urinary voiding patterns suggestive of urinary retention and increased bladder mass. In vivo cystometry revealed an increased volume at micturition with no change in the voiding pressure. Examination of these bladders revealed increased nuclear expression of the transcription factors MEF-2 and NFAT, as well as increased expression of the myosin heavy chain B isoform mRNA. BrdU uptake was increased within the urothelium and lamina propria layers in the social stress group. We conclude that social stress induces urinary retention that ultimately leads to shifts in transcription factors, alterations in myosin heavy chain isoform expression, and increases in DNA synthesis that mediate bladder wall remodeling. Social stress-induced bladder dysfunction in rodents may provide insight into the underlying mechanisms and potential treatment of dysfunctional voiding in humans.
Collapse
Affiliation(s)
- Andy Chang
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
50
|
Wood SK, Baez MA, Bhatnagar S, Valentino RJ. Social stress-induced bladder dysfunction: potential role of corticotropin-releasing factor. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1671-8. [PMID: 19279290 DOI: 10.1152/ajpregu.91013.2008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Psychological stress can impact on visceral function with pathological consequences, although the mechanisms underlying this are poorly understood. Here we demonstrate that social stress produces marked changes in bladder structure and function. Male rats were subjected to repeated (7 days) social defeat stress using the resident-intruder model. Measurement of the voiding pattern indicated that social stress produced urinary retention. Consistent with this, bladder size was increased in rats exposed to social stress. Moreover, this was negatively correlated to the latency to assume a subordinate posture, implying an association between passive behavior and bladder dysfunction. In vivo cystometry revealed distinct changes in urodynamic function in rats exposed to social stress, including increased bladder capacity, micturition volume, intermicturition interval, and the presence of non-micturition-related contractions, resembling overactive bladder. In contrast to social stress, repeated restraint (7 days) did not affect voiding, bladder weight, or urodynamics. The stress-related neuropeptide corticotropin-releasing factor (CRF) is present in spinal projections of Barrington's nucleus that regulate the micturition reflex and has an inhibitory influence in this pathway. Social stress, but not restraint, increased the number of CRF-immunoreactive neurons in Barrington's nucleus. Additionally, social stress increased CRF mRNA in Barrington's nucleus. Together, the results imply that social stress-induced CRF upregulation in Barrington's nucleus neurons results in urinary retention and, eventually, bladder dysfunction, perhaps as a visceral component of a behavioral coping response. This mechanism may underlie dysfunctional voiding in children and/or contribute to the development of stress-induced bladder disorders in adulthood.
Collapse
Affiliation(s)
- Susan K Wood
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|