1
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
2
|
Hoßbach J, Bußwinkel F, Kranz A, Wattjes J, Cord-Landwehr S, Moerschbacher BM. A chitin deacetylase of Podospora anserina has two functional chitin binding domains and a unique mode of action. Carbohydr Polym 2018; 183:1-10. [DOI: 10.1016/j.carbpol.2017.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023]
|
3
|
Dusny C, Schmid A. TheMOXpromoter inHansenula polymorphais ultrasensitive to glucose-mediated carbon catabolite repression. FEMS Yeast Res 2016; 16:fow067. [DOI: 10.1093/femsyr/fow067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 11/13/2022] Open
|
4
|
Synthesis of 1-(S)-phenylethanol and ethyl (R)-4-chloro-3-hydroxybutanoate using recombinant Rhodococcus erythropolis alcohol dehydrogenase produced by two yeast species. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Moussa M, Ibrahim M, El Ghazaly M, Rohde J, Gnoth S, Anton A, Kensy F, Mueller F. Expression of recombinant staphylokinase in the methylotrophic yeast Hansenula polymorpha. BMC Biotechnol 2012; 12:96. [PMID: 23253823 PMCID: PMC3539880 DOI: 10.1186/1472-6750-12-96] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 11/15/2012] [Indexed: 11/24/2022] Open
Abstract
Background Currently, the two most commonly used fibrinolytic agents in thrombolytic therapy are recombinant tissue plasminogen activator (rt-PA) and streptokinase (SK). Whereas SK has the advantage of substantially lower costs when compared to other agents, it is less effective than either rt-PA or related variants, has significant allergenic potential, lacks fibrin selectivity and causes transient hypotensive effects in high dosing schedules. Therefore, development of an alternative fibrinolytic agent having superior efficacy to SK, approaching that of rt-PA, together with a similar or enhanced safety profile and advantageous cost-benefit ratio, would be of substantial importance. Pre-clinical data suggest that the novel fibrinolytic recombinant staphylokinase (rSAK), or related rSAK variants, could be candidates for such development. However, since an efficient expression system for rSAK is still lacking, it has not yet been fully developed or evaluated for clinical purposes. This study’s goal was development of an efficient fermentation process for the production of a modified, non-glycosylated, biologically active rSAK, namely rSAK-2, using the well-established single cell yeast Hansenula polymorpha expression system. Results The development of an efficient large scale (80 L) Hansenula polymorpha fermentation process of short duration for rSAK-2 production is described. It evolved from an initial 1mL HTP methodology by successive scale-up over almost 5 orders of magnitude and improvement steps, including the optimization of critical process parameters (e.g. temperature, pH, feeding strategy, medium composition, etc.). Potential glycosylation of rSAK-2 was successfully suppressed through amino acid substitution within its only N-acetyl glycosylation motif. Expression at high yields (≥ 1g rSAK-2/L cell culture broth) of biologically active rSAK-2 of expected molecular weight was achieved. Conclusion The optimized production process described for rSAK-2 in Hansenula polymorpha provides an excellent, economically superior, manufacturing platform for a promising therapeutic fibrinolytic agent.
Collapse
|
6
|
Production of recombinant proteins by yeast cells. Biotechnol Adv 2012; 30:1108-18. [DOI: 10.1016/j.biotechadv.2011.09.011] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 01/14/2023]
|
7
|
Scheidle M, Jeude M, Dittrich B, Denter S, Kensy F, Suckow M, Klee D, Büchs J. High-throughput screening of Hansenula polymorpha clones in the batch compared with the controlled-release fed-batch mode on a small scale. FEMS Yeast Res 2009; 10:83-92. [PMID: 19849718 DOI: 10.1111/j.1567-1364.2009.00586.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Most large-scale production processes in biotechnology are performed in fed-batch operational mode. In contrast, the screenings for microbial production strains are run in batch mode, which results in the microorganisms being subjected to different physiological conditions. This significantly affects strain selection. To demonstrate differences in ranking during strain selection depending on the operational mode, screenings were performed in batch and fed-batch modes. Two model populations of the methylotrophic yeast Hansenula polymorpha RB11 with vector pC10-FMD (P(FMD)-GFP) (220 clones) and vector pC10-MOX (P(MOX)-GFP) (224 clones) were applied. For fed-batch cultivations in deep-well microtiter plates, a controlled-release system made of silicone elastomer discs containing glucose was used. Three experimental set-ups were investigated: batch cultivation with (1) glucose as a substrate, which catabolite represses product formation, and (2) glycerol as a carbon source, which is partially repressing, respectively, and (3) fed-batch cultivation with glucose as a limiting substrate using the controlled-release system. These three experimental set-ups showed significant variations in green fluorescent protein (GFP) yield. Interestingly, screenings in fed-batch mode with glucose as a substrate resulted in the selection of yeast strains different from those cultivated in batch mode with glycerol or glucose. Ultimately, fed-batch screening is considerably better than screening in batch mode for fed-batch production processes with glucose as a carbon source.
Collapse
Affiliation(s)
- Marco Scheidle
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Expression, purification and characterization of aprotinin and a human analogue of aprotinin. Protein Expr Purif 2009; 65:238-43. [DOI: 10.1016/j.pep.2008.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 11/21/2022]
|
9
|
Stöckmann C, Scheidle M, Dittrich B, Merckelbach A, Hehmann G, Melmer G, Klee D, Büchs J, Kang HA, Gellissen G. Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment. Microb Cell Fact 2009; 8:22. [PMID: 19368732 PMCID: PMC2676251 DOI: 10.1186/1475-2859-8-22] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/15/2009] [Indexed: 11/18/2022] Open
Abstract
A range of industrial H. polymorpha-based processes exist, most of them for the production of pharmaceuticals. The established industrial processes lean on the use of promoters derived from MOX and FMD, genes of the methanol metabolism pathway. In Hansenula polymorpha these promoters are de-repressed upon depletion of a range of carbon sources like glucose and glycerol instead of being induced by methanol as reported for other methylotrophs. Due to these characteristics screening and fermentation modes have been defined for strains harbouring such expression control elements that lean on a limited supplementation of glycerol or glucose to a culture medium. For fermentation of H. polymorpha a synthetic minimal medium (SYN6) has been developed. No industrial processes have been developed so far based on Arxula adeninivorans and only a limited range of strong promoter elements exists, suitable for heterologous gene expression. SYN6 originally designed for H. polymorpha provided a suitable basis for the initial definition of fermentation conditions for this dimorphic yeast. Characteristics like osmo- and thermotolerance can be addressed for the definition of culture conditions.
Collapse
|
10
|
Klabunde J, Kleebank S, Piontek M, Hollenberg CP, Hellwig S, Degelmann A. Increase of calnexin gene dosage boosts the secretion of heterologous proteins by Hansenula polymorpha. FEMS Yeast Res 2007; 7:1168-80. [PMID: 17617219 PMCID: PMC2040192 DOI: 10.1111/j.1567-1364.2007.00271.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The type I membrane protein calnexin is a conserved key component of the quality control mechanism in the endoplasmic reticulum. It functions as a molecular chaperone that monitors the folding state of nascent polypeptides entering the endoplasmic reticulum. Calnexin also behaves as a lectin, as its chaperoning activity involves binding of oligosaccharide moieties present on newly imported glycoproteins. We isolated the calnexin gene (HpCNE1) from the methylotrophic yeast Hansenula polymorpha, and used HpCNE1 expression plasmids for supertransformation of H. polymorpha strains secreting target proteins of biotechnological interest. The elevated dosage of HpCNE1 enhanced secretion of the four proteins tested: three glycoproteins and one unglycosylated product. Secretion of bacterial alginate epimerase AlgE1 was increased threefold on average, and secretion of both human interferon-γ and fungal consensus phytase twofold. With phytase and AlgE1 this improvement was all the more remarkable, as the secretion level was already high in the original strains (g L−1 range). The same approach improved secretion of human serum albumin, which lacks N-linked glycans, about twofold. Glycosylation of the pro-MFα1 leader may account for the effect of calnexin in this case. Our results argue that cooverexpression of calnexin can serve as a generally applicable tool for enhancing the secretion of all types of heterologous protein by H. polymorpha.
Collapse
Affiliation(s)
- Jens Klabunde
- ARTES Biotechnology GmbHErkrath, Germany
- Institut für Mikrobiologie, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Sebastian Kleebank
- Fraunhofer Institut für Molekularbiologie und Angewandte ÖkologieAachen, Germany
| | | | - Cornelis P Hollenberg
- Institut für Mikrobiologie, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Stephan Hellwig
- Fraunhofer Institut für Molekularbiologie und Angewandte ÖkologieAachen, Germany
| | | |
Collapse
|
11
|
Azzoni AR, Takahashi K, Woodard SL, Miranda EA, Nikolov ZL. Purification of recombinant aprotinin produced in transgenic corn seed: separation from CTI utilizing ion-exchange chromatography. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2005. [DOI: 10.1590/s0104-66322005000300001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res 2005; 5:1079-96. [PMID: 16144775 DOI: 10.1016/j.femsyr.2005.06.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/09/2005] [Accepted: 06/09/2005] [Indexed: 11/29/2022] Open
Abstract
Yeasts combine the ease of genetic manipulation and fermentation of a microbial organism with the capability to secrete and to modify proteins according to a general eukaryotic scheme. Yeasts thus provide attractive platforms for the production of recombinant proteins. Here, four important species are presented and compared: the methylotrophic Hansenula polymorpha and Pichia pastoris, distinguished by an increasingly large track record as industrial platforms, and the dimorphic species Arxula adeninivorans and Yarrrowia lipolytica, not yet established as industrial platforms, but demonstrating promising technological potential, as discussed in this article.
Collapse
Affiliation(s)
- Gerd Gellissen
- PharmedArtis GmbH, Forckenbeckstr. 6, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Stöckmann C, Losen M, Dahlems U, Knocke C, Gellissen G, Büchs J. Effect of oxygen supply on passaging, stabilising and screening of recombinant Hansenula polymorpha production strains in test tube cultures. FEMS Yeast Res 2004; 4:195-205. [PMID: 14613884 DOI: 10.1016/s1567-1356(03)00147-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Twenty-four Hansenula polymorpha transformants were passaged and stabilised in glucose medium and screened in glycerol medium for recombinant phytase in shaken test tubes. The cultivations were performed under either limited or non-limited oxygen supply. Maximum oxygen transfer capacities of test tubes were assessed by sulfite oxidation. Oxygen-limited glucose cultures resulted in a partially anaerobic metabolism and formation of 4.1 g ethanol l(-1), which was subsequently aerobically metabolised. Non-limited oxygen supply led to overflow metabolism and to accumulation of 2.1 g acetic acid l(-1), reducing the biomass yield. The use of glycerol in the screening main cultures prevented by-product formation irrespective of oxygen supply. Preculturing in glucose medium under non-limited oxygen supply resulted in a 20-h lag phase of the screening main culture. This lag phase was not observed when preculturing was performed under oxygen limitation. Phytase activity was on average 25% higher in cultures passaged, stabilised and screened under limited oxygen supply than in cultures under non-limited oxygen supply.
Collapse
Affiliation(s)
- Christoph Stöckmann
- Department of Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringerweg 1, D-52056, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Stöckmann C, Maier U, Anderlei T, Knocke C, Gellissen G, Büchs J. The oxygen transfer rate as key parameter for the characterization of Hansenula polymorpha screening cultures. J Ind Microbiol Biotechnol 2003; 30:613-22. [PMID: 14586804 DOI: 10.1007/s10295-003-0090-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2003] [Accepted: 08/23/2003] [Indexed: 10/26/2022]
Abstract
Screening cultures are usually non-monitored and non-controlled due to a lack of appropriate measuring techniques. A new device for online measurement of oxygen transfer rate (OTR) in shaking-flask cultures was used for monitoring the screening of Hansenula polymorpha. A shaking frequency of 300 rpm and a filling volume of 20 ml in 250-ml flasks ensured a sufficient oxygen transfer capacity of 0.032 mol (l h)(-1) and thus a respiration not limited by oxygen. Medium buffered with 0.01 mol phosphate l(-1) (pH 6.0) resulted in pH-inhibited respiration, whereas buffering with 0.12 mol phosphate l(-1) (pH 4.1) resulted in respiration that was not inhibited by pH. The ammonium demand was balanced by establishing fixed relations between oxygen, ammonium, and glycerol consumption with 0.245+/-0.015 mol ammonium per mol glycerol. Plate precultures with complex glucose medium reduced the specific growth rate coefficient to 0.18 h(-1) in subsequent cultures with minimal glycerol medium. The specific growth rate coefficient increased to 0.26 h(-1) when exponentially growing precultures with minimal glycerol medium were used for inoculation. Changes in biomass, glycerol, ammonium, and pH over time were simulated on the basis of oxygen consumption.
Collapse
Affiliation(s)
- Christoph Stöckmann
- Biochemical Engineering, RWTH Aachen University, Worringerweg 1, Sammelbau Biologie, 52056, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Chen WD, Dong XY, Sun Y. Modeling of the whole expanded-bed protein adsorption process with yeast cell suspensions as feedstock. J Chromatogr A 2003; 1012:1-10. [PMID: 14509337 DOI: 10.1016/s0021-9673(03)01182-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expanded bed adsorption of bovine serum albumin (BSA) directly from a feedstock containing whole yeast cells has been investigated with an anion-exchanger DEAE Spherodex M. In the presence of 6% (w/w) yeast cells, the axial liquid-phase dispersion coefficient was found in the order of 10(-6) m2/s, which felled into the common range of 1.0 x 10(-6)-1.0 x 10(-5) m2/s observed previously without the use of cell suspensions as mobile phase. We found that the static and dynamic binding capacity of BSA decreased with increasing the yeast cell concentration due to the competitive adsorption of cells onto the outer surface of the anion-exchanger. However, because of the small size of the adsorbent, the large pore diffusivity of protein and the favorable column efficiency (low axial dispersion coefficient), the dynamic binding capacity of BSA in the presence of 6% (w/w) cells in the expanded bed reached 86% that of the equilibrium adsorption density. Then, the whole expanded bed adsorption process of BSA in the presence of cells, including feedstock loading, washing and elution steps, was predicted using a mathematical model with parameters all determined independently. In the elution stage, the steric mass-action adsorption isotherm with salt concentration as one of the model parameters was used to predict the step-gradient elution process with salt concentration increases. Computer simulations showed that the model was in good agreement with the experimental results for the whole operation process.
Collapse
Affiliation(s)
- Wei-Dong Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | |
Collapse
|
16
|
Valdés R, Gómez L, Padilla S, Brito J, Reyes B, Alvarez T, Mendoza O, Herrera O, Ferro W, Pujol M, Leal V, Linares M, Hevia Y, García C, Milá L, García O, Sánchez R, Acosta A, Geada D, Paez R, Luis Vega J, Borroto C. Large-scale purification of an antibody directed against hepatitis B surface antigen from transgenic tobacco plants. Biochem Biophys Res Commun 2003; 308:94-100. [PMID: 12890485 DOI: 10.1016/s0006-291x(03)01335-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of bioengineering to plants for production of biological products for human and animal use has expanded in recent years. The reasons for this expansion are several and include advances in the technology for novel production systems and the need for very large quantities of therapeutic proteins. The process of growing pharmaceutical proteins in plants, extracting, and purifying is a hard task considering the lack of available information concerning these topics. In this work, a recombinant murine monoclonal antibody specific for the hepatitis B surface antigen, expressed in stably transformed transgenic Nicotiana tabacum plants, was purified by means of a recombinant protein A Streamline chromatography as the main purification step. The antibody expression level varied with the age of the plants and the number of harvests from 40 to 15microg/ml and the maximum process yield was about 25mg of plantibody/kg of biomass. Protein A Streamline chromatography was successfully used in the purification process yielding a recovery of about 60% and a plantibody SDS-PAGE purity of over 90% but unexpectedly, previous clarification steps could not be totally avoided. The amino acid sequence recognized by this affinity purified plantibody was similar to its murine counterpart verifying the potentiality of plants to replace animals or bioreactors for large-scale production of this monoclonal antibody.
Collapse
Affiliation(s)
- Rodolfo Valdés
- Plant Derived Antibody Production and Generation Group, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Azzoni AR, Kusnadi AR, Miranda EA, Nikolov ZL. Recombinant aprotinin produced in transgenic corn seed: extraction and purification studies. Biotechnol Bioeng 2002; 80:268-76. [PMID: 12226858 DOI: 10.1002/bit.10408] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Expression in transgenic plants is potentially one of the most economical systems for large-scale production of valuable peptide and protein products. However, the downstream processing of recombinant proteins produced in plants has not been extensively studied. In this work, we studied the extraction and purification of recombinant aprotinin, a protease inhibitor used as a therapeutic compound, produced in transgenic corn seed. Conditions for extraction from transgenic corn meal that maximize aprotinin concentration and its fraction of the total soluble protein in the extract were found: pH 3.0 and 200 mM NaCl. Aprotinin, together with a native corn trypsin inhibitor (CTI), was captured using a tryspin-agarose column. These two inhibitors were separated using an agarose-IDA-Cu2+ column that proved to efficiently absorb the CTI while the recombinant aprotinin was collected in the flowthrough with purity of at least 79%. The high purity of the recombinant aprotinin was verified by SDS-PAGE and N-terminal sequencing. The overall recombinant aprotinin recovery yield and purification factor were 49% and 280, respectively. Because CTI was also purified, the recovery and purification process studied has the advantage of possible CTI co-production. Finally, the work presented here introduces additional information on the recovery and purification of recombinant proteins produced in plants and corroborates with past research on the potential use of plants as biorreactors.
Collapse
Affiliation(s)
- Adriano R Azzoni
- LEBp, Laboratório de Engenharia de Bioprocessos, Departamento de Processos Biotecnológicos, FEQ, UNICAMP, CP 6066, CEP 13083-970, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
18
|
Müller F, Tieke A, Waschk D, Mühle C, Müller F, Seigelchifer M, Pesce A, Jenzelewski V, Gellissen G. Production of IFNα-2a in Hansenula polymorpha. Process Biochem 2002. [DOI: 10.1016/s0032-9592(02)00037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Degelmann A, Müller F, Sieber H, Jenzelewski V, Suckow M, Strasser AW, Gellissen G. Strain and process development for the production of human cytokines inHansenula polymorpha. FEMS Yeast Res 2002. [DOI: 10.1111/j.1567-1364.2002.tb00104.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Barros de Genaro AC, Tamagawa RE, Azzoni AR, Alves Bueno SM, Miranda EA. Recovery and purification of aprotinin from industrial insulin-processing effluent by immobilized chymotrypsin and negative IMAC chromatographies. Process Biochem 2002. [DOI: 10.1016/s0032-9592(02)00035-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Willoughby N, Habib G, Hoare M, Hjorth R, Titchener-Hooker NJ. The use of rapid on-line monitoring of products and contaminants from within an expanded bed to control separations exhibiting fast breakthrough characteristics and to maximize productivity. Biotechnol Bioeng 2000; 70:254-61. [PMID: 10992229 DOI: 10.1002/1097-0290(20001105)70:3<254::aid-bit2>3.0.co;2-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Conventional control of expanded-bed adsorption (EBA), like that of packed-bed chromatography, is based upon off-line measurements of the column eluant. The relatively high-void volumes in EBA systems means that this approach can lead to significant performance losses caused by the inability to achieve tight control of breakthrough. This problem is made worse if the product has a fast breakthrough characteristic or if it is necessary to operate to low levels of product loss. In this article we examine the utility of constant on-line monitoring from within the expanded bed using stopped-flow analysis (SFA) to provide data for the control of the expanded-bed operation. A modified Streamline 50 column with side ports that enable sampling along the expanded axis of the bed was used. Comparisons between off-line and on-line measurements are presented, showing how the advanced monitoring method can lead to better control and to an analysis of breakthrough development within the bed. The expanded bed was used to purify alcohol dehydrogenase from homogenized suspensions of bakers' yeast. Accurate control of breakthrough to 10% of the target enzyme was achieved using a SFA control system with a response time of 40 seconds. On-line data compared well to assays carried out off-line on the outlet stream for both the product enzyme (ADH), total protein, RNA, and cell debris levels (via UV 650 nm). This information was used to generate a series of graphs with which to track the EBA process in real-time. Results showed that bed utilization was not linear along the bed axis so that, for example, 60% of ADH is bound in the bottom 33% of the column during loading.
Collapse
Affiliation(s)
- N Willoughby
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Analysis of heat shock promoters inHansenula polymorpha: TheTPS1 promoter, a novel element for heterologous gene expression. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02942181] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Abstract
The development of heterologous overexpression systems for soluble proteins has greatly advanced the study of the structure/function relationships of these proteins and their biotechnological and pharmaceutical applications. In this paper we present an overview on several aspects of the use of the methylotrophic yeast Hansenula polymorpha as a host for heterologous gene expression. H. polymorpha has been successfully exploited as a cell factory for the large-scale production of such components. Stable, engineered strains can be obtained by site-directed integration of expression cassettes into the genome, for which various constitutive and inducible promoters are available to control the expression of the foreign genes. New developments have now opened the way to additional applications of H. polymorpha, which are unprecedented for other organisms. Most importantly, it may be the organism of choice for reliable, large-scale production of heterologous membrane proteins, using inducible intracellular membranes and targeting sequences to specifically insert these proteins stably into these membranes. Furthermore, the use of H. polymorpha offers the possibility to accumulate the produced components into specific compartments, namely peroxisomes. These organelles are massively induced during growth of the organism on methanol and may occupy up to 80% of the cell volume. Accumulation inside peroxisomes prevents undesired modifications (e.g. proteolytic processing or glycosylation) and is also in particular advantageous when proteins are produced which are toxic or harmful for the host.
Collapse
|
24
|
Garke G, Deckwer WD, Anspach FB. Preparative two-step purification of recombinant human basic fibroblast growth factor from high-cell-density cultivation of Escherichia coli. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 737:25-38. [PMID: 10681038 DOI: 10.1016/s0378-4347(99)00394-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aggregation and precipitation are major pitfalls during bioprocessing and purification of recombinant human basic fibroblast growth factor (rh-bFGF). In order to gain high yields of the soluble protein monomer with high biological activity, an efficient downstream process was developed, focussing on the combination of expanded bed adsorption (EBA) and heparin chromatography. After expression in E. coli TG1:plambdaFGFB, cells were harvested and washed; then the rh-bFGF was released via high pressure homogenization. The high viscosity of the feedstock of about 40 mPa s, showing non-newtonian behaviour, was reduced to 2 mPa s by the addition of DNase. The homogenate (5.6 l) was loaded directly on an expanded bed column (C-50) packed with the strong cation-exchanger Streamline SP. In the eluates, histone-like (HU) protein was identified as the main protein contaminant by sequence analysis. The thermodynamics and kinetics of rh-bFGF adsorption from the whole broth protein mixture were determined in view of competition and displacement effects with host-derived proteins. Optimal binding and elution conditions were developed with knowledge of the dependence of rh-bFGF adsorption isotherms on the salt concentration to allow direct application of eluates onto Heparin HyperD. This affinity support maintained selectivity and efficiency under CIP and over a wide range of flow-rates; both is advantageous for the flexibility of the purification protocol in view of a scalable process. Remaining DNA and HU protein were separated by Heparin HyperD. The endotoxin level decreased from approximately 1,000,000 EU/ml in the whole broth to 10 EU in 3 mg bFGF per ml. The final purification protocol yields >99% pure rh-bFGF as judged from SDS-PAGE and MALDI-TOF mass spectrometry with high mitogenic activity (ED50=1-1.5 ng/ml) of the lyophilized sample. In comparison to the conventional process, the overall protein recovery rose by 15% to 65% with saving time and costs.
Collapse
Affiliation(s)
- G Garke
- Biochemical Engineering Division, GBF-Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Germany
| | | | | |
Collapse
|
25
|
Fernandez-Lahore HM, Kleef R, Kula M, Thommes J. The influence of complex biological feedstock on the fluidization and bed stability in expanded bed adsorption. Biotechnol Bioeng 1999; 64:484-96. [PMID: 10397887 DOI: 10.1002/(sici)1097-0290(19990820)64:4<484::aid-bit11>3.0.co;2-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The stability of expanded bed adsorption systems (EBA) was studied in biomass containing culture broth by residence time distribution (RTD) experiments, using pulse inputs of fluorescent molecules as tracers. Different commercial adsorbents (Streamline DEAE, SP, Phenyl, Chelating, and AC) were tested at various biomass concentrations (2.5-12 %, wet weight) of whole (Saccharomyces cerevisiae) yeast, yeast cell homogenate, and Escherichia coli homogenate. Analyzing the RTD according to the PDE model (PDE: axially dispersed plug-flow exchanging mass with stagnant zones) allowed the calculation of three parameters: the number of transfer units for mass exchange between mobile and stagnant fraction (N), the Peclet number for overall axial dispersion (P), and the mobile fraction of the liquid in axially dispersed plug flow (varphi). When fluidization was performed in particle-free buffer the normalized response signal (after perfect input pulse) was symmetric (N:0; P: 50-100; varphi: 1), thus, demonstrating the formation of a homogeneous fluidized (expanded) bed. Upon application of suspended biomass the RTD was skewed, depending on the adsorbent used and the type and level of biomass present in the sample. This situation leads to three different characteristic pictures: the well-fluidized system (N: >/= 7-10; P: >/= 40; varphi: 0.80-0.90), the system exhibiting bottom channeling (N: < 1-2; P: >/= 40; varphi: 0.5-0.7) and, the system where extensive agglomeration develops (N: 4-7; P: 20-40; varphi: < 0.5). These results demonstrate that changes in the hydrodynamics of EBA already take place in the presence of moderate concentrations of biomass. Furthermore, those changes can be quantitatively described mainly in terms of the fraction of stagnant zones in the system, which are formed due to the interaction of biomass and adsorbent. The technique described here can be used to evaluate a certain combination of adsorbent and biomass with regard to its suitability for expanded bed adsorption from whole broth. Copyright 1999 John Wiley & Sons, Inc. Biotechol Bioeng 64: 484-496, 1999.
Collapse
Affiliation(s)
- HM Fernandez-Lahore
- Institut fur Enzymtechnologie der Heinrich-Heine Universitat Dusseldorf im Forschungszentrum Julich, D-52426 Julich, Germany
| | | | | | | |
Collapse
|
26
|
Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AW, van Loon AP. An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng 1999; 63:373-81. [PMID: 10099617 DOI: 10.1002/(sici)1097-0290(19990505)63:3<373::aid-bit14>3.0.co;2-t] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient process was developed for the low-cost production of phytases using Hansenula polymorpha. Glucose or glucose syrups, previously reported as repressive substrates, were used as main carbon sources during fermentation. Glucose was even the most productive substrate for high-level production of phytases. Compared with the process using glycerol, the standard carbon source used for this process until now, the use of glucose led to a reduction of more than 80% in the raw materials costs. In addition, exceptionally high concentrations of active enzyme (up to 13.5 g/L) were obtained in the medium, with phytase representing over 97% of the total accumulated protein. These levels greatly exceed those reported so far for any yeast-based expression system. Very efficient downstream processing procedures were developed with product recovery yields over 90%. Both the fermentation and downstream processing were successfully tested in pilot scale up to 2000 L. As a result, H. polymorpha can be used as a highly competitive system for low-cost phytase production.
Collapse
Affiliation(s)
- A F Mayer
- Biotechnology Research Group, Vitamins and Fine Chemicals Division, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Feuser J, Halfar M, Lütkemeyer D, Ameskamp N, Kula MR, Thömmes J. Interaction of mammalian cell culture broth with adsorbents in expanded bed adsorption of monoclonal antibodies. Process Biochem 1999. [DOI: 10.1016/s0032-9592(98)00083-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Raymond F, Rolland D, Gauthier M, Jolivet M. Purification of a recombinant protein expressed in yeast: optimization of analytical and preparative chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 706:113-21. [PMID: 9544813 DOI: 10.1016/s0378-4347(97)00512-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The industrial production of recombinant proteins requires control of both fermentation and purification steps. For the serodiagnosis of toxoplasmosis, the main antigen is a membrane protein of 30 kDa (P30). The P30 gene was cloned and expressed in Schizosaccharomyces pombe at 0.7 microg/ml in culture medium. Batch fermentation was optimized by the specific choice of peptones, which enabled optimum growth and protein expression without reducing the efficacy of the purification step. Analytical purification was then carried out using cation-exchange chromatography. For larger volumes, scaling up was performed on expanded mode by using a Streamline system (Pharmacia). This purification step allowed us to obtain a 67.5% recovery with a purification factor greater than 27-fold. Expanded bed adsorption technology is a convenient and effective technique for protein capture directly from feedstock, and the eluted fraction is ready for a second affinity chromatography step. This second step is performed with a yield of 40% and provides a final purification factor of 2000-fold.
Collapse
Affiliation(s)
- F Raymond
- BioMérieux S.A., Marcy l'Etoile, France
| | | | | | | |
Collapse
|
29
|
Abstract
The methylotrophic yeasts Hansenula polymorpha, Pichia pastoris and Candida boidinii have been developed as production systems for recombinant proteins. The favourable and most advantageous characteristics of these species have resulted in an increasing number off biotechnological applications. As a consequence, these species--especially H. polymorpha and P. pastoris--are rapidly becoming the systems of choice for heterologous gene expression in yeast. Recent advances in the development of these yeasts as hosts for the production of heterologous proteins have provided a catalogue of new applications, methods and system components.
Collapse
Affiliation(s)
- C P Hollenberg
- Institut für Mikrobiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | |
Collapse
|
30
|
Abstract
Expanded-bed adsorption allows the capture of proteins from particle-containing feedstocks without prior removal of particulates, thus enabling clarification of a cell suspension or cell homogenate and the concentration of the desired product in a single operation. This usually results in higher product recovery in a shorter time period. Process development and scale-up of an expanded-bed operation is convenient because both the adsorbent and the equipment are similar to those in conventional packed-bed chromatography. This article reviews the recent developments in expanded-bed adsorption technology and the range of applications that are now being achieved.
Collapse
Affiliation(s)
- R Hjorth
- Pharmacia Biotech AB, Uppsala, Sweden.
| |
Collapse
|
31
|
Thömmes J. Fluidized bed adsorption as a primary recovery step in protein purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1997; 58:185-230. [PMID: 9103914 DOI: 10.1007/bfb0103305] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fluidized bed adsorption has been introduced as an integrative technology combining clarification, concentration, and initial purification in a single step. In the paper presented here, the use of fluidized adsorbents in the primary recovery of proteins starting from unclarified broths is reviewed. First the principle of fluidizing adsorbent particles is discussed, subsequently possible experimental procedures for whole broth adsorption are demonstrated. The system parameters governing the performance of the sorption process in a fluidized bed are discussed in the second part of the paper and considerations on how operating parameters and process design influence the limiting steps are provided. Finally, examples for the successful operation of whole broth adsorption employing fluidized adsorbents are shown and conditions are defined under which this technology may be an alternative to traditional protein purification methods.
Collapse
Affiliation(s)
- J Thömmes
- Institut für Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Jülich, Germany.
| |
Collapse
|