1
|
Sanguankiattichai N, Chandrasekar B, Sheng Y, Hardenbrook N, Tabak WWA, Drapal M, Kaschani F, Grünwald-Gruber C, Krahn D, Buscaill P, Yamamoto S, Kato A, Nash R, Fleet G, Strasser R, Fraser PD, Kaiser M, Zhang P, Preston GM, van der Hoorn RAL. Bacterial pathogen deploys the iminosugar glycosyrin to manipulate plant glycobiology. Science 2025; 388:297-303. [PMID: 40245141 DOI: 10.1126/science.adp2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 04/19/2025]
Abstract
The extracellular space (apoplast) in plants is a key battleground during microbial infections. To avoid recognition, the bacterial model phytopathogen Pseudomonas syringae pv. tomato DC3000 produces glycosyrin. Glycosyrin inhibits the plant-secreted β-galactosidase BGAL1, which would otherwise initiate the release of immunogenic peptides from bacterial flagellin. Here, we report the structure, biosynthesis, and multifunctional roles of glycosyrin. High-resolution cryo-electron microscopy and chemical synthesis revealed that glycosyrin is an iminosugar with a five-membered pyrrolidine ring and a hydrated aldehyde that mimics monosaccharides. Glycosyrin biosynthesis was controlled by virulence regulators, and its production is common in bacteria and prevents flagellin recognition and alters the extracellular glycoproteome and metabolome of infected plants. These findings highlight a potentially wider role for glycobiology manipulation by plant pathogens across the plant kingdom.
Collapse
Affiliation(s)
- Nattapong Sanguankiattichai
- Department of Biology, University of Oxford, Oxford, UK
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Werner W A Tabak
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Margit Drapal
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Farnusch Kaschani
- Analytics Core Facility Essen (ACE), Chemical Biology, Faculty of Biology, Universität Duisburg-Essen, ZMB, Essen, Germany
| | | | - Daniel Krahn
- Leibniz Institut für analytische Wissenschaften ISAS e.V., Dortmund, Germany
| | | | - Suzuka Yamamoto
- Department of Hospital Pharmacy, University of Toyama, Toyama, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama, Japan
| | - Robert Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Aberystwyth, UK
| | - George Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Biotechnology and Food Science, BOKU University, Vienna, Austria
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
2
|
Esposito A, D'Alonzo D, Stabile M, Firpo V, Migliaccio A, Artiano R, D'Errico S, De Gregorio E, Guaragna A. Synthesis of a di-O-acylated deoxynojirimycin (DNJ) derivative and evaluation of its antibacterial and antibiofilm activity against Staphylococcus aureus and Stenotrophomonas maltophilia. Carbohydr Res 2025; 550:109379. [PMID: 39862555 DOI: 10.1016/j.carres.2025.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Herein we report the synthesis of a novel di-O-acylated DNJ derivative, conceived to study whether iminosugar derivatization with a lipophilic acyl moiety could positively affect its antibacterial properties. The well-known PS-TPP/I2/ImH activating system was used to readily install the acyl chains on the iminosugar, leading to the desired compound in high yield. Biological assays revealed that a di-O-lauroyl DNJ derivative enhanced the antibacterial effect of gentamicin and amikacin against S. aureus and S. maltophilia strains, respectively, suggesting a potential role as antibiotic adjuvant. Furthermore, even though this compound displayed only a weak concentration-dependent inhibitory effect on biofilm formation in S. aureus, it was able to significantly reduce the viability of S. aureus and S. maltophilia preformed biofilms. The results confirm the antibacterial potential of piperidine iminosugars and open the way to further studies involving novel lipophilic derivatives to optimize the antibacterial adjuvant effect herein observed for iminosugar 12.
Collapse
Affiliation(s)
- Anna Esposito
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, I-80125, Italy.
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Naples, I-80126, Italy
| | - Maria Stabile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, I-80131, Italy
| | - Vincenzo Firpo
- Department of Chemical Sciences, University of Naples Federico II, Naples, I-80126, Italy
| | - Antonella Migliaccio
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, I-80131, Naples, Italy
| | - Rosaria Artiano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, I-80131, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, I-80131, Italy.
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, Naples, I-80126, Italy
| |
Collapse
|
3
|
Yang PY, Zhang WQ, Yuan YJ, Lou LL, Huang XX, Song SJ. Two new five-membered heterocyclic compounds isolated from Polygonum tinctorium. Nat Prod Res 2025:1-5. [PMID: 40096864 DOI: 10.1080/14786419.2025.2478646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/19/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Polygonum tinctorium Ait., a well-documented medicinal herb in traditional Chinese medicine, is commonly utilised in the form of its leaves, known as 'Liao da qing ye' in Chinese Pharmacopoeia. Investigations into the phytochemical constituents of P. tinctorium have resulted in the identification of three distinct five-membered heterocyclic frameworks. This includes the isolation of two novel heterocyclic compounds (1 and 2) alongside four previously characterised pyrrolidine alkaloids. Structural elucidation of these compounds was achieved through HRESIMS and comprehensive spectroscopic analysis. Notably, compound 1 features a furan-based core structure, while compound 2 possesses a pyrrole-based framework. The isolated compounds were subsequently evaluated for their inhibitory potential against α-glycosidase and acetylcholinesterase enzymes.
Collapse
Affiliation(s)
- Pei-Yuan Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei-Qi Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang Pharmaceutical University, Shenyang, China
| | - Ya-Jie Yuan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang Pharmaceutical University, Shenyang, China
| | - Li-Li Lou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang Pharmaceutical University, Shenyang, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
4
|
Sanguankiattichai N, Chandrasekar B, Sheng Y, Hardenbrook N, Tabak WWA, Krahn D, Drapal M, Buscaill P, Yamamoto S, Kato A, Nash R, Fleet G, Fraser P, Kaiser M, Zhang P, Preston GM, van der Hoorn RAL. Bacterial pathogen deploys iminosugar galactosyrin to manipulate plant glycobiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638044. [PMID: 39990308 PMCID: PMC11844564 DOI: 10.1101/2025.02.13.638044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The extracellular space (apoplast) of plants is an important molecular battleground during infection by many pathogens. We previously found that a plant-secreted β-galactosidase BGAL1 acts in immunity by facilitating the release of immunogenic peptides from bacterial flagellin and that Pseudomonas syringae suppresses this enzyme by producing a small molecule inhibitor called galactosyrin. Here, we elucidated the structure and biosynthesis of galactosyrin and uncovered its multifunctional roles during infection. Structural elucidation by cryo-EM and chemical synthesis revealed that galactosyrin is an iminosugar featuring a unique geminal diol attached to the pyrrolidine moiety that mimics galactose binding to the β-galactosidase active site. Galactosyrin biosynthesis branches off from purine biosynthesis and involves three enzymes of which the first is a reductase that is unique in iminosugar biosynthesis. Besides inhibiting BGAL1 to avoid detection, galactosyrin also changes the glycoproteome and metabolome of the apoplast. The manipulation of host glycobiology may be common to plant-associated bacteria that carry putative iminosugar biosynthesis clusters.
Collapse
Affiliation(s)
| | | | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus; Didcot, United Kingdom
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford; Oxford, United Kingdom
| | - Werner W. A. Tabak
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen; Essen, Germany
| | - Daniel Krahn
- Leibniz Institut für analytische Wissenschaften ISAS e.V.; Dortmund, Germany
| | - Margit Drapal
- Department of Biological Sciences, Royal Holloway University of London; Egham, United Kingdom
| | - Pierre Buscaill
- Department of Biology, University of Oxford; Oxford, United Kingdom
| | - Suzuka Yamamoto
- Department of Hospital Pharmacy, University of Toyama; Toyama, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama; Toyama, Japan
| | - Robert Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited; Aberystwyth, United Kingdom
| | - George Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford; Oxford, United Kingdom
| | - Paul Fraser
- Department of Biological Sciences, Royal Holloway University of London; Egham, United Kingdom
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen; Essen, Germany
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus; Didcot, United Kingdom
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford; Oxford, United Kingdom
| | - Gail M. Preston
- Department of Biology, University of Oxford; Oxford, United Kingdom
| | | |
Collapse
|
5
|
Kamala Lakshmi MV, Ali I, Perali RS. Enantiospecific Synthesis of Tetrahydroindolizines from Spiro-cyclopropanecarboxylated Sugars. J Org Chem 2025; 90:1605-1615. [PMID: 39813381 DOI: 10.1021/acs.joc.4c02656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
A facile two-step enantiospecific synthesis of 5,6,7,8-tetrahydroindolizine scaffolds has been developed via TMSOTf-promoted [3 + 2] cycloaddition between carbohydrate-derived spirocyclic donor-acceptor cyclopropanecarboxlates and alkyl/aryl nitriles followed by an intramolecular Mitsunobu reaction of the resulting chiral 2/5-(4-hydroxybutyl)pyrrole derivatives.
Collapse
Affiliation(s)
- M V Kamala Lakshmi
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| | - Intzar Ali
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| | - Ramu Sridhar Perali
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad 500 046, India
| |
Collapse
|
6
|
Liu S, Batool Z, Hai Y. Biosynthesis of the α-D-Mannosidase Inhibitor (-)-Swainsonine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.26.615303. [PMID: 39386469 PMCID: PMC11463385 DOI: 10.1101/2024.09.26.615303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
(-)-Swainsonine is a polyhydroxylated indolizidine alkaloid with potent inhibitory activity against α-D-mannosidases. In this work, we successfully reconstituted swainsonine biosynthetic pathway both in vivo and in vitro. Our study unveiled an unexpected epimerization mechanism involving two α-ketoglutarate-dependent non-heme iron dioxygenases (SwnH2 and SwnH1), and an unusual imine reductase (SwnN), which displays substrate-dependent stereospecificity. The stereochemical outcome of SwnN-catalyzed iminium reduction is ultimately dictated by SwnH1-catalyzed C8-hydroxylation. We also serendipitously discovered that an O -acetyl group can serve as a detachable protecting/directing group, altering the site-selectivity of SwnH2-catalyzed hydroxylation while maintaining the stereoselectivity. Insights gained from the biochemical characterization of these tailoring enzymes enabled biocatalytic synthesis of a new polyhydroxylated indolizidine alkaloid, opening doors to the biosynthesis of diverse natural product-based glycosidase inhibitors.
Collapse
|
7
|
Gao FT, Zhang M, Shimadate Y, Kato A, Li YX, Jia YM, Yu CY. Enantiomeric C-6 fluorinated swainsonine derivatives as highly selective and potent inhibitors of α-mannosidase and α-l-rhamnosidase: Design, synthesis and structure-activity relationship study. Eur J Med Chem 2025; 282:117031. [PMID: 39556895 DOI: 10.1016/j.ejmech.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Six C-6 fluorinated d-swainsonine derivatives and their enantiomers have been designed based on initial docking calculations, and synthesized from enantiomeric ribose-derived aldehydes, respectively. Glycosidase inhibition assay of these derivatives with d-swainsonine (1) and l-swainsonine (ent-1) as contrasts found that the C-6 fluorinated d-swainsonine derivatives with C-8 configurations as R (α) showed specific and potent inhibitions of jack bean α-mannosidase (model enzyme of Golgi α-mannosidase II); whereas their enantiomers with C-8 configurations as S (β) were powerful and selective α-l-rhamnosidase inhibitors. Molecular docking calculations found the C-6 fluorinatedd-swainsonine derivatives 21, 24 and 25 with highly coincident binding conformations with d-swainsonine (1) in their interactions with the active site of α-mannosidase (PDB ID: 1HWW). Reliability of the docking results were confirmed by Molecular Dynamics (MD) simulation. Additionally, solid interactions with residues Gln-392 and Tyr-393 in the active site of α-l-rhamnosidase (PDB ID: 3W5N) were proved to be vital for potent α-l-rhamnosidase inhibitions of the l-swainsonine derivatives. The role of C-6 fluorines in swainsonine derivatives well demonstrated the "mimic effect" of fluorine to hydrogen by minimal influence on the binding conformations and effective compensation for any possible lost interactions. This work contributes to a comprehensive understanding of the structure-activity relationship (SAR) of the fluorinated swainsonines and ever reported branched swainsonines, and has laid good foundation for development of more potent α-mannosidase and α-l-rhamnosidase inhibitors.
Collapse
Affiliation(s)
- Feng-Teng Gao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Siziya IN, Lim HJ, Baek S, Lee S, Seo MJ. Mannosidase-inhibiting iminosugar production by recombinant Corynebacterium glutamicum harboring the 1-deoxynojirimycin biosynthetic gene cluster. Int J Biol Macromol 2024; 278:134858. [PMID: 39163968 DOI: 10.1016/j.ijbiomac.2024.134858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
The iminosugar class of carbohydrate-active enzyme inhibitors has therapeutic applications in metabolic syndrome conditions, viral infections and cancer. Compared to chemical synthesis, microbial iminosugar production has benefits of cost, sustainability and optimization. In this study, the 1-deoxynojirimycin (DNJ) biosynthetic gene cluster from Bacillus velezensis MBLB0692, and its individual genes, were cloned into Corynebacterium glutamicum (Cg). Characterizations of the encoded aminotransferase GabT1, phosphatase Yktc1, and dehydrogenase GutB1, were performed with purified enzymes and whole cell biocatalysts bearing individual and clustered (TYB) genes. GabT1 showed a variable pattern in its half-reaction with a slow turnover. GutB1 was an alkaline dehydrogenase with a broad substrate specificity and no divalent ion dependency while the zinc-dependent phosphatase Yktc1 had substrate specificity that was both pH- and ion-dependent. The CgYktc1 and CgGutB1 whole cells were viable biocatalysts with wider ranges of substrates than their enzyme counterparts. The CgTYB cells produced mannosidase-inhibiting iminosugars corresponding to mannojirimycin dehydrate (162 m/z) and deoxymannojirimycin (164 m/z). Mannosidase inhibitors have been found to be effective in treating orphan diseases, cancer and viral infections, and their biosynthesis by recombinant C. glutamicum can be optimized for industrial production and novel drug development.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyo Jung Lim
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea
| | - Suhyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sanggil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea; Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
9
|
Jenča A, Mills DK, Ghasemi H, Saberian E, Jenča A, Karimi Forood AM, Petrášová A, Jenčová J, Jabbari Velisdeh Z, Zare-Zardini H, Ebrahimifar M. Herbal Therapies for Cancer Treatment: A Review of Phytotherapeutic Efficacy. Biologics 2024; 18:229-255. [PMID: 39281032 PMCID: PMC11401522 DOI: 10.2147/btt.s484068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/18/2024]
Abstract
Natural products have proven to be promising anti-cancer agents due to their diverse chemical structures and bioactivity. This review examines their central role in cancer treatment, focusing on their mechanisms of action and therapeutic benefits. Medicinal plants contain bioactive compounds, such as flavonoids, alkaloids, terpenoids and polyphenols, which exhibit various anticancer properties. These compounds induce apoptosis, inhibit cell proliferation and cell cycle progression, interfere with microtubule formation, act on topoisomerase targets, inhibit angiogenesis, modulate key signaling pathways, improve the tumor microenvironment, reverse drug resistance and activate immune cells. Herbal anti-cancer drugs offer therapeutic advantages, particularly selective toxicity against cancer cells, reducing the adverse side effects associated with conventional chemotherapy. Recent studies and clinical trials highlight the benefits of herbal medicines in alleviating side effects, improving tolerance to chemotherapy and the occurrence of synergistic effects with conventional treatments. For example, the herbal medicine SH003 was found to be safe and potentially effective in the treatment of solid cancers, while Fucoidan showed anti-inflammatory properties that are beneficial for patients with advanced cancer. The current research landscape on herbal anticancer agents is extensive. Numerous studies and clinical trials are investigating their efficacy, safety and mechanisms of action in various cancers such as lung, prostate, breast and hepatocellular carcinoma. Promising developments include the polypharmacological approach, combination therapies, immunomodulation and the improvement of quality of life. However, there are still challenges in the development and use of natural products as anti-cancer drugs, such as the need for further research into their mechanisms of action, possible drug interactions and optimal dosage. Standardizing herbal extracts, improving bioavailability and delivery, and overcoming regulatory and acceptance hurdles are critical issues that need to be addressed. Nonetheless, the promising anticancer effects and therapeutic benefits of natural products warrant further investigation and development. Multidisciplinary collaboration is essential to advance herbal cancer therapy and integrate these agents into mainstream cancer treatment.
Collapse
Affiliation(s)
- Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - David K Mills
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadis Ghasemi
- Department of Chemistry, College of Art and Science, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Elham Saberian
- Pavol Jozef Šafárik University, Klinika and Akadémia Košice Bacikova, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | | | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Zeinab Jabbari Velisdeh
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza
| |
Collapse
|
10
|
Park S, Myeong IS, Ham WH. Recent advances in the total synthesis of polyhydroxylated alkaloids via chiral oxazines. Org Biomol Chem 2024; 22:894-926. [PMID: 38230703 DOI: 10.1039/d3ob01624b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This review summarizes recently established methodologies developed for the enantioselective and diastereoselective synthesis of chiral 1,3-oxazines. These compounds are of interest as advanced synthetic intermediates in the total synthesis of structurally complex and biologically active polyhydroxylated alkaloids such as (+)-1-deoxynojirimycin, (-)-anisomycin, (+)-castanospermine, (+)-casuarine, (-)-conduramine F-1, (-)-sphingofungin B, Neu5Ac methyl ester, and other natural products. The devised synthetic approach aims to offer a direct, efficient, and adaptable method for obtaining both pure enantiomers and pure diastereomers. It revolves around utilizing chiral building blocks like syn,syn-, syn,syn,anti-, syn,anti-, syn,anti,syn-, anti,syn-, anti,syn,syn-, and anti,syn,anti-oxazines. By integrating oxazine chemistry with established and innovative transformations, this approach enabled the synthesis of 30 polyhydroxylated amines across various studies conducted between 2007 and 2022.
Collapse
Affiliation(s)
- Seokhwi Park
- YS Life Science Co., Ltd, 207, Sujeong-ro, Jangan-myeon, Hwaseong-si, Gyeonggi-do, 18581, Republic of Korea.
| | - In-Soo Myeong
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do, 38430, Republic of Korea.
| | - Won-Hun Ham
- YS Life Science Co., Ltd, 207, Sujeong-ro, Jangan-myeon, Hwaseong-si, Gyeonggi-do, 18581, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
11
|
Jiang W, Zheng S, Yuan C, Gao Q, Xiang C, Tian S, Li J, Zhao Y. Study on extraction technology and antioxidant activity of total alkaloids from Hemsleya chinensis based on orthogonal design and BP neural network. Heliyon 2023; 9:e20680. [PMID: 37860513 PMCID: PMC10582500 DOI: 10.1016/j.heliyon.2023.e20680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
In this study, total alkaloids from Hemsleya chinensis were extracted and tested for their antioxidant properties. To optimize extraction methods, a single factor experiment was conducted to determine the total alkaloid concentrations of H. chinensis using the L9 (34) orthogonal design test method and the BP neural network (BPNN), resulting in the optimum extraction conditions for total alkaloids. The optimal conditions for H. chinensis alkaloids extraction with acid water are: HCl concentration is 0.50 %, extraction temperature is 85 °C, material-liquid ratio is 1:64.5, and extraction rate of alkaloids is 0.2785 ± 0.0003 mg/mL. The alkaloid from H. chinensis exhibited antioxidant activity in a quantity-effect relationship with activity. These findings showed that the procedure to be reasonable, the alkaloid extraction efficiency to be high, and the method could be used to extract the alkaloids of H. chinensis, improving the development of natural and healthy medicinal resources for the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Weiwei Jiang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China
| | - Shaoyu Zheng
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Chengxiao Yuan
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Yunnan, 650201, China
| | - Qingqing Gao
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Yunnan, 650201, China
| | - Chunfan Xiang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Yunnan, 650201, China
| | - Shunwei Tian
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jianmei Li
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yan Zhao
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Yunnan, 650201, China
| |
Collapse
|
12
|
Straube H. Am-aza-ing antidiabetic: Mulberry dehydrogenase MnGUTB1 contributes to the biosynthesis of 1-deoxynojirimycin. PLANT PHYSIOLOGY 2023; 192:700-702. [PMID: 36880315 DOI: 10.1093/plphys/kiad140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/01/2023]
Affiliation(s)
- Henryk Straube
- Plant Physiology, American Society of Plant Biologists, USA
- Faculty of Science, Department of Plant and Environmental Sciences, Section for Plant Biochemistry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Investigation of the Protective Effect for GcMAF by a Glycosidase Inhibitor and the Glycan Structure of Gc Protein. Molecules 2023; 28:molecules28041570. [PMID: 36838558 PMCID: PMC9963009 DOI: 10.3390/molecules28041570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
O-linked α-N-acetylgalactosamine (α-GalNAc) in the Gc protein is essential for macrophage activation; thus, the GalNAc-attached form of Gc protein is called Gc macrophage activating factor (GcMAF). O-linked glycans in Gc proteins from human plasma mainly consist of trisaccharides. GcMAF is produced when glycans on the Gc protein are hydrolyzed by α-Sia-ase and β-Gal-ase, leaving an α-GalNAc. Upon hydrolysis of α-GalNAc present on GcMAF, the protein loses the macrophage-activating effect. In contrast, our synthesized pyrrolidine-type iminocyclitol possessed strong in vitro α-GalNAc-ase inhibitory activity. In this study, we examined the protective effects of iminocyclitol against GcMAF via inhibition of α-GalNAc-ase activity. Detailed mass spectrometric analyses revealed the protective effect of the inhibitor on GcMAF. Furthermore, structural information regarding the glycosylation site and glycan structure was obtained using tandem mass spectrometric (MS/MS) analysis of the glycosylated peptides after tryptic digestion.
Collapse
|
14
|
Bharanidharan S, Savithiri S, Rajarajan G, Sugumar P, Nelson A. Synthesis, spectroscopic profiling, biological evaluation, DFT, molecular docking and mathematical studies of 3,5-diethyl-2r,6c-diphenylpiperidin-4-one picrate. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2173964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- S. Bharanidharan
- Department of Physics, Panimalar Engineering College, Chennai, India
| | - S. Savithiri
- Department of Chemistry, Kings Engineering College, Sriperumbudur, Chennai, India
| | - G. Rajarajan
- Department of Chemistry, Annamalai University, Chidambaram, India
- Department of Chemistry, Bharathiar University, Coimbatore, India
| | - P. Sugumar
- Department of Physics, Agni College of Technology, Thalambur, Chennai, India
| | - A. Nelson
- Department of Mathematics, Panimalar Engineering College, Chennai, India
| |
Collapse
|
15
|
The Crystal Structure, Hirshfeld Surface interactions, optical/Nonlinear Optical properties and evaluation of the antioxidant activity of 8-(3-chloropropanamido)quinolin-1-ium chloride: Experimental and theoretical studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Chand HR, Tiwari MK, Bhattacharya AK. Glycal mediated synthesis of piperidine alkaloids: fagomine, 4- epi-fagomine, 2-deoxynojirimycin, and an advanced intermediate, iminoglycal. RSC Adv 2022; 12:33021-33031. [PMID: 36425185 PMCID: PMC9670682 DOI: 10.1039/d2ra05224e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/26/2022] [Indexed: 12/09/2023] Open
Abstract
Glucal and galactal are transformed into 2-deoxyglycolactams, which are important building blocks in the synthesis of biologically active piperidine alkaloids, fagomine and 4-epi-fagomine. In one of the strategies, reduction of 2-deoxyglycolactam-N-Boc carbonyl by lithium triethylborohydride (Super-Hydride®) has been exploited to generate lactamol whereas reduction followed by dehydration was utilized as the other strategy to functionalize the C1-C2 bond in the iminosugar substrate. The strategies provide the formal synthesis of 2-deoxynojirimycin, nojirimycin and nojirimycin B. DFT studies were carried out to determine the reason for the failure of the formation of the 2-deoxygalactonojirimycin derivative. Further, DFT studies suggest that phenyl moieties of protecting groups and lone pairs of oxygen in carbamate group plays a vital role in deciphering the conformational space of the reaction intermediates and transition-state structures through cation-π or cation-lone pair interactions. The influence of these interactions is more pronounced at low temperature when the entropy factor is small.
Collapse
Affiliation(s)
- Hemender R Chand
- Division of Organic Chemistry, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Mritunjay K Tiwari
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Asish K Bhattacharya
- Division of Organic Chemistry, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
17
|
Savithiri S, Bharanidharan S, Rajarajan G, Sugumar P, Arockia Doss M. 3,5-Diethyl-2r,6c-di(4-chlorophenyl)piperidin-4-one picrate: synthesis, spectral, biological, DFT, ADME and molecular docking studies. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2144520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- S. Savithiri
- Department of Chemistry, Kings Engineering College, Sriperumbudur, Chennai, India
| | - S. Bharanidharan
- Department of Physics, Panimalar Engineering College, Chennai, India
| | - G. Rajarajan
- Department of Chemistry, Annamalai University, Chidambaram, India
- Department of Chemistry, Bharathiar University, Coimbatore, India
| | - P. Sugumar
- Department of Physics, Agni College of Technology, Thalambur, Chennai, India
| | - M. Arockia Doss
- Department of Chemistry, St. Joseph University, Dimapur, India
| |
Collapse
|
18
|
Phytotherapeutic applications of alkaloids in treating breast cancer. Biomed Pharmacother 2022; 155:113760. [DOI: 10.1016/j.biopha.2022.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
|
19
|
Anthony LA, Rajaraman D, Sundararajan G, Suresh M, Nethaji P, Jaganathan R, Poomani K. Synthesis, crystal structure, Hirshfeld surface analysis, DFT, molecular docking and molecular dynamic simulation studies of (E)-2,6-bis(4-chlorophenyl)-3-methyl-4-(2-(2,4,6-trichlorophenyl)hydrazono)piperidine derivatives. J Mol Struct 2022; 1266:133483. [PMID: 35692554 PMCID: PMC9175251 DOI: 10.1016/j.molstruc.2022.133483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/22/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
A novel drug to treat SARS-CoV-2 infections and hydroxyl chloroquine analogue, (E)-2,6-bis(4-chlorophenyl)-3-methyl-4-(2-(2,4,6-trichlorophenyl)hydrazono)piperidine (BCMTP) compound has been synthesized in one pot reaction. The novel compound BCMTP has been characterized by FT-IR, 1H-NMR, 13C-NMR and single-crystal X-ray diffraction patterns. Crystal packing is stabilized by C8-H8A•••Cl10i, C41-H41•••Cl1ii and N1-H1A•••Cl6iii intermolecular hydrogen bonds. From the geometrical parameters, it is observed that the piperidine ring adopts chair conformation. Hirshfeld surface analysis was carried out to quantify the interactions and an interaction energy analysis was done to study the interactions between pairs of molecules. The geometrical structure was optimized by density functional theory (DFT) method at B3LYP/6-31G (d, p) as the basic set. The smaller binding energy value provides the higher reactivity of BCMTP compound than hydroxyl chloroquine and was corrected by high electrophilic and low nucleophilic reactions. The stability and charge delocalization of the molecule were also considered by natural bond orbital (NBO) analysis. The HOMO-LUMO energies describe the charge transfer which takes place within the molecule. Molecular electrostatic potential has also been analysed. Molecular docking studies are implemented to analyse the binding energy of the BCMTP compound against standard drugs such as the crystal structure of ADP ribose phosphatase of NSP3 from SARS-CoV-2 in complex with MES and SARS-CoV-2 main protease with an unliganded active site (2019-nCoV, corona virus disease 2019, COVID-19) and found to be considered having better antiviral agents. Molecular dynamics simulation was performed for COVID-19 main protease (Mpro: 6WCF/6Y84) to understand the elements governing the inhibitory effect and the stability of interaction under dynamic conditions.
Collapse
Affiliation(s)
- L Athishu Anthony
- Department of Chemistry, St Joseph University, Dimapur, Nagaland 797 115, India
| | - D Rajaraman
- Department of Chemistry, St Joseph University, Dimapur, Nagaland 797 115, India
| | - G Sundararajan
- Department of Chemistry, Thanthai Hans Roever College (Autonomous), Perambalur 621220, Tamil Nadu, India
| | - M Suresh
- Department of Chemistry, AVS Arts and Science College, Salem, Tamil Nadu 603 110, India
| | - P Nethaji
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Tamil Nadu 603 110, India
| | - R Jaganathan
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Kumaradhas Poomani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| |
Collapse
|
20
|
Bouillon ME, Nash RJ, Pyne SG. Studies towards the synthesis of polyhydroxylated pyrrolidine alkaloids isolated from Broussonetia kazinoki (moraceae). Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Steviol Glycoside, L-Arginine, and Chromium(III) Supplementation Attenuates Abnormalities in Glucose Metabolism in Streptozotocin-Induced Mildly Diabetic Rats Fed a High-Fat Diet. Pharmaceuticals (Basel) 2022; 15:ph15101200. [PMID: 36297315 PMCID: PMC9607630 DOI: 10.3390/ph15101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Stevia rebaudiana Bertoni and its glycosides are believed to exhibit several health-promoting properties. Recently, the mechanisms of the anti-diabetic effects of steviol glycosides (SG) have been the subject of intense research. The following study aims to evaluate the results of SG (stevioside (ST) and rebaudioside A (RA)) combined with L-arginine (L-Arg) and chromium(III) (CrIII) supplementation in streptozotocin- (STZ) induced mild type 2 diabetic rats fed a high-fat diet (HFD), with particular emphasis on carbohydrate and lipid metabolisms. The experiment was carried out on 110 male Wistar rats, 100 of which were fed an HFD to induce insulin resistance, followed by an intraperitoneal injection of streptozotocin to induce mild type 2 diabetes. After confirmation of hyperglycemia, the rats were divided into groups. Three groups served as controls: diabetic untreated, diabetic treated with metformin (300 mg/kg BW), and healthy group. Eight groups were fed an HFD enriched with stevioside or rebaudioside A (2500 mg/kg BW) combined with L-arginine (2000 or 4000 mg/kg BW) and Cr(III) (1 or 5 mg/kg BW) for six weeks. The results showed that supplementation with SG (ST and RA) combined with L-arg and Cr(III) could improve blood glucose levels in rats with mild type 2 diabetes. Furthermore, ST was more effective in improving blood glucose levels, insulin resistance indices, and very low-density lipoprotein cholesterol (VLDL-C) concentrations than RA. Although L-arg and Cr(III) supplementation did not independently affect most blood carbohydrate and lipid indices, it further improved some biomarkers when combined, particularly with ST. Notably, the beneficial impact of ST on the homeostatic model assessment–insulin resistance (HOMA-IR) and on the quantitative insulin-sensitivity check index (QUICKI) was strengthened when mixed with a high dose of L-arg, while its impact on antioxidant status was improved when combined with a high dose of Cr(III) in rats with mild type 2 diabetes. In conclusion, these results suggest that supplementary stevioside combined with L-arginine and Cr(III) has therapeutic potential for mild type 2 diabetes. However, further studies are warranted to confirm these effects in other experimental models and humans.
Collapse
|
22
|
Moraes Neto PGDE, Silva NPPDA, Furtado ACS, Feio AC. Structural and histochemical aspects in leaves of six species of Anemia (Anemiaceae) occurring in rocky outcrops. AN ACAD BRAS CIENC 2022; 94:e20210392. [PMID: 35857962 DOI: 10.1590/0001-3765202220210392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Rocky outcrops are known for low humidity, rainfall and high solar radiation, factors that limit the development of some vegetables. However, some species of the genus Anemia occurring in these environments. Thus, understanding the anatomical characters present in these vegetables are important for botanical and biodiversity knowledge in rock fields. We described the leaf anatomy of six species of Anemia to identify characters adapted to rocky outcrops for ferns. Herbarium samples were rehydrated. Field-collected leaves, were also sampled, the material was subjected to standard anatomical study by light microscopy, and secretions were evaluated by histochemical of the secondary compounds, with ruthenium red, tannic acid, ferric chloride, lugol, Sudan black B, vanillin/hydrochloric acid, Dragendorff's reagent and ponceau xylidine. Histochemical tests were positive for phenolic compounds, alkaloids, polysaccharides, and proteins in A. buniifolia, A. oblongifolia, A. presliana, and A. trichorhiza. Our findings revealed that several structural and histochemical characters of Anemia with trichomes, conical stegmatas, phenolic compounds, mucilages and alkaloids are related to reducing water loss, providing an adaptive value to species in extreme environments, such as rocky outcrops, in addition to new data relevant to the group taxonomy, such as the presence of amphistomatic leaves in A. trichorhiza.
Collapse
Affiliation(s)
- Pedro G DE Moraes Neto
- Programa de Pós-Graduação em Ciências Biológicas - Botânica Tropical, Universidade Federal Rural da Amazônia, Museu Paraense Emílio Goeldi, Avenida Perimetral, 1901, 66077-830 Belém, PA, Brazil
| | - Natânia P P DA Silva
- Programa de Pós-Graduação em Ciências Biológicas - Botânica Tropical, Universidade Federal Rural da Amazônia, Museu Paraense Emílio Goeldi, Avenida Perimetral, 1901, 66077-830 Belém, PA, Brazil
| | - Ana Catarina S Furtado
- Programa de Pós-Graduação em Ciências Biológicas - Botânica Tropical, Universidade Federal Rural da Amazônia, Museu Paraense Emílio Goeldi, Avenida Perimetral, 1901, 66077-830 Belém, PA, Brazil
| | - Ana Carla Feio
- Programa de Pós-Graduação em Ciências Biológicas - Botânica Tropical, Universidade Federal Rural da Amazônia, Museu Paraense Emílio Goeldi, Avenida Perimetral, 1901, 66077-830 Belém, PA, Brazil.,Universidade Federal Rural da Amazônia, Coordenação de Ciências Biológicas, Campus Tomé-açu, Rodovia PA-140, 68680-000 Tomé-Açu, PA, Brazil
| |
Collapse
|
23
|
Kato A, Nakagome I, Yoshimura K, Kanekiyo U, Kishida M, Shinzawa K, Lu TT, Li YX, Nash RJ, Fleet GWJ, Tanaka N, Yu CY. Introduction of C-alkyl branches to L-iminosugars changes their active site binding orientation. Org Biomol Chem 2022; 20:7250-7260. [PMID: 35838176 DOI: 10.1039/d2ob01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L-ido-Deoxynojirimycin (L-ido-DNJ) itself showed no affinity for human lysosomal acid α-glucosidase (GAA), whereas 5-C-methyl-L-ido-DNJ showed a strong affinity for GAA, comparable to the glucose analog DNJ, with a Ki value of 0.060 μM. This excellent affinity for GAA and enzyme stabilization was observed only when methyl and ethyl groups were introduced. Docking simulation analysis revealed that the alkyl chains of 5-C-alkyl-L-ido-DNJs were stored in three different pockets, depending on their length, thereby the molecular orientation was changed. Comparison of the binding poses of DNJ and 5-C-methyl-L-ido-DNJ showed that they formed a common ionic interaction with Asp404, Asp518, and Asp616, but both the binding orientation and the distance between the ligand and each amino acid residue were different. 5-C-Methyl-L-ido-DNJ dose-dependently increased intracellular GAA activity in Pompe patient fibroblasts with the M519V mutation and also promoted enzyme transport to lysosomes. This study provides the first example of a strategy to design high-affinity ligands by introducing alkyl branches into rare sugars and L-sugar-type iminosugars to change the orientation of binding.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Izumi Nakagome
- School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kosuke Yoshimura
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Uta Kanekiyo
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Mana Kishida
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Kenta Shinzawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Tian-Tian Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert J Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Nobutada Tanaka
- School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
25
|
Tsunoda T, Tanoeyadi S, Proteau PJ, Mahmud T. The chemistry and biology of natural ribomimetics and related compounds. RSC Chem Biol 2022; 3:519-538. [PMID: 35656477 PMCID: PMC9092360 DOI: 10.1039/d2cb00019a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Natural ribomimetics represent an important group of specialized metabolites with significant biological activities. Many of the activities, e.g., inhibition of seryl-tRNA synthetases, glycosidases, or ribosomes, are manifestations of their structural resemblance to ribose or related sugars, which play roles in the structural, physiological, and/or reproductive functions of living organisms. Recent studies on the biosynthesis and biological activities of some natural ribomimetics have expanded our understanding on how they are made in nature and why they have great potential as pharmaceutically relevant products. This review article highlights the discovery, biological activities, biosynthesis, and development of this intriguing class of natural products.
Collapse
Affiliation(s)
- Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Samuel Tanoeyadi
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Philip J Proteau
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
26
|
Trajkovic M, Pavlovic M, Bihelovic F, Ferjancic Z, Saicic RN. Total Synthesis of ( + )-Swainsonine, (–)- Swainsonine, ( + )-8- epi- Swainsonine and ( + )- Dideoxy-Imino-Lyxitol by an Organocatalyzed Aldolization/Reductive Amination Sequence. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221091672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A tactical combination of either ( S)- or ( R)-proline catalyzed aldol reaction followed by intramolecular reductive amination enabled the synthesis of a chiral pyrrolidine derivative with 3 contiguous stereocenters in only 2 synthetic steps, starting from achiral precursors. This product, obtainable in both enantiomeric forms, was further exploited as a common intermediate in total syntheses of the biologically active iminosugars: ( + )-swainsonine, (–)-swainsonine, ( + )-8- epi-swainsonine, and ( + )-dideoxy-imino-lyxitol.
Collapse
Affiliation(s)
- Milos Trajkovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Milos Pavlovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Filip Bihelovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | | | - Radomir N Saicic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
27
|
Total synthesis of α-1-C-propyl-3,6-di-epi-nojirimycin and polyhydroxyindolizidine alkaloids via regio- and diastereoselective amination of anomeric acetals. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Lokhande KB, Pawar SV, Madkaiker S, Nawani N, Venkateswara SK, Ghosh P. High throughput virtual screening and molecular dynamics simulation analysis of phytomolecules against BfmR of Acinetobacter baumannii: anti-virulent drug development campaign. J Biomol Struct Dyn 2022; 41:2698-2712. [PMID: 35156902 DOI: 10.1080/07391102.2022.2038271] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acinetobacter baumannii is a notorious multidrug resistant bacterium responsible for several hospital acquired infections assisted by its capacity to develop biofilms. A. baumannii BfmR (RstA), a response regulator from the BfmR/S two-component signal transduction system, is the major controller of A. baumannii biofilm development and formation. As a result, BfmR represents a novel target for anti-biofilm treatment against A. baumannii. The discovery of the high-resolution crystal structure of BfmR provides a good chance for computational screening of its probable inhibitors. Therefore, in this study we aim to search new, less toxic, and natural BfmR inhibitors from 8450 phytomolecules available in the Indian Medicinal Plants, Phytochemistry and Therapeutic (IMPPAT) database by analyzing molecular docking against BfmR (PDB ID: 6BR7). Out of these 8450 phytomolecules 6742 molecules were successfully docked with BfmR with the docking score range -6.305 kcal/mol to +5.120 kcal/mol. Structure based-molecular docking (SB-MD) and ADMET (absorption, distribution, metabolism, excretion, & toxicity) profile examination revealed that Norepinephrine, Australine, Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline phytocompounds strongly binds to the active site residues of BfmR. Furthermore, molecular dynamics simulation (MDS) studies for 100 ns and the binding free energy (MM/GBSA) analysis elucidated the binding mechanism of Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline to BfmR. In summary, these phytocompounds seems to have the promising molecules against BfmR, and thus necessitates further verification by both in vitro and in vivo experiments. HighlightsBfmR plays a key role in biofilm development and exopolysaccharide (EPS) synthesis in A. baumannii.Computational approach to search for promising BfmR inhibitors from IMPAAT database.The lead phytomolecules such as Calystegine B3, 7,7 A-Diepialexine, and Alpha-Methylnoradrenaline displayed significant binding with BfmR active site.The outcome of BfmR binding phytomolecules has broadened the scope of hit molecules validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Dr. D. Y. Patil Vidyapeeth, Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Sarika Vishnu Pawar
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Smriti Madkaiker
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Neelu Nawani
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Swamy K Venkateswara
- Bioinformatics Research Group, MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
29
|
Lindbäck E, Sydnes MO, Haarr MB, Lopéz Ó, Fernández-Bolaños JG. Functionalized d- and l-Arabino-Pyrrolidines as Potent and Selective Glycosidase Inhibitors. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1764-8950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe efficient synthesis of enantiomeric pairs of iminosugars including 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) and 1,4-dideoxy-1,4-imino-l-arabinitol (LAB) analogues with an amidine, hydrazide, hydrazide imide, or amide oxime moiety is described. The preparation of DAB and LAB analogues commenced from l-xylose and d-xylose, respectively. The obtained iminosugars are tested against a panel of glycosidases with pharmaceutical relevance, revealing enhanced activity for the DAB analogues in comparison with the LAB analogues. In particular, the d-arabino-configured amidine behaved as a potent (submicromolar range) and selective inhibitor of α-mannosidase.
Collapse
Affiliation(s)
- Emil Lindbäck
- Faculty of Science and Technology, Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger
| | - Magne O. Sydnes
- Faculty of Science and Technology, Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger
| | - Marianne B. Haarr
- Faculty of Science and Technology, Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger
| | - Óscar Lopéz
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla
| | | |
Collapse
|
30
|
Saral A, Sudha P, Muthu S, Irfan A. Computational, spectroscopic and molecular docking investigation on a bioactive anti-cancer drug: 2-Methyl-8-nitro quinoline. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Nivetha N, Martiz RM, Patil SM, Ramu R, Sreenivasa S, Velmathi S. Benzodioxole grafted spirooxindole pyrrolidinyl derivatives: synthesis, characterization, molecular docking and anti-diabetic activity. RSC Adv 2022; 12:24192-24207. [PMID: 36128541 PMCID: PMC9404121 DOI: 10.1039/d2ra04452h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
A highly stereoselective, three-component method has been developed to synthesize pyrrolidine and pyrrolizidine containing spirooxindole derivatives. The interaction between the dipolarophile α,β-unsaturated carbonyl compounds and the dipole azomethine ylide formed in situ by the reaction of 1,2-dicarbonyl compounds and secondary amino acids is referred to as the 1,3-dipolar cycloaddition reaction. The reaction conditions were optimized to achieve excellent stereo- and regioselectivity. Shorter reaction time, simple work-up and excellent yields are the salient features of the present approach. Various spectroscopic methods and single crystal X-ray diffraction examinations of one example of compound 6i validated the stereochemistry of the expected products. The anti-diabetic activity of the newly synthesized spirooxindole derivatives was tested against the α-glucosidase and α-amylase enzymes. Compound 6i was found to exhibit potent inhibition activity against α-glucosidase and α-amylase enzymes which is further evidenced by molecular docking studies. A highly stereoselective, three-component method has been developed for the synthesis of pyrrolidine and pyrrolizidine containing spirooxindole derivatives that exhibits excellent anti-diabetic activity.![]()
Collapse
Affiliation(s)
- Narayanasamy Nivetha
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, Tamil Nadu, India
| | - Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570 015, Karnataka, India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570 015, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570 015, Karnataka, India
| | - Swamy Sreenivasa
- Department of Chemistry, University College of Science, Tumkur University, Tumkur, 572 103, Karnataka, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, Tamil Nadu, India
| |
Collapse
|
32
|
Hidasová D, Pohl R, Císařová I, Jahn U. A Diastereoselective Catalytic Approach to Pentasubstituted Pyrrolidines by Tandem Anionic‐Radical Cross‐Over Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Denisa Hidasová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science Charles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| |
Collapse
|
33
|
Understanding water mediated proton migration in conversion of π-bond in olefinic carbon atoms into C–N bond to form β-amino adducts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Dhara D, Dhara A, Bennett J, Murphy PV. Cyclisations and Strategies for Stereoselective Synthesis of Piperidine Iminosugars. CHEM REC 2021; 21:2958-2979. [PMID: 34713557 DOI: 10.1002/tcr.202100221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022]
Abstract
This personal account focuses on synthesis of polyhydroxylated piperidines, a subset of compounds within the iminosugar family. Cyclisations to form the piperidine ring include reductive amination, substitution via amines, iminium ions and cyclic nitrones, transamidification (N-acyl transfer), addition to alkenes, ring contraction and expansion, photoinduced electron transfer, multicomponent Ugi reaction and ring closing metathesis. Enantiomerically pure piperidines are obtained from chiral pool precursors (e. g. sugars, amino acids, Garner's aldehyde) or asymmetric reactions (e. g. epoxidation, dihydroxylation, aminohydroxylation, aldol, biotransformation). Our laboratory have contributed cascades based on reductive amination from glycosyl azide precursors as well as Huisgen azide-alkene cycloaddition. The latter's combination with allylic azide rearrangement has given substituted piperidines, including those with quaternary centres adjacent to nitrogen.
Collapse
Affiliation(s)
- Debashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,Unité de Chimie des Biomolécules, UMR 3523 CNRS, Institut Pasteur, Université de Paris, 28 rue du Dr Roux, 75015, Paris, France
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Jack Bennett
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
35
|
A Convenient Approach towards the Synthesis of ADMDP Type Iminosugars and Nojirimycin Derivatives from Sugar-Derived Lactams. Molecules 2021; 26:molecules26185459. [PMID: 34576929 PMCID: PMC8464940 DOI: 10.3390/molecules26185459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
An efficient method for the synthesis of nojirimycin- and pyrrolidine-based iminosugar derivatives has been developed. The strategy is based on the partial reduction in sugar-derived lactams by Schwartz’s reagent and tandem stereoselective nucleophilic addition of cyanide or a silyl enol ether dictated by Woerpel’s or diffusion control models, which affords amino-modified iminosugars, such as ADMDP or higher nojirimycin derivatives.
Collapse
|
36
|
Green synthesis of 1,5-dideoxy-1,5-imino-ribitol and 1,5-dideoxy-1,5-imino-DL-arabinitol from natural D-sugars over Au/Al 2O 3 and SO 42-/Al 2O 3 catalysts. Sci Rep 2021; 11:16928. [PMID: 34413372 PMCID: PMC8376872 DOI: 10.1038/s41598-021-96231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022] Open
Abstract
A green synthetic route for the synthesis of some potential enzyme active hydroxypiperidine iminosugars including 1,5-dideoxy-1,5-imino-ribitol and 1,5-dideoxy-1,5-imino-dl-arabinitol, starting from commercially available d-ribose and d-lyxose was tested out. Heterogeneous catalysts including Au/Al2O3, SO42−/Al2O3 as well as environmentally friendly reagents were employed into several critical reaction of the route. The synthetic route resulted in good overall yields of 1,5-dideoxy-1,5-imino-ribitol of 54%, 1,5-dideoxy-1,5-imino-d-arabinitol of 48% and 1,5-dideoxy-1,5-imino-l-arabinitol of 46%. The Au/Al2O3 catalyst can be easily recovered from the reaction mixture and reused with no loss of activity.
Collapse
|
37
|
Fratianni F, Ombra MN, d’Acierno A, Caputo L, Amato G, De Feo V, Coppola R, Nazzaro F. Polyphenols Content and In Vitro α-Glycosidase Activity of Different Italian Monofloral Honeys, and Their Effect on Selected Pathogenic and Probiotic Bacteria. Microorganisms 2021; 9:1694. [PMID: 34442773 PMCID: PMC8398212 DOI: 10.3390/microorganisms9081694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
We evaluated the polyphenol content and the α-glucosidase activity exhibited by different monofloral honeys of Italian origin. Their capacity to act on different pathogenic (Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus) as well as probiotic bacteria (Lacticaseibacillus casei, Lactobacillus acidophilus, Lactiplantibacillus plantarum, Lactobacillus gasseri, and Lacticaseibacillus rhamnosus) was also assessed. Total polyphenols varied between 110.46 μg/g of fresh product (rhododendron honey) and 552.29 μg/g of fresh product (strawberry tree honey). Such result did not correspond to a parallel inhibitory α-glycosidase activity that, in each case was never higher than 33 μg/mL. Honeys were differently capable to fight the biofilm formation of the pathogens (inhibition up to 93.27%); they inhibited the in vitro adhesive process (inhibition up to 84.27%), and acted on mature biofilm (with values up to 76.64%). Their effect on bacterial metabolism was different too. Honeys were ineffective to inhibit E. coli mature biofilm nor to act on its metabolism. The action of the honey on probiotic strains seemed almost always stimulate their growth. Thus, these monofloral honeys might exhibit effects on human health and act positively as prebiotics.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| | - Maria Neve Ombra
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| | - Antonio d’Acierno
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy; (L.C.); (G.A.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy; (L.C.); (G.A.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy; (L.C.); (G.A.)
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via de Sanctis snc, 86100 Campobasso, Italy;
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| |
Collapse
|
38
|
Ferjancic Z, Saicic RN. Combining Organocatalyzed Aldolization and Reductive Amination: An Efficient Reaction Sequence for the Synthesis of Iminosugars. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zorana Ferjancic
- University of Belgrade – Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Radomir N. Saicic
- University of Belgrade – Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
- Serbian Academy of Sciences and Arts Kneza Mihaila 35 11 000 Belgrade Serbia
| |
Collapse
|
39
|
Iftikhar M, Lu Y, Zhou M. An overview of therapeutic potential of N-alkylated 1-deoxynojirimycin congeners. Carbohydr Res 2021; 504:108317. [PMID: 33932806 DOI: 10.1016/j.carres.2021.108317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023]
Abstract
Polyhydroxylated alkaloids display a wide range of biological activities, suggesting their use in the treatment of various diseases. Their most famous representative, 1-deoxynojirimycin (DNJ), is a natural product that shows α- and β-glucosidase inhibition. This molecule has been since converted into two clinically approved drugs i.e., Zavesca® and Glyset®, targeting type I Gaucher's disease and type II diabetes mellitus, respectively. This review examines the therapeutic potential of important DNJ congeners reported in last decade and presents concise mechanism of glycosidase inhibition. A brief overview of substituents conjugation's impact on DNJ scaffold (including N-alkylated DNJ derivatives, mono-valent, di-valent and multivalent DNJ congeners, N-[5-(adamantan-1-yl-methoxy)-pentyl]-1-deoxynojirimycin (AMP-DNM) look alike DNJ based lipophilic derivatives, AMP-DNM based neoglycoconjugates, DNJ click derivatives with varying carboxylic acids and aromatic moieties, conjugates of DNJ and glucose, and N-bridged DNJ analogues) towards various enzymes such as α/β glucosidase, porcine trehalase, as F508del-CFTR correctors, α-mannosidase, human placental β-glucocerebrosidase, N370S β-GCase, α-amylase and insect trehalase as potent and selective inhibitors have been discussed with potential bioactivities, which can provide inspiration for future studies.
Collapse
Affiliation(s)
- Mehwish Iftikhar
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, PR China
| | - Yinghong Lu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, PR China
| | - Min Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, PR China.
| |
Collapse
|
40
|
Synthesis, spectral, stereochemical, biological, molecular docking and DFT studies of 3-alkyl/3,5-dialkyl-2r,6c-di(naphthyl)piperidin-4-one picrates derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Ghatpande N, Phal D, Karpoormath R, Soliman M, Jadhav J, Choudhari P, Shaikh MM. Synthesis, Biological Evaluation and Molecular Docking of Novel N-Acyl/Aroyl Spiro[Chromane-2,4′-Piperidin]-4(3 H)-One as Potent Anti-Microbial Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1915807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nitin Ghatpande
- Department of pharmaceutical chemistry, University of KwaZulu-Natal College of Health Sciences, Durban, South Africa
| | - Deepak Phal
- Department of pharmaceutical chemistry, University of KwaZulu-Natal College of Health Sciences, Durban, South Africa
| | - Rajshekhar Karpoormath
- Department of pharmaceutical chemistry, University of KwaZulu-Natal College of Health Sciences, Durban, South Africa
| | - Mahmoud Soliman
- Department of pharmaceutical chemistry, University of KwaZulu-Natal College of Health Sciences, Durban, South Africa
| | | | - Prafulla Choudhari
- Pharmaceutical Chemistry, Bharati Vidyapeeth University Institute of Management Kolhapur, Kolhapur, Maharashtra, India
| | - Mahidansha M. Shaikh
- Department of pharmaceutical chemistry, University of KwaZulu-Natal College of Health Sciences, Durban, South Africa
- Unique Med Chem Laboratories, L-64, Chincholli MIDC, Solapur, Solapur, Maharashtra, India
| |
Collapse
|
42
|
Khalifeh T, Vazirizadeh A, Mohebbi GH, Barmak AR, Darabi AH. Determination of some Nutraceutical Compounds, Amino Acids and Fatty acids Present in the Extracts of Sargasum boveanum Algae Obtained from the Coastal Waters of Central Bushehr, Iran. IRANIAN SOUTH MEDICAL JOURNAL 2021; 24:134-159. [DOI: 10.52547/ismj.24.2.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
|
43
|
Nguyen KN, Kim Y, Maibunkaew S, Park J, Nguyen MT, Oh DB, Kwon O. Enhanced Production of 1-Deoxynojirimycin in Bacillus subtilis subsp. inaquosorum by Random Mutagenesis and Culture Optimization. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0231-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Okuyama Y, Kidena M, Kato E, Kawano S, Ishii K, Maie K, Miura K, Simizu S, Sato T, Chida N. Seven-Step Synthesis of All-Nitrogenated Sugar Derivatives Using Sequential Overman Rearrangements. Angew Chem Int Ed Engl 2021; 60:5193-5198. [PMID: 33252821 DOI: 10.1002/anie.202015141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/10/2022]
Abstract
All-nitrogenated sugars (ANSs), in which all hydroxy groups in a carbohydrate are replaced with amino groups, are anticipated to be privileged structures with useful biological activities. However, ANS synthesis has been challenging due to the difficulty in the installation of multi-amino groups. We report herein the development of a concise synthetic route to peracetylated ANSs in seven steps from commercially available monosaccharides. The key to success is the use of the sequential Overman rearrangement, which enables formal simultaneous substitution of four or five hydroxy groups in monosaccharides with amino groups. A variety of ANSs are available through the same reaction sequence starting from different initial monosaccharides by chirality transfer of secondary alcohols. Transformations of the resulting peracetylated ANSs such as glycosylation and deacetylation are also demonstrated. Biological studies reveal that ANS-modified cholesterol show cytotoxicity against human cancer cell lines, whereas each ANS and cholesterol have no cytotoxicity.
Collapse
Affiliation(s)
- Yuya Okuyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Mayu Kidena
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Erina Kato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Sayaka Kawano
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Koki Ishii
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kenta Maie
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kazuki Miura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
45
|
Okuyama Y, Kidena M, Kato E, Kawano S, Ishii K, Maie K, Miura K, Simizu S, Sato T, Chida N. Seven‐Step Synthesis of All‐Nitrogenated Sugar Derivatives Using Sequential Overman Rearrangements. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuya Okuyama
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Mayu Kidena
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Erina Kato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Sayaka Kawano
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Koki Ishii
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kenta Maie
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kazuki Miura
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Siro Simizu
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takaaki Sato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Noritaka Chida
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
46
|
Parmar K, Haghshenas P, Gravel M. Total Synthesis of (+)-Hyacinthacine A 1 Using a Chemoselective Cross-Benzoin Reaction and a Furan Photooxygenation-Amine Cyclization Strategy. Org Lett 2021; 23:1416-1421. [PMID: 33538602 DOI: 10.1021/acs.orglett.1c00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the shortest synthesis of glycosidase inhibitor (+)-hyacinthacine A1 using a highly chemoselective N-heterocyclic carbene-catalyzed cross-benzoin reaction as well as a furan photooxygenation-amine cyclization strategy. This is the first such cyclization on a furylic alcohol, an unprecedented reaction due to the notorious instability of the formed intermediates. The photooxygenation strategy was eventually incorporated into a three-step one-pot process that formed the requisite pyrrolizidine framework of (+)-hyacinthacine A1.
Collapse
Affiliation(s)
- Karnjit Parmar
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5C9
| | - Pouyan Haghshenas
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5C9
| | - Michel Gravel
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5C9
| |
Collapse
|
47
|
Chavan SP, Kalbhor DB, Gonnade RG. Divergent approach to the synthesis of (-)-balanol heterocycle and cis-3-hydroxypipecolic acid based on chiral 2-aminoalkanol equivalent. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Dikošová L, Otočková B, Malatinský T, Doháňošová J, Kopáčová M, Ďurinová A, Smutná L, Trejtnar F, Fischer R. New total synthesis and structure confirmation of putative (+)-hyacinthacine C 3 and (+)-5- epi-hyacinthacine C 3. RSC Adv 2021; 11:31621-31630. [PMID: 35496868 PMCID: PMC9041629 DOI: 10.1039/d1ra06225e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 12/03/2022] Open
Abstract
A unique synthesis of polyhydroxylated pyrrolizidine alkaloids, namely (+)-hyacinthacine C3 and (+)-5-epi-hyacinthacine C3 is presented. The strategy relies on a 1,3-dipolar cycloaddition of an l-mannose derived nitrone, which owing to its great syn-stereoselectivity builds up the majority of the required stereocenters. The following key steps include Wittig olefination and iodine-mediated aminocyclisation, that provide two epimeric pyrrolizidines with the appropriate configuration. As a result, structure and steric arrangement of the first synthetically prepared (+)-hyacinthacine C3 are proved to be correct, clearly confirming the inconsistency with the stereochemistry assigned to the natural sample. With respect to the previously proven glycosidase inhibitory activities, the antiproliferative effect of (+)-hyacinthacine C3 and (+)-5-epi-hyacinthacine C3 was evaluated using several cell line models. A second total synthesis of (+)-hyacinthacine C3 is reported. As a result, structure of the first synthetically prepared alkaloid is proved to be correct, clearly confirming the inconsistency with the stereochemistry assigned to the natural sample.![]()
Collapse
Affiliation(s)
- Lívia Dikošová
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Barbora Otočková
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Tomáš Malatinský
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Jana Doháňošová
- Central Laboratories, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Mária Kopáčová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic
| | - Anna Ďurinová
- Charles University, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Lucie Smutná
- Charles University, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - František Trejtnar
- Charles University, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Róbert Fischer
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| |
Collapse
|
49
|
Deng X, Zhang L, Liu H, Bai Y, He W. mCPBA-mediated dioxygenation of unactivated alkenes for the synthesis of 5-imino-2-tetrahydrofuranyl methanol derivatives. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Dkhireche N, Galai M, Ouakki M, Rbaa M, Ech-chihbi E, Lakhrissi B, EbnTouhami M. Electrochemical and theoretical study of newly quinoline derivatives as a corrosion inhibitors adsorption onmild steel in phosphoric acid media. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108222] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|