1
|
Djenane D, Aider M. The one-humped camel: The animal of future, potential alternative red meat, technological suitability and future perspectives. F1000Res 2024; 11:1085. [PMID: 38798303 PMCID: PMC11128057 DOI: 10.12688/f1000research.125246.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 05/29/2024] Open
Abstract
The 2020 world population data sheet indicates that world population is projected to increase from 7.8 billion in 2020 to 9.9 billion by 2050 (Increase of more than 25%). Due to the expected growth in human population, the demand for meats that could improve health status and provide therapeutic benefits is also projected to rise. The dromedary also known as the Arabian camel, or one-humped camel ( Camelus dromedarius), a pseudo ruminant adapted to arid climates, has physiological, biological and metabolic characteristics which give it a legendary reputation for surviving in the extreme conditions of desert environments considered restrictive for other ruminants. Camel meat is an ethnic food consumed across the arid regions of Middle East, North-East Africa, Australia and China. For these medicinal and nutritional benefits, camel meat can be a great option for sustainable meat worldwide supply. A considerable amount of literature has been published on technological aspects and quality properties of beef, lamb and pork but the information available on the technological aspects of the meat of the one humped camel is very limited. Camels are usually raised in less developed countries and their meat is as nutritionally good as any other traditional meat source. Its quality also depends on the breed, sex, age, breeding conditions and type of muscle consumed. A compilation of existing literature related to new technological advances in packaging, shelf-life and quality of camel meat has not been reviewed to the best of our knowledge. Therefore, this review attempts to explore the nutritional composition, health benefits of camel meat, as well as various technological and processing interventions to improve its quality and consumer acceptance. This review will be helpful for camel sector and highlight the potential for global marketability of camel meat and to generate value added products.
Collapse
Affiliation(s)
- Djamel Djenane
- Laboratory of Meat Quality and Food Safety, Department of Meat Science and Technology., University of Mouloud MAMMERI, Tizi-Ouzou, 15000, Algeria
| | - Mohammed Aider
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
2
|
Rathor R, Srivastava S, Suryakumar G. A Comparative Biochemical Study Between L-Carnosine and β-Alanine in Amelioration of Hypobaric Hypoxia-Induced Skeletal Muscle Protein Loss. High Alt Med Biol 2023; 24:302-311. [PMID: 37643283 DOI: 10.1089/ham.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Rathor, Richa, Sukanya Srivastava, and Geetha Suryakumar. A comparative biochemical study between L-carnosine and β-alanine in amelioration of hypobaric hypoxia-induced skeletal muscle protein loss. High Alt Med Biol. 24:302-311, 2023. Background: Carnosine (CAR; β-alanyl-L-histidine), a biologically active dipeptide is known for its unique pH-buffering capacity, metal chelating activity, and antioxidant and antiglycation property. β-Alanine (ALA) is a nonessential amino acid and used to enhance performance and cognitive functions. Hypobaric hypoxia (HH)-induced muscle protein loss is regulated by multifaceted signaling pathways. The present study investigated the beneficial effects of CAR and ALA against HH-associated muscle loss. Methodology: Simulated HH exposure was performed in an animal decompression chamber. Gastric oral administration of CAR (50 mg·kg-1) and ALA (450 mg·kg-1) were given daily for 3 days and at the end of the treatment, hindlimb skeletal muscle tissue was excised for western blot and biochemical assays. Results: Cosupplementation of CAR and ALA alone was able to ameliorate the hypoxia-induced inflammation, oxidative stress (FOXO), ER stress (GRP-78), and atrophic signaling (MuRF-1) in the skeletal muscles. Creatinine phospho kinase activity and apoptosis were also decreased in CAR- and ALA-supplemented rats. However, CAR showed enhanced protection in HH-induced muscle loss as CAR supplementation was able to enhance protein concentration, body weight, and decreased the protein oxidation and ALA administration was not able to restore the same. Conclusions: Hence, the present comprehensive study supports the fact that CAR (50 mg·kg-1) is more beneficial as compared with ALA (450 mg·kg-1) in ameliorating the hypoxia-induced skeletal muscle loss.
Collapse
Affiliation(s)
- Richa Rathor
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| | - Sukanya Srivastava
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| | - Geetha Suryakumar
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| |
Collapse
|
3
|
Kadim IT, Al-Amri IS, Alkindi AY, Haq QMI. Nutritional values and health benefits of dromedary camel meat. Anim Front 2022; 12:61-70. [PMID: 35974788 PMCID: PMC9374515 DOI: 10.1093/af/vfac051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Isam T Kadim
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Issa S Al-Amri
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Abdulaziz Y Alkindi
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Quazi M I Haq
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| |
Collapse
|
4
|
Duszka K. Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells 2022; 11:2337. [PMID: 35954180 PMCID: PMC9367564 DOI: 10.3390/cells11152337] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body, and is mainly derived from the diet, but can also be produced endogenously from cysteine. It plays multiple essential roles in the body, including development, energy production, osmoregulation, prevention of oxidative stress, and inflammation. Taurine is also crucial as a molecule used to conjugate bile acids (BAs). In the gastrointestinal tract, BAs deconjugation by enteric bacteria results in high levels of unconjugated BAs and free taurine. Depending on conjugation status and other bacterial modifications, BAs constitute a pool of related but highly diverse molecules, each with different properties concerning solubility and toxicity, capacity to activate or inhibit receptors of BAs, and direct and indirect impact on microbiota and the host, whereas free taurine has a largely protective impact on the host, serves as a source of energy for microbiota, regulates bacterial colonization and defends from pathogens. Several remarkable examples of the interaction between taurine and gut microbiota have recently been described. This review will introduce the necessary background information and lay out the latest discoveries in the interaction of the co-reliant triad of BAs, taurine, and microbiota.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
An attempt to valorize the only black meat chicken breed of India by delineating superior functional attributes of its meat. Sci Rep 2022; 12:3555. [PMID: 35241766 PMCID: PMC8894494 DOI: 10.1038/s41598-022-07575-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Kadaknath, the only black chicken indigenous to India, faces the threat of extinction due to declining numbers. Its meat is used in tribal medicine for invigorating and health-promoting properties. Expectations of immune-boosting and therapeutic properties in its meat are creating a buzz these days. Thus, Kadaknath meat was explored and further compared with the commercial Cobb 400 broiler (Cobb) for the functional traits that might be contributing towards proclaimed pharmacological benefits. Birds (n = 20/ group) were raised under similar management conditions and the two primal chicken meat cuts (breast and thigh) were collected at the marketing age. Kadaknath meat was found to be an enriched source of functional biomolecules (carnosine, anserine, creatine). Its breast meat carnosine content was more than double of the Cobb broiler, 6.10 ± 0.13 and 2.73 ± 0.1 mg/ g of wet tissue, respectively. Similarly, the thigh meat of Kadaknath was a significantly (P < 0.05) richer source of carnosine. The genetic background was a key determinant for muscle carnosine content as a significant abundance of CARNS1 and SLC36A1 expression was identified in the Kadaknath breast. The superior functional property of Kadaknath meat was established by the antioxidant capacity established by the Oxygen radical absorbance capacity assay and a stronger ability to inhibit the formation of advanced glycation end products (AGEs). The identification of fairly unknown nutritional and functional advantages of Kadaknath meat could potentially change the paradigm with its meat consumption. It will help in developing a brand name for Kadaknath products that will propel an increase in its market share and ultimately conservation of this unique but endangered poultry germplasm.
Collapse
|
6
|
Dieter B, Macias C, Sharpe T, Roberts B, Wille M, Young A, Reisenauer C, Cantrell B, Bayly W. Transdermal delivery of carnosine into equine skeletal muscle. COMPARATIVE EXERCISE PHYSIOLOGY 2021. [DOI: 10.3920/cep200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The dipeptide carnosine consists of β-alanine and L-histidine. It plays a major role in skeletal muscle metabolism, especially as an intracellular buffer and antioxidant. Increasing intramuscular carnosine has been shown to improve recovery from exercise and increase anaerobic threshold and time-to-exhaustion. Dietary supplementation with carnosine does not effectively increase intramuscular carnosine due to the presence of carnosinase in the blood. However, an effective transdermal delivery process could expediently increase intramuscular concentrations of carnosine. This study’s objective was to examine the efficacy of a transdermal system for delivering carnosine into the skeletal muscle of horses, using a randomised, placebo controlled, crossover study. Carnosine plus a proprietary transdermal delivery agent or the agent alone (placebo) were applied to the middle gluteal muscles of 10 Thoroughbred racehorses, and muscle biopsies were taken before and 30, 60, and 120 min after application. Muscle carnosine concentration was measured using an enzyme-linked immunosorbent assay. A two-way repeated measures analysis of variance was used to test for the main effects of time and treatment (placebo or carnosine) as well as an interaction between time and treatment. Independent F-tests examined the change in intramuscular carnosine levels from baseline to each time point (30, 60, and 120 min). There was a significant main effect of treatment (P=0.004), no significant main effect for time (P=0.18), and a non-significant interaction of treatment with time (P=0.08). Mean intramuscular carnosine concentrations increased from baseline to 120 min. Compared to concentrations following placebo application, carnosine was greater by ~35% at 30 min (P=0.002) and ~46% after 60 min (P=0.044), but not at 120 min (P=0.20). The results indicated that intramuscular carnosine can be increased using a transdermal delivery system within 60 min of application which could have important implications for the health of horses, and their capacity to perform and recover from physical activity.
Collapse
Affiliation(s)
- B.P. Dieter
- Velocity Animal Sciences, #1915-1030 West Georgia St, Vancouver, BC V6E 2Y3, Canada
| | - C.J. Macias
- Institute for Human Kinetics, 11037 Via Livorno, San Diego, CA 92129, USA
| | - T.J. Sharpe
- University of Western States, 8000 NE Tillamook Street, Portland, OR 97213, USA
| | - B. Roberts
- University of Alabama Birmingham, 1720 University Blvd, Birmingham, AL 35294, USA
| | - M. Wille
- Washington State University, Department of Veterinary Clinical Sciences, Pullman, WA 99164-6610, USA
| | - A. Young
- Washington State University, Department of Veterinary Clinical Sciences, Pullman, WA 99164-6610, USA
| | - C. Reisenauer
- Washington State University, Department of Veterinary Clinical Sciences, Pullman, WA 99164-6610, USA
| | - B. Cantrell
- Washington State University, Department of Veterinary Clinical Sciences, Pullman, WA 99164-6610, USA
| | - W.M. Bayly
- Washington State University, Department of Veterinary Clinical Sciences, Pullman, WA 99164-6610, USA
| |
Collapse
|
7
|
Charoensin S, Laopaiboon B, Boonkum W, Phetcharaburanin J, Villareal MO, Isoda H, Duangjinda M. Thai Native Chicken as a Potential Functional Meat Source Rich in Anserine, Anserine/Carnosine, and Antioxidant Substances. Animals (Basel) 2021; 11:902. [PMID: 33809894 PMCID: PMC8004088 DOI: 10.3390/ani11030902] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 01/19/2023] Open
Abstract
This study identified anserine and anserine/carnosine in chicken breast of Thai native chicken (TNC; 100% Thai native), Thai synthetic chicken (TSC; 50% Thai native), and Thai native crossbred chicken (TNC crossbred; 25% Thai native) compared with commercial broiler chicken (BR; 0% Thai native) using nuclear magnetic resonance (NMR) spectroscopy and the effect on antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl assay (DPPH). We conducted experiments with a completely randomized design and explored principal components analysis (PCA) and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) to identify the distinguishing metabolites and relative concentrations from 1H NMR spectra among the groups. The relative concentrations and antioxidant properties among the groups were analyzed by analysis of variance (ANOVA) using the general linear model (GLM). This study revealed seven metabolites alanine, inositol monophosphate (IMP), inosine, and anserine/carnosine, lactate, anserine, and creatine. Lactate, anserine, and creatine were major components. In terms of PCA, the plots can distinguish BR from other groups. OPLS-DA revealed that anserine and anserine/carnosine in the chicken breast were significantly higher in TNC, TSC, and TNC crossbred than BR according to their relative concentrations and antioxidant properties (p < 0.01). Therefore, TNCs and their crossbreeds might have the potential to be functional meat sources.
Collapse
Affiliation(s)
- Sukanya Charoensin
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (B.L.); (W.B.)
| | - Banyat Laopaiboon
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (B.L.); (W.B.)
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (B.L.); (W.B.)
- Network Center for Animal Breeding and Omics Research, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Myra O. Villareal
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City 305-8572, Japan;
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City 305-8572, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City 305-8572, Japan;
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City 305-8572, Japan
| | - Monchai Duangjinda
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (B.L.); (W.B.)
- Network Center for Animal Breeding and Omics Research, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40000, Thailand
| |
Collapse
|
8
|
Banerjee S, Poddar MK. Carnosine research in relation to aging brain and neurodegeneration: A blessing for geriatrics and their neuronal disorders. Arch Gerontol Geriatr 2020; 91:104239. [PMID: 32866926 DOI: 10.1016/j.archger.2020.104239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/29/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Carnosine, an endogenous dipeptide (β-Ala-l-His), is enriched in prefrontal cortex and olfactory bulb of the brain, blood and also in muscle. It has mainly antioxidant and antiglycating properties which makes this molecule unique. Its content reduces during aging and aging-induced neurodegenerative diseases. Aging is a progressive biological process that leads to develop the risk factors of diseases and death. During aging the morphological, biochemical, cellular and molecular changes occur in brain and blood including other tissues. The objective of this review is to combine the updated information from the existing literature about the aging-induced neurodegeneration and carnosine research to meet the lacuna of mechanism of carnosine. The grey matter and white matter loses its normal ratio in aging, and hence the brain volume and weight. Different aging related neurodegenerative disorders arise due to loss of neurons, and synapses as a result of proteinopathies in some cases. Carnosine, being an endogenous biomolecule and having antioxidant, antiglycating properties has shown its potency to counteract erroneous protein biosynthesis, stress, activated microglial and astrocyte activity, and different neurodegenerative disorders. It (carnosine) can also inhibit the metal ion-induced degeneration by acting as a metal chelator. In this review the trends in carnosine research in relation to aging brain and neurodegeneration have been discussed with a view to its (carnosine) eligibility (including its mechanism of action) to be used as a promising neurotherapeutic for the betterment of elderly populations of our society at the national and international levels in near future.
Collapse
Affiliation(s)
- Soumyabrata Banerjee
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India
| | - Mrinal K Poddar
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India.
| |
Collapse
|
9
|
Rezende NS, Swinton P, de Oliveira LF, da Silva RP, da Eira Silva V, Nemezio K, Yamaguchi G, Artioli GG, Gualano B, Saunders B, Dolan E. The Muscle Carnosine Response to Beta-Alanine Supplementation: A Systematic Review With Bayesian Individual and Aggregate Data E-Max Model and Meta-Analysis. Front Physiol 2020; 11:913. [PMID: 32922303 PMCID: PMC7456894 DOI: 10.3389/fphys.2020.00913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023] Open
Abstract
Beta-alanine (BA) supplementation increases muscle carnosine content (MCarn), and has many proven, and purported, ergogenic, and therapeutic benefits. Currently, many questions on the nature of the MCarn response to supplementation are open, and the response to these has considerable potential to enhance the efficacy and application of this supplementation strategy. To address these questions, we conducted a systematic review with Bayesian-based meta-analysis of all published aggregate data using a dose response (Emax) model. Meta-regression was used to consider the influence of potential moderators (including dose, sex, age, baseline MCarn, and analysis method used) on the primary outcome. The protocol was designed according to PRISMA guidelines and a three-step screening strategy was undertaken to identify studies that measured the MCarn response to BA supplementation. Additionally, we conducted an original analysis of all available individual data on the MCarn response to BA supplementation from studies conducted within our lab (n = 99). The Emax model indicated that human skeletal muscle has large capacity for non-linear MCarn accumulation, and that commonly used BA supplementation protocols may not come close to saturating muscle carnosine content. Neither baseline values, nor sex, appeared to influence subsequent response to supplementation. Analysis of individual data indicated that MCarn is relatively stable in the absence of intervention, and effectually all participants respond to BA supplementation (99.3% response [95%CrI: 96.2–100]).
Collapse
Affiliation(s)
- Nathália Saffioti Rezende
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Paul Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Luana Farias de Oliveira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Pires da Silva
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Vinicius da Eira Silva
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Kleiner Nemezio
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme Yamaguchi
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme Giannini Artioli
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Krumpolec P, Klepochová R, Just I, Tušek Jelenc M, Frollo I, Ukropec J, Ukropcová B, Trattnig S, Krššák M, Valkovič L. Multinuclear MRS at 7T Uncovers Exercise Driven Differences in Skeletal Muscle Energy Metabolism Between Young and Seniors. Front Physiol 2020; 11:644. [PMID: 32695010 PMCID: PMC7336536 DOI: 10.3389/fphys.2020.00644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose: Aging is associated with changes in muscle energy metabolism. Proton (1H) and phosphorous (31P) magnetic resonance spectroscopy (MRS) has been successfully applied for non-invasive investigation of skeletal muscle metabolism. The aim of this study was to detect differences in adenosine triphosphate (ATP) production in the aging muscle by 31P-MRS and to identify potential changes associated with buffer capacity of muscle carnosine by 1H-MRS. Methods: Fifteen young and nineteen elderly volunteers were examined. 1H and 31P-MRS spectra were acquired at high field (7T). The investigation included carnosine quantification using 1H-MRS and resting and dynamic 31P-MRS, both including saturation transfer measurements of phosphocreatine (PCr), and inorganic phosphate (Pi)-to-ATP metabolic fluxes. Results: Elderly volunteers had higher time constant of PCr recovery (τPCr) in comparison to the young volunteers. Exercise was connected with significant decrease in PCr-to-ATP flux in both groups. Moreover, PCr-to-ATP flux was significantly higher in young compared to elderly both at rest and during exercise. Similarly, an increment of Pi-to-ATP flux with exercise was found in both groups but the intergroup difference was only observed during exercise. Elderly had lower muscle carnosine concentration and lower postexercise pH. A strong increase in phosphomonoester (PME) concentration was observed with exercise in elderly, and a faster Pi:PCr kinetics was found in young volunteers compared to elderly during the recovery period. Conclusion: Observations of a massive increment of PME concentration together with high Pi-to-ATP flux during exercise in seniors refer to decreased ability of the muscle to meet the metabolic requirements of exercise and thus a limited ability of seniors to effectively support the exercise load.
Collapse
Affiliation(s)
- Patrik Krumpolec
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radka Klepochová
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ivica Just
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marjeta Tušek Jelenc
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ivan Frollo
- Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcová
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.,Faculty of Medicine, Institute of Pathophysiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Martin Krššák
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria.,Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ladislav Valkovič
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia.,Oxford Centre for Clinical Magnetic Resonance Research, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Comparative physiology investigations support a role for histidine-containing dipeptides in intracellular acid–base regulation of skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:77-86. [DOI: 10.1016/j.cbpa.2019.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
|
12
|
DE Salles Painelli V, Nemezio KM, Pinto AJ, Franchi M, Andrade I, Riani LA, Saunders B, Sale C, Harris RC, Gualano B, Artioli GG. High-Intensity Interval Training Augments Muscle Carnosine in the Absence of Dietary Beta-alanine Intake. Med Sci Sports Exerc 2019; 50:2242-2252. [PMID: 30334920 DOI: 10.1249/mss.0000000000001697] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Cross-sectional studies suggest that training can increase muscle carnosine (MCarn), although longitudinal studies have failed to confirm this. A lack of control for dietary β-alanine intake or muscle fiber type shifting may have hampered their conclusions. The purpose of the present study was to investigate the effects of high-intensity interval training (HIIT) on MCarn. METHODS Twenty vegetarian men were randomly assigned to a control (CON) (n = 10) or HIIT (n = 10) group. High-intensity interval training was performed on a cycle ergometer for 12 wk, with progressive volume (6-12 series) and intensity (140%-170% lactate threshold [LT]). Muscle carnosine was quantified in whole-muscle and individual fibers; expression of selected genes (CARNS, CNDP2, ABAT, TauT, and PAT1) and muscle buffering capacity in vitro (βmin vitro) were also determined. Exercise tests were performed to evaluate total work done, V˙O2max, ventilatory thresholds (VT) and LT. RESULTS Total work done, VT, LT, V˙O2max, and βmin vitro were improved in the HIIT group (all P < 0.05), but not in CON (P > 0.05). MCarn (in mmol·kg dry muscle) increased in the HIIT (15.8 ± 5.7 to 20.6 ± 5.3; P = 0.012) but not the CON group (14.3 ± 5.3 to 15.0 ± 4.9; P = 0.99). In type I fibers, MCarn increased in the HIIT (from 14.4 ± 5.9 to 16.8 ± 7.6; P = 0.047) but not the CON group (from 14.0 ± 5.5 to 14.9 ± 5.4; P = 0.99). In type IIa fibers, MCarn increased in the HIIT group (from 18.8 ± 6.1 to 20.5 ± 6.4; P = 0.067) but not the CON group (from 19.7 ± 4.5 to 18.8 ± 4.4; P = 0.37). No changes in gene expression were shown. CONCLUSIONS In the absence of any dietary intake of β-alanine, HIIT increased MCarn content. The contribution of increased MCarn to the total increase in βmin vitro appears to be small.
Collapse
Affiliation(s)
- Vitor DE Salles Painelli
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Kleiner Márcio Nemezio
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Ana Jéssica Pinto
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Mariana Franchi
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Isabel Andrade
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Luiz Augusto Riani
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, UNITED KINGDOM
| | | | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| | - Guilherme Giannini Artioli
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL
| |
Collapse
|
13
|
24-Week β-alanine ingestion does not affect muscle taurine or clinical blood parameters in healthy males. Eur J Nutr 2018; 59:57-65. [PMID: 30552505 DOI: 10.1007/s00394-018-1881-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE To investigate the effects of chronic beta-alanine (BA) supplementation on muscle taurine content, blood clinical markers and sensory side-effects. METHODS Twenty-five healthy male participants (age 27 ± 4 years, height 1.75 ± 0.09 m, body mass 78.9 ± 11.7 kg) were supplemented with 6.4 g day-1 of sustained-release BA (N = 16; CarnoSyn™, NAI, USA) or placebo (PL; N = 9; maltodextrin) for 24 weeks. Resting muscle biopsies of the m. vastus lateralis were taken at 0, 12 and 24 weeks and analysed for taurine content (BA, N = 12; PL, N = 6) using high-performance liquid chromatography. Resting venous blood samples were taken every 4 weeks and analysed for markers of renal, hepatic and muscle function (BA, N = 15; PL, N = 8; aspartate transaminase; alanine aminotransferase; alkaline phosphatase; lactate dehydrogenase; albumin; globulin; creatinine; estimated glomerular filtration rate and creatine kinase). RESULTS There was a significant main effect of group (p = 0.04) on muscle taurine, with overall lower values in PL, although there was no main effect of time or interaction effect (both p > 0.05) and no differences between specific timepoints (week 0, BA: 33.67 ± 8.18 mmol kg-1 dm, PL: 27.75 ± 4.86 mmol kg-1 dm; week 12, BA: 35.93 ± 8.79 mmol kg-1 dm, PL: 27.67 ± 4.75 mmol kg-1 dm; week 24, BA: 35.42 ± 6.16 mmol kg-1 dm, PL: 31.99 ± 5.60 mmol kg-1 dm). There was no effect of treatment, time or any interaction effects on any blood marker (all p > 0.05) and no self-reported side-effects in these participants throughout the study. CONCLUSIONS The current study showed that 24 weeks of BA supplementation at 6.4 g day-1 did not significantly affect muscle taurine content, clinical markers of renal, hepatic and muscle function, nor did it result in chronic sensory side-effects, in healthy individuals. Since athletes are likely to engage in chronic supplementation, these data provide important evidence to suggest that supplementation with BA at these doses for up to 24 weeks is safe for healthy individuals.
Collapse
|
14
|
Dolan E, Saunders B, Dantas WS, Murai IH, Roschel H, Artioli GG, Harris R, Bicudo JEPW, Sale C, Gualano B. A Comparative Study of Hummingbirds and Chickens Provides Mechanistic Insight on the Histidine Containing Dipeptide Role in Skeletal Muscle Metabolism. Sci Rep 2018; 8:14788. [PMID: 30283073 PMCID: PMC6170442 DOI: 10.1038/s41598-018-32636-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Histidine containing dipeptides (HCDs) have numerous ergogenic and therapeutic properties, but their primary role in skeletal muscle remains unclear. Potential functions include pH regulation, protection against reactive oxygen/nitrogen species, or Ca2+ regulation. In recognition of the challenge of isolating physiological processes in-vivo, we employed a comparative physiology approach to investigate the primary mechanism of HCD action in skeletal muscle. We selected two avian species (i.e., hummingbirds and chickens), who represented the extremes of the physiological processes in which HCDs are likely to function. Our findings indicate that HCDs are non-essential to the development of highly oxidative and contractile muscle, given their very low content in hummingbird skeletal tissue. In contrast, their abundance in the glycolytic chicken muscle, indicate that they are important in anaerobic bioenergetics as pH regulators. This evidence provides new insights on the HCD role in skeletal muscle, which could inform widespread interventions, from health to elite performance.
Collapse
Affiliation(s)
- E Dolan
- Applied Physiology and Nutrition Research Group, Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, São Paulo, SP, Brazil
| | - B Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, São Paulo, SP, Brazil
| | - W S Dantas
- Applied Physiology and Nutrition Research Group, Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, São Paulo, SP, Brazil
| | - I H Murai
- Applied Physiology and Nutrition Research Group, Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, São Paulo, SP, Brazil
| | - H Roschel
- Applied Physiology and Nutrition Research Group, Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, São Paulo, SP, Brazil
| | - G G Artioli
- Applied Physiology and Nutrition Research Group, Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, São Paulo, SP, Brazil
| | - R Harris
- Junipa Ltd; Newmarket, Suffolk, United Kingdom
| | - J E P W Bicudo
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - C Sale
- Sport, Health and Performance Enhancement Research Centre; Musculoskeletal Physiology Research Group; School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - B Gualano
- Applied Physiology and Nutrition Research Group, Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Yu K, Matzapetakis M, Valent D, Saco Y, De Almeida AM, Terré M, Bassols A. Skeletal muscle metabolomics and blood biochemistry analysis reveal metabolic changes associated with dietary amino acid supplementation in dairy calves. Sci Rep 2018; 8:13850. [PMID: 30218007 PMCID: PMC6138728 DOI: 10.1038/s41598-018-32241-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/05/2018] [Indexed: 11/09/2022] Open
Abstract
The effects of different amino acid (AA) supplementations of milk protein-based milk replacers in pre-ruminant calves from 3 days to 7 weeks of age were studied. Animals were divided into 4 groups: Ctrl) Control group fed with milk protein-based milk replacer without supplementation; GP) supplementation with 0.1% glycine and 0.3% proline; FY) supplementation with 0.2% phenylalanine and 0.2% tyrosine; MKT) supplementation with 0.62% lysine, 0.22% methionine and 0.61% threonine. For statistical analysis, t-test was used to compare AA-supplemented animals to the Ctrl group. At week 7, body weight and average daily gain (ADG) were measured and blood samples and skeletal muscle biopsies were taken. Blood biochemistry analytes related to energy metabolism were determined and it was shown that MKT group had higher serum creatinine and higher plasma concentration of three supplemented AAs as well as arginine compared with the Ctrl group. GP group had similar glycine/proline plasma concentration compared with the other groups while in FY group only plasma phenylalanine concentration was higher compared with Control. Although the AA supplementations in the GP and FY groups did not affect average daily gain and metabolic health profile from serum, the metabolome analysis from skeletal muscle biopsy revealed several differences between the GP-FY groups and the Ctrl-MKT groups, suggesting a metabolic adaptation especially in GP and FY groups.
Collapse
Affiliation(s)
- Kuai Yu
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Manolis Matzapetakis
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daniel Valent
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Yolanda Saco
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain.,Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - André M De Almeida
- Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Terré
- Departament de Producció de Remugants, Institut de Recerca i Tecnologia Agroalimentàries Caldes de Montbui, 08140, Barcelona, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain. .,Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
16
|
Arjmandpanah Eilaki A, Afzalpour ME, Bagheri R, Mosaferi Ziaaldini M. The Effect of Beta-Alanine Supplementation on First and Second Ventilatory Threshold of Male Swimmers. NUTRITION AND FOOD SCIENCES RESEARCH 2018. [DOI: 10.29252/nfsr.5.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
17
|
Kay JC, Ramirez J, Contreras E, Garland T. Reduced non-bicarbonate skeletal muscle buffering capacity in mice with the mini-muscle phenotype. ACTA ACUST UNITED AC 2018; 221:jeb.172478. [PMID: 29650754 DOI: 10.1242/jeb.172478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022]
Abstract
Muscle pH decreases during exercise, which may impair function. Endurance training typically reduces muscle buffering capacity as a result of changes in fiber-type composition, but existing comparisons of species that vary in activity level are ambiguous. We hypothesized that high-runner (HR) lines of mice from an experiment that breeds mice for voluntary wheel running would have altered muscle buffering capacity as compared with their non-selected control counterparts. We also expected that 6 days of wheel access, as used in the selection protocol, would reduce buffering capacity, especially for HR mice. Finally, we expected a subset of HR mice with the 'mini-muscle' phenotype to have relatively low buffering capacity as a result of fewer type IIb fibers. We tested non-bicarbonate buffering capacity of thigh muscles. Only HR mice expressing the mini-muscle phenotype had significantly reduced buffering capacity, females had lower buffering capacity than males, and wheel access had no significant effect.
Collapse
Affiliation(s)
- Jarren C Kay
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jocelyn Ramirez
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Erick Contreras
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Naderi A, Sadeghi M, Sarshin A, Imanipour V, Nazeri SA, Farkhayi F, Willems MET. Muscle Carnosine Concentration with the Co-Ingestion of Carbohydrate with β-alanine in Male Rats. J Diet Suppl 2017; 14:373-379. [PMID: 27813677 DOI: 10.1080/19390211.2016.1244585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Muscle carnosine is an intracellular buffer. The intake of β-alanine, combined with carbohydrate and protein, enhanced carnosine loading in human muscle. The aim of the present study was to examine if muscle carnosine loading was enhanced by β-alanine intake and co-ingestion of glucose in male rats. Thirty-six male rats were divided into three groups and supplemented for four weeks: β-alanine (βA group, 1.8% β-alanine in drinking water), β-alanine and glucose (βAGL group, 1.8% β-alanine and 5% glucose in drinking water), and control (C group, drinking water). During the supplementation period, rats were exercised (20 m·min-1, 10 min·day-1, 4 days·week-1 for 4 weeks). Muscle carnosine concentration was quantified in soleus (n = 12) and rectus femoris (n = 6) muscles using high-performance liquid chromatography. In soleus muscle, carnosine concentration was 2.24 ± 1.10, 6.12 ± 1.08, and 6.93 ± 2.56 mmol/kg dw for control, βA, and βAGL, respectively. In rectus femoris, carnosine concentration was 2.26 ± 1.31, 7.90 ± 1.66, and 8.59 ± 2.33 mmol/kg dw for control, βA, and βAGL respectively. In each muscle, βA and βAGL resulted in similar carnosine increases compared to the control. In conclusion, β-alanine intake for four weeks, either alone or with glucose co-ingestion, equally increased muscle carnosine content. It appears that the potential insulin response to fluid glucose intake does not affect muscle carnosine loading in male rats.
Collapse
Affiliation(s)
- Alireza Naderi
- a Department of Sport Physiology , Boroujerd Branch, Islamic Azad University , Boroujerd , Iran
| | - Mehdi Sadeghi
- b Faculty of Dentistry, Shiraz Branch, Islamic Azad University , Shiraz , Iran
| | - Amir Sarshin
- c Faculty of Physical Education and Sport Science, Alborz Branch, Islamic Azad University , Alborz , Iran
| | - Vahid Imanipour
- d Department of Physical Education, Parand Branch , Islamic Azad University , New City of Parand , Iran
| | - Seyed Ali Nazeri
- e Reference Health Laboratory Research Center, Ministry of Health and Medical Education , Tehran , Iran
| | - Fatemeh Farkhayi
- f Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University , Marvdasht , Iran
| | - Mark E T Willems
- g Department of Sport and Exercise Sciences , University of Chichester , Chichester , UK
| |
Collapse
|
19
|
Omairi S, Matsakas A, Degens H, Kretz O, Hansson KA, Solbrå AV, Bruusgaard JC, Joch B, Sartori R, Giallourou N, Mitchell R, Collins-Hooper H, Foster K, Pasternack A, Ritvos O, Sandri M, Narkar V, Swann JR, Huber TB, Patel K. Enhanced exercise and regenerative capacity in a mouse model that violates size constraints of oxidative muscle fibres. eLife 2016; 5. [PMID: 27494364 PMCID: PMC4975572 DOI: 10.7554/elife.16940] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
A central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Errγ) on the myostatin (Mtn) mouse null background (Mtn-/-/ErrγTg/+) results in hypertrophic muscle with a high oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity. We also examined the canonical view that oxidative muscle phenotype positively correlate with Satellite cell number, the resident stem cells of skeletal muscle. Surprisingly, hypertrophic fibres from Mtn-/-/ErrγTg/+ mouse showed satellite cell deficit which unexpectedly did not affect muscle regeneration. These observations 1) challenge the concept of a constraint between fibre size and oxidative capacity and 2) indicate the important role of the microcirculation in the regenerative capacity of a muscle even when satellite cell numbers are reduced. DOI:http://dx.doi.org/10.7554/eLife.16940.001
Collapse
Affiliation(s)
- Saleh Omairi
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom.,Lithuanian Sports University, Kaunas, Lithuania
| | - Oliver Kretz
- Renal Division, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kenth-Arne Hansson
- Centre for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Andreas Våvang Solbrå
- Centre for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Jo C Bruusgaard
- Centre for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Barbara Joch
- Department of Neuroanatomy, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roberta Sartori
- Venetian Institute of Molecular Medicine, University of Padua, Padua, Italy
| | - Natasa Giallourou
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Keith Foster
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Arja Pasternack
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, University of Padua, Padua, Italy
| | - Vihang Narkar
- Institute of Molecular Medicine, University of Health Science Center, Houston, Texas
| | - Jonathan R Swann
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Tobias B Huber
- Renal Division, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Houston, Texas.,FRIAS, Freiburg Institute for Advanced Studies and Center for Biological System Analysis ZBSA, Freiburg, Germany
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom.,FRIAS, Freiburg Institute for Advanced Studies and Center for Biological System Analysis ZBSA, Freiburg, Germany
| |
Collapse
|
20
|
Tsai YH, Garrett TJ, Carter CS, Yost RA. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:915-23. [PMID: 25893271 PMCID: PMC4553944 DOI: 10.1007/s13361-015-1133-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 05/03/2023]
Abstract
Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611 USA
| | - Christy S. Carter
- Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, FL 32611 USA
| | - Richard A. Yost
- Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
21
|
Collins-Hooper H, Sartori R, Giallourou N, Matsakas A, Mitchell R, Mararenkova H, Flasskamp H, Macharia R, Ray S, Swann JR, Sandri M, Patel K. Symmorphosis through dietary regulation: a combinatorial role for proteolysis, autophagy and protein synthesis in normalising muscle metabolism and function of hypertrophic mice after acute starvation. PLoS One 2015; 10:e0120524. [PMID: 25807490 PMCID: PMC4373938 DOI: 10.1371/journal.pone.0120524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 02/05/2015] [Indexed: 01/13/2023] Open
Abstract
Animals are imbued with adaptive mechanisms spanning from the tissue/organ to the cellular scale which insure that processes of homeostasis are preserved in the landscape of size change. However we and others have postulated that the degree of adaptation is limited and that once outside the normal levels of size fluctuations, cells and tissues function in an aberant manner. In this study we examine the function of muscle in the myostatin null mouse which is an excellent model for hypertrophy beyond levels of normal growth and consequeces of acute starvation to restore mass. We show that muscle growth is sustained through protein synthesis driven by Serum/Glucocorticoid Kinase 1 (SGK1) rather than Akt1. Furthermore our metabonomic profiling of hypertrophic muscle shows that carbon from nutrient sources is being channelled for the production of biomass rather than ATP production. However the muscle displays elevated levels of autophagy and decreased levels of muscle tension. We demonstrate the myostatin null muscle is acutely sensitive to changes in diet and activates both the proteolytic and autophagy programmes and shutting down protein synthesis more extensively than is the case for wild-types. Poignantly we show that acute starvation which is detrimental to wild-type animals is beneficial in terms of metabolism and muscle function in the myostatin null mice by normalising tension production.
Collapse
Affiliation(s)
- Henry Collins-Hooper
- School of Biological Sciences, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Roberta Sartori
- Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy
| | - Natasa Giallourou
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Antonios Matsakas
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Hull/York, United Kingdom
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Helen Mararenkova
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Hannah Flasskamp
- School of Biological Sciences, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Raymond Macharia
- Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | - Steve Ray
- Natural Biosciences, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Jonathan R. Swann
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Whiteknights campus, Reading, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Dutka TL, Lamboley CR, Murphy RM, Lamb GD. Acute effects of taurine on sarcoplasmic reticulum Ca2+ accumulation and contractility in human type I and type II skeletal muscle fibers. J Appl Physiol (1985) 2014; 117:797-805. [DOI: 10.1152/japplphysiol.00494.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Taurine occurs in high concentrations in muscle and is implicated in numerous physiological processes, yet its effects on many aspects of contractility remain unclear. Using mechanically skinned segments of human vastus lateralis muscle fibers, we characterized the effects of taurine on sarcoplasmic reticulum (SR) Ca2+ accumulation and contractile apparatus properties in type I and type II fibers. Prolonged myoplasmic exposure (>10 min) to taurine substantially increased the rate of accumulation of Ca2+ by the SR in both fiber types, with no change in the maximum amount accumulated; no such effect was found with carnosine. SR Ca2+ accumulation was similar with 10 or 20 mM taurine, but was significantly slower at 5 mM taurine. Cytoplasmic taurine (20 mM) had no detectable effects on the responsiveness of the Ca2+ release channels in either fiber type. Taurine caused a small increase in Ca2+ sensitivity of the contractile apparatus in type I fibers, but type II fibers were unaffected; maximum Ca2+-activated force was unchanged in both cases. The effects of taurine on SR Ca2+ accumulation 1) only became apparent after prolonged cytoplasmic exposure, and 2) persisted for some minutes after complete removal of taurine from the cytoplasm, consistent with the hypothesis that the effects were due to an action of taurine from inside the SR. In summary, taurine potentiates the rate of SR Ca2+ uptake in both type I and type II human fibers, possibly via an action from within the SR lumen, with the degree of potentiation being significantly reduced at low physiological taurine levels.
Collapse
Affiliation(s)
- T. L. Dutka
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia; and
| | - C. R. Lamboley
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| | - R. M. Murphy
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia; and
| | - G. D. Lamb
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia; and
| |
Collapse
|
23
|
Lily E, Papandreou D. The role and effects of carnosine and β-alanine on exercise: an updated mini review. ACTA ACUST UNITED AC 2014. [DOI: 10.1108/nfs-04-2013-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
– The paper aims to describe the role and effects of carnosine and β-alanine on exercise.
Design/methodology/approach
– The review includes the most updated studies found in Pub-Med all of which are in relation to carnosine and β-alanine on exercise performance.
Findings
– The use of β-alanine in recent research has shown to increase muscle carnosine concentrations in as short as two weeks, with increasing levels with longer supplementation periods. Although there is strong support that β-alanine supplementation during training possesses ergogenic value, the specific mechanism of action and ergogenic value remains to be fully examined.
Originality/value
– The paper gives information to nutritionists, clinical dietitians and sports nutritionists on the newest data about the role and effects of carnosine and β-alanine on exercise performance.
Collapse
|
24
|
Abstract
Carnosine (β-alanyl-l-histidine) was discovered in 1900 as an abundant non-protein nitrogen-containing compound of meat. The dipeptide is not only found in skeletal muscle, but also in other excitable tissues. Most animals, except humans, also possess a methylated variant of carnosine, either anserine or ophidine/balenine, collectively called the histidine-containing dipeptides. This review aims to decipher the physiological roles of carnosine, based on its biochemical properties. The latter include pH-buffering, metal-ion chelation, and antioxidant capacity as well as the capacity to protect against formation of advanced glycation and lipoxidation end-products. For these reasons, the therapeutic potential of carnosine supplementation has been tested in numerous diseases in which ischemic or oxidative stress are involved. For several pathologies, such as diabetes and its complications, ocular disease, aging, and neurological disorders, promising preclinical and clinical results have been obtained. Also the pathophysiological relevance of serum carnosinase, the enzyme actively degrading carnosine into l-histidine and β-alanine, is discussed. The carnosine system has evolved as a pluripotent solution to a number of homeostatic challenges. l-Histidine, and more specifically its imidazole moiety, appears to be the prime bioactive component, whereas β-alanine is mainly regulating the synthesis of the dipeptide. This paper summarizes a century of scientific exploration on the (patho)physiological role of carnosine and related compounds. However, far more experiments in the fields of physiology and related disciplines (biology, pharmacology, genetics, molecular biology, etc.) are required to gain a full understanding of the function and applications of this intriguing molecule.
Collapse
|
25
|
Yi HC, Kim MY, Choi CS, Kim YN, Han CK, Lee BH. Effects of Carnosine Supplementation on Carnosine Concentrations in Muscles and Blood Biochemical Indices of Rats. Korean J Food Sci Anim Resour 2012. [DOI: 10.5851/kosfa.2012.32.5.584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Smith-Ryan AE, Fukuda DH, Stout JR, Kendall KL. High-Velocity Intermittent Running. J Strength Cond Res 2012; 26:2798-805. [DOI: 10.1519/jsc.0b013e318267922b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Caruso J, Charles J, Unruh K, Giebel R, Learmonth L, Potter W. Ergogenic effects of β-alanine and carnosine: proposed future research to quantify their efficacy. Nutrients 2012; 4:585-601. [PMID: 22852051 PMCID: PMC3407982 DOI: 10.3390/nu4070585] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022] Open
Abstract
β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former’s merits as a buffer. Carnosine normally makes a small contribution to a cell’s total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that in turn improve a muscle’s ability to buffer protons. Numerous studies assessed the impact of oral β-alanine intake on muscle carnosine levels and exercise performance. β-alanine may best act as an ergogenic aid when metabolic acidosis is the primary factor for compromised exercise performance. Blood lactate kinetics, whereby the concentration of the metabolite is measured as it enters and leaves the vasculature over time, affords the best opportunity to assess the merits of β-alanine supplementation’s ergogenic effect. Optimal β-alanine dosages have not been determined for persons of different ages, genders and nutritional/health conditions. Doses as high as 6.4 g day−1, for ten weeks have been administered to healthy subjects. Paraesthesia is to date the only side effect from oral β-alanine ingestion. The severity and duration of paraesthesia episodes are dose-dependent. It may be unwise for persons with a history of paraesthesia to ingest β-alanine. As for any supplement, caution should be exercised with β-alanine supplementation.
Collapse
Affiliation(s)
- John Caruso
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
- Author to whom correspondence should be addressed; ; Tel.: +1-918-631-2924; Fax: +1-918-631-2068
| | - Jessica Charles
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Kayla Unruh
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Rachel Giebel
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Lexis Learmonth
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - William Potter
- Department of Chemistry & Biochemistry, The University of Tulsa, Tulsa, OK 74104, USA;
| |
Collapse
|
28
|
Baguet A, Everaert I, Achten E, Thomis M, Derave W. The influence of sex, age and heritability on human skeletal muscle carnosine content. Amino Acids 2011; 43:13-20. [DOI: 10.1007/s00726-011-1197-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/01/2011] [Indexed: 12/25/2022]
|
29
|
Chiu KH, Ding S, Chen YW, Lee CH, Mok HK. A NMR-based metabolomic approach for differentiation of hagfish dental and somatic skeletal muscles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:701-707. [PMID: 21327496 DOI: 10.1007/s10695-011-9470-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 01/31/2011] [Indexed: 05/30/2023]
Abstract
The hagfish dental muscle is a large and specialized element of the feeding apparatus that helps ingest food. This muscle has enzymatic activities and contractile properties different from the hagfish somatic skeletal muscle. To verify the functional relevance of protein alterations, we examined the metabolomic differentiation of hagfish dental and somatic skeletal muscles using ¹H-nuclear magnetic resonance (NMR)-based metabolomics and multivariate analysis that separated hagfish dental and somatic muscles by principal component analysis and partial least squares for discriminant analysis. Our analysis of assigned metabolites showed that anserine and taurine levels were higher in dental muscle, but creatine, fructose, glucose, glycerate, pyruvate, and succinate levels were higher in somatic muscle. We concluded that the primary energy sources of dental and somatic muscles are related to the citric acid cycle and the anaerobic glycolysis and metabolism of creatine. Thus, ¹H-NMR-based metabolomics can be integrated with the previous proteomic approach to derive biochemical and physiological information about hagfish muscles.
Collapse
Affiliation(s)
- Kuo-Hsun Chiu
- Institute of Marine Biology, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 80424, Taiwan
| | | | | | | | | |
Collapse
|
30
|
Derave W, Everaert I, Beeckman S, Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med 2010; 40:247-63. [PMID: 20199122 DOI: 10.2165/11530310-000000000-00000] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carnosine is a dipeptide with a high concentration in mammalian skeletal muscle. It is synthesized by carnosine synthase from the amino acids L-histidine and beta-alanine, of which the latter is the rate-limiting precursor, and degraded by carnosinase. Recent studies have shown that the chronic oral ingestion of beta-alanine can substantially elevate (up to 80%) the carnosine content of human skeletal muscle. Interestingly, muscle carnosine loading leads to improved performance in high-intensity exercise in both untrained and trained individuals. Although carnosine is not involved in the classic adenosine triphosphate-generating metabolic pathways, this suggests an important role of the dipeptide in the homeostasis of contracting muscle cells, especially during high rates of anaerobic energy delivery. Carnosine may attenuate acidosis by acting as a pH buffer, but improved contractile performance may also be obtained by improved excitation-contraction coupling and defence against reactive oxygen species. High carnosine concentrations are found in individuals with a high proportion of fast-twitch fibres, because these fibres are enriched with the dipeptide. Muscle carnosine content is lower in women, declines with age and is probably lower in vegetarians, whose diets are deprived of beta-alanine. Sprint-trained athletes display markedly high muscular carnosine, but the acute effect of several weeks of training on muscle carnosine is limited. High carnosine levels in elite sprinters are therefore either an important genetically determined talent selection criterion or a result of slow adaptation to years of training. beta-Alanine is rapidly developing as a popular ergogenic nutritional supplement for athletes worldwide, and the currently available scientific literature suggests that its use is evidence based. However, many aspects of the supplement, such as the potential side effects and the mechanism of action, require additional and thorough investigation by the sports science community.
Collapse
Affiliation(s)
- Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
31
|
Accurate analysis of taurine, anserine, carnosine and free amino acids in a cattle muscle biopsy sample. Anim Sci J 2010; 81:369-76. [DOI: 10.1111/j.1740-0929.2010.00751.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Culbertson JY, Kreider RB, Greenwood M, Cooke M. Effects of beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients 2010; 2:75-98. [PMID: 22253993 PMCID: PMC3257613 DOI: 10.3390/nu2010075] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 01/06/2010] [Indexed: 11/16/2022] Open
Abstract
Muscle carnosine has been reported to serve as a physiological buffer, possess antioxidant properties, influence enzyme regulation, and affect sarcoplasmic reticulum calcium regulation. Beta-alanine (β-ALA) is a non-essential amino acid. β-ALA supplementation (e.g., 2-6 grams/day) has been shown to increase carnosine concentrations in skeletal muscle by 20-80%. Several studies have reported that β-ALA supplementation can increase high-intensity intermittent exercise performance and/or training adaptations. Although the specific mechanism remains to be determined, the ergogenicity of β-ALA has been most commonly attributed to an increased muscle buffering capacity. More recently, researchers have investigated the effects of co-ingesting β-ALA with creatine monohydrate to determine whether there may be synergistic and/or additive benefits. This paper overviews the theoretical rationale and potential ergogenic value of β-ALA supplementation with or without creatine as well as provides future research recommendations.
Collapse
Affiliation(s)
- Julie Y. Culbertson
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77845, USA;
- Author to whom correspondence should be addressed; Tel.: +1 (979) 458-1484
| | - Richard B. Kreider
- Exercise and Sport Nutrition Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77845, USA;
| | - Mike Greenwood
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 73019, USA;
| | - Matthew Cooke
- Schools of Medicine & Health Movement Studies, The University of Queensland, Herston, Queensland, Australia;
| |
Collapse
|
33
|
Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, Derave W. Carnosine loading and washout in human skeletal muscles. J Appl Physiol (1985) 2009; 106:837-42. [DOI: 10.1152/japplphysiol.91357.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carnosine (β-alanyl-l-histidine) is present in high concentrations in human skeletal muscles. The oral ingestion of β-alanine, the rate-limiting precursor in carnosine synthesis, has been shown to elevate the muscle carnosine content both in trained and untrained humans. Little human data exist about the dynamics of the muscle carnosine content, its metabolic regulation, and its dependence on muscle fiber type. The present study aimed to investigate in three skeletal muscle types the supplementation-induced amplitude of carnosine synthesis and its subsequent elimination on cessation of supplementation (washout). Fifteen untrained males participated in a placebo-controlled double-blind study. They were supplemented for 5–6 wk with either 4.8 g/day β-alanine or placebo. Muscle carnosine was quantified in soleus, tibialis anterior, and medial head of the gastrocnemius by proton magnetic resonance spectroscopy (MRS), before and after supplementation and 3 and 9 wk into washout. The β-alanine supplementation significantly increased the carnosine content in soleus by 39%, in tibialis by 27%, and in gastrocnemius by 23% and declined postsupplementation at a rate of 2–4%/wk. Average muscle carnosine remained increased compared with baseline at 3 wk of washout (only one-third of the supplementation-induced increase had disappeared) and returned to baseline values within 9 wk at group level. Following subdivision into high responders (+55%) and low responders (+15%), washout period was 15 and 6 wk, respectively. In the placebo group, carnosine remained relatively constant with variation coefficients of 9–15% over a 3-mo period. It can be concluded that carnosine is a stable compound in human skeletal muscle, confirming the absence of carnosinase in myocytes. The present study shows that washout periods for crossover designs in supplementation studies for muscle metabolites may sometimes require months rather than weeks.
Collapse
|
34
|
Smith AE, Walter AA, Graef JL, Kendall KL, Moon JR, Lockwood CM, Fukuda DH, Beck TW, Cramer JT, Stout JR. Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Soc Sports Nutr 2009; 6:5. [PMID: 19210788 PMCID: PMC2649036 DOI: 10.1186/1550-2783-6-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/11/2009] [Indexed: 11/21/2022] Open
Abstract
Background Intermittent bouts of high-intensity exercise result in diminished stores of energy substrates, followed by an accumulation of metabolites, promoting chronic physiological adaptations. In addition, β-alanine has been accepted has an effective physiological hydrogen ion (H+) buffer. Concurrent high-intensity interval training (HIIT) and β-alanine supplementation may result in greater adaptations than HIIT alone. The purpose of the current study was to evaluate the effects of combining β-alanine supplementation with high-intensity interval training (HIIT) on endurance performance and aerobic metabolism in recreationally active college-aged men. Methods Forty-six men (Age: 22.2 ± 2.7 yrs; Ht: 178.1 ± 7.4 cm; Wt: 78.7 ± 11.9; VO2peak: 3.3 ± 0.59 l·min-1) were assessed for peak O2 utilization (VO2peak), time to fatigue (VO2TTE), ventilatory threshold (VT), and total work done at 110% of pre-training VO2peak (TWD). In a double-blind fashion, all subjects were randomly assigned into one either a placebo (PL – 16.5 g dextrose powder per packet; n = 18) or β-alanine (BA – 1.5 g β-alanine plus 15 g dextrose powder per packet; n = 18) group. All subjects supplemented four times per day (total of 6 g/day) for the first 21-days, followed by two times per day (3 g/day) for the subsequent 21 days, and engaged in a total of six weeks of HIIT training consisting of 5–6 bouts of a 2:1 minute cycling work to rest ratio. Results Significant improvements in VO2peak, VO2TTE, and TWD after three weeks of training were displayed (p < 0.05). Increases in VO2peak, VO2TTE, TWD and lean body mass were only significant for the BA group after the second three weeks of training. Conclusion The use of HIIT to induce significant aerobic improvements is effective and efficient. Chronic BA supplementation may further enhance HIIT, improving endurance performance and lean body mass.
Collapse
Affiliation(s)
- Abbie E Smith
- Metabolic and Body Composition Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The effects of beta-alanine supplementation and high-intensity interval training on neuromuscular fatigue and muscle function. Eur J Appl Physiol 2008; 105:357-63. [DOI: 10.1007/s00421-008-0911-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2008] [Indexed: 11/26/2022]
|
36
|
Blomstrand E, Essén-Gustavsson B. Changes in amino acid concentration in plasma and type I and type II fibres during resistance exercise and recovery in human subjects. Amino Acids 2008; 37:629-36. [PMID: 18931969 DOI: 10.1007/s00726-008-0182-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 09/11/2008] [Indexed: 11/28/2022]
Abstract
Eight male subjects performed leg press exercise, 4 x 10 repetitions at 80% of their maximum. Venous blood samples were taken before, during exercise and repeatedly during 2 h of recovery. From four subjects, biopsies were taken from the vastus lateralis muscle prior to, immediately after and following one and 2 h of recovery. Samples were freeze-dried, individual muscle fibres were dissected out and identified as type I or type II. Resistance exercise led to pronounced reductions in the glutamate concentration in both type I (32%) and type II fibres (70%). Alanine concentration was elevated 60-75% in both fibre types and 29% in plasma. Glutamine concentration remained unchanged after exercise; although 2 h later the concentrations in both types of fibres were reduced 30-35%. Two hours after exercise, the plasma levels of glutamate and six of the essential amino acids, including the branched-chain amino acids were reduced 5-30%. The data suggest that glutamate acts as an important intermediate in muscle energy metabolism during resistance exercise, especially in type II fibres.
Collapse
Affiliation(s)
- Eva Blomstrand
- Swedish School of Sport and Health Sciences, Box 5626, 114 86, Stockholm, Sweden.
| | | |
Collapse
|
37
|
Derave W, Jones G, Hespel P, Harris RC. Creatine Supplementation Augments Skeletal Muscle Carnosine Content in Senescence-Accelerated Mice (SAMP8). Rejuvenation Res 2008; 11:641-7. [DOI: 10.1089/rej.2008.0699] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wim Derave
- Research Center for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K.U. Leuven, Leuven, Belgium
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Glenys Jones
- School of Sports, Exercise and Health Sciences, University of Chichester, Chichester, UK
| | - Peter Hespel
- Research Center for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K.U. Leuven, Leuven, Belgium
| | - Roger C. Harris
- School of Sports, Exercise and Health Sciences, University of Chichester, Chichester, UK
| |
Collapse
|
38
|
Comparison of the carnosine and taurine contents of vastus lateralis of elderly Korean males, with impaired glucose tolerance, and young elite Korean swimmers. Amino Acids 2008; 36:359-63. [DOI: 10.1007/s00726-008-0092-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 04/01/2008] [Indexed: 01/13/2023]
|
39
|
Sato M, Karasawa N, Shimizu M, Morimatsu F, Yamada R. Safety evaluation of chicken breast extract containing carnosine and anserine. Food Chem Toxicol 2008; 46:480-9. [DOI: 10.1016/j.fct.2007.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 07/30/2007] [Accepted: 08/10/2007] [Indexed: 11/25/2022]
|
40
|
Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E. β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol (1985) 2007; 103:1736-43. [PMID: 17690198 DOI: 10.1152/japplphysiol.00397.2007] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carnosine (β-alanyl-l-histidine) is present in high concentrations in human skeletal muscle. The ingestion of β-alanine, the rate-limiting precursor of carnosine, has been shown to elevate the muscle carnosine content. We aimed to investigate, using proton magnetic resonance spectroscopy (proton MRS), whether oral supplementation with β-alanine during 4 wk would elevate the calf muscle carnosine content and affect exercise performance in 400-m sprint-trained competitive athletes. Fifteen male athletes participated in a placebo-controlled, double-blind study and were supplemented orally for 4 wk with either 4.8 g/day β-alanine or placebo. Muscle carnosine concentration was quantified in soleus and gastrocnemius by proton MRS. Performance was evaluated by isokinetic testing during five bouts of 30 maximal voluntary knee extensions, by endurance during isometric contraction at 45% maximal voluntary contraction, and by the indoor 400-m running time. β-Alanine supplementation significantly increased the carnosine content in both the soleus (+47%) and gastrocnemius (+37%). In placebo, carnosine remained stable in soleus, while a small and significant increase of +16% occurred in gastrocnemius. Dynamic knee extension torque during the fourth and fifth bout was significantly improved with β-alanine but not with placebo. Isometric endurance and 400-m race time were not affected by treatment. In conclusion, 1) proton MRS can be used to noninvasively quantify human muscle carnosine content; 2) muscle carnosine is increased by oral β-alanine supplementation in sprint-trained athletes; 3) carnosine loading slightly but significantly attenuated fatigue in repeated bouts of exhaustive dynamic contractions; and 4) the increase in muscle carnosine did not improve isometric endurance or 400-m race time.
Collapse
Affiliation(s)
- Wim Derave
- Dept. of Movement and Sport Sciences, Ghent Univ., Watersportlaan 2, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tallon MJ, Harris RC, Maffulli N, Tarnopolsky MA. Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects. Biogerontology 2006; 8:129-37. [PMID: 16967207 DOI: 10.1007/s10522-006-9038-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
Ageing is associated with a reduction in muscle carnosine (beta-alanyl-L-histidine), but there are no data on the changes specifically in type I and type II muscle fibres. Given the higher carnosine content of type II fibers, changes observed in whole muscle may be secondary to a shift in fibre composition. Carnosine, beta-alanine, histidine, taurine, and citrate synthase (CS) and glycogen phosphorylase (Phos), were measured in pools of single muscle fibres from freeze-dried muscle biopsies of vastus lateralis of nine elderly sedentary subjects (65-80 years) with osteoarthritis of the knee and undergoing total knee replacement, and nine young moderately active healthy subjects (20-35 years). Fibres were characterised as type I or II by myosin ATPase activity. Carnosine was 53.2% lower in type II fibres of older subjects resulting in an estimated 7% (and most probably still higher) decline in intracellular physico-chemical buffering capacity. Younger subjects showed higher CS activities in type I and higher Phos activities in type II fibres. These differences were less apparent in elderly subjects. Possible causes for the change in the carnosine content are reduced physical activity, reduced meat intake, or the result of progressive denervation.
Collapse
Affiliation(s)
- Mark J Tallon
- SSEHS, University of Chichester, Chichester PO19 6PE, UK
| | | | | | | |
Collapse
|
42
|
Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 2006; 32:225-33. [PMID: 16868650 DOI: 10.1007/s00726-006-0364-4] [Citation(s) in RCA: 294] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/20/2006] [Indexed: 11/30/2022]
Abstract
Muscle carnosine synthesis is limited by the availability of beta-alanine. Thirteen male subjects were supplemented with beta-alanine (CarnoSyn) for 4 wks, 8 of these for 10 wks. A biopsy of the vastus lateralis was obtained from 6 of the 8 at 0, 4 and 10 wks. Subjects undertook a cycle capacity test to determine total work done (TWD) at 110% (CCT(110%)) of their maximum power (Wmax). Twelve matched subjects received a placebo. Eleven of these completed the CCT(110%) at 0 and 4 wks, and 8, 10 wks. Muscle biopsies were obtained from 5 of the 8 and one additional subject. Muscle carnosine was significantly increased by +58.8% and +80.1% after 4 and 10 wks beta-alanine supplementation. Carnosine, initially 1.71 times higher in type IIa fibres, increased equally in both type I and IIa fibres. No increase was seen in control subjects. Taurine was unchanged by 10 wks of supplementation. 4 wks beta-alanine supplementation resulted in a significant increase in TWD (+13.0%); with a further +3.2% increase at 10 wks. TWD was unchanged at 4 and 10 wks in the control subjects. The increase in TWD with supplementation followed the increase in muscle carnosine.
Collapse
Affiliation(s)
- C A Hill
- School of Sports, Exercise & Health Sciences, University of Chichester, Chichester, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 2006; 30:279-89. [PMID: 16554972 DOI: 10.1007/s00726-006-0299-9] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 10/18/2005] [Indexed: 11/28/2022]
Abstract
Beta-alanine in blood-plasma when administered as A) histidine dipeptides (equivalent to 40 mg . kg(-1) bwt of beta-alanine) in chicken broth, or B) 10, C) 20 and D) 40 mg . kg(-1) bwt beta-alanine (CarnoSyn, NAI, USA), peaked at 428 +/- SE 66, 47 +/- 13, 374 +/- 68 and 833 +/- 43 microM. Concentrations regained baseline at 2 h. Carnosine was not detected in plasma with A) although traces of this and anserine were found in urine. Loss of beta-alanine in urine with B) to D) was <5%. Plasma taurine was increased by beta-alanine ingestion but this did not result in any increased loss via urine. Pharmacodynamics were further investigated with 3 x B) per day given for 15 d. Dietary supplementation with I) 3.2 and II) 6.4 g . d(-1) beta-alanine (as multiple doses of 400 or 800 mg) or III) L-carnosine (isomolar to II) for 4 w resulted in significant increases in muscle carnosine estimated at 42.1, 64.2 and 65.8%.
Collapse
Affiliation(s)
- R C Harris
- School of Sports, Exercise and Health Sciences, University College Chichester, West Sussex, Chichester, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yoshioka Y, Masuda T, Nakano H, Miura H, Nakaya S, Itazawa SI, Kubokawa M. In vitro 1H-NMR spectroscopic analysis of metabolites in fast- and slow-twitch muscles of young rats. Magn Reson Med Sci 2005; 1:7-13. [PMID: 16037662 DOI: 10.2463/mrms.1.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The lactate (LAC), creatine (CRN), taurine (TAU), anserine (ANS) and carnosine (CAR) content of the masseter muscles (MM), long extensor muscles of digits (EDL) and soleus muscles (SOL) of young rats were determined using in vitro 1H-NMR spectroscopy to assess the significance of CRN, TAU, ANS and CAR in these muscles. The muscles of Wistar rats at the ages of 6, 12 and 18 weeks were dissected after decapitation and used for the metabolite analyses. The LAC and CAR content of all muscle groups showed no age dependence. The CRN content was increased age-dependently in MM but not in EDL or SOL. The LAC and CRN content was higher in MM and EDL (fast-twitch) than in SOL (slow-twitch) (P<0.01-0.001 at 18 weeks). A significant positive correlation existed between the LAC and CRN content (P<0.00001, r=0.80), suggesting that the CRN content reflects the capacity of the anaerobic glycolysis of the individual muscles. The TAU content was higher in SOL and MM than in EDL (P<0.05) and showed an approximately 1.5-fold increase with age in all three muscle groups. The ANS content was higher in EDL than in SOL and MM (P<0.001), and showed an approximately threefold increase with age in all three muscle groups. The ANS content positively correlated with the LAC content (P<0.001, r=0.41), and the chemical shift of the imidazole proton in ANS showed a correlation with the LAC content (P<0.0001, r>0.76), indicating that ANS would buffer the pH change produced by LAC. These results suggest that 1H-NMR spectroscopy would provide an adjunct method of assessing the muscle types and their development.
Collapse
Affiliation(s)
- Yoshichika Yoshioka
- Department of Physiology II, School of Medicine, Iwate Medical University, Morioka, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Nardiello D, Cataldi TRI. Determination of carnosine in feed and meat by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. J Chromatogr A 2004; 1035:285-9. [PMID: 15124824 DOI: 10.1016/j.chroma.2004.02.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Carnosine (beta-alanyl-L-histidine) is a dipeptide regarded as an important molecular marker of the presence of processed animal proteins including meat and bone meal in animal feed. For its identification and quantification a sensitive and selective method by high-performance anion-exchange chromatography coupled with integrated pulsed amperometric detection (HPAEC-IPAD) was developed. The assay is based on isocratic elution with 100 mM NaOH as the mobile phase. Interferences of real matrices were efficiently removed; carnosine could be determined at the concentration ranges 0.1-100 microM with a rather low detection limit of 0.23 ng. Unlike feeds for dogs and cats, no carnosine peak was observed in all examined feeds for ruminants. The good analytical characteristics allowed camosine determination down to 5 microg/g of feed.
Collapse
Affiliation(s)
- Donatella Nardiello
- Dipartimento di Chimica, Università della Basilicata, Via N. Sauro, 85, 85100 Potenza, Italy
| | | |
Collapse
|
46
|
Chen Y, Ho CT. Effects of carnosine on volatile generation from Maillard reaction of ribose and cysteine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:2372-2376. [PMID: 11929299 DOI: 10.1021/jf011244l] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carnosine occurs naturally in meat and meat products in significant quantity, and it possesses strong antioxidant activity that inhibits lipid oxidation and enhances shelf life. In this study, the effects of carnosine on thermal flavor generation were investigated using the model system of cysteine and ribose, which was heated to the roasting temperature of 180 degrees C for 2 h at pH 5 and pH 8.5. The results indicated that carnosine affected volatile formation in a complex manner. Volatiles identified from the liquid phase of the reaction systems of ribose and cysteine showed that the sulfur-containing compounds such as thiophenes, thiazoles, and polysulfides were the most abundant compounds. The addition of carnosine into the reaction mixtures in general caused a reduction in contents of thiophenes and some important meaty flavor compounds such as 2-methyl-3-furanthiol, 2-furfurylthiol, and their associated dimers. On the other hand, it facilitated the generation of several important nitrogen-containing volatiles such as pyrazine, methylpyrazine, 2,6-dimethylpyrazine, and other alkyl pyrazines and thiazoles, which are known to elicit roasty and nutty flavor notes. The results suggested that carnosine acts as a nitrogenous source to facilitate the formation of nitrogen-containing compounds, possibly by degradation to form ammonia.
Collapse
Affiliation(s)
- Yong Chen
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
47
|
Suzuki Y, Ito O, Mukai N, Takahashi H, Takamatsu K. High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. THE JAPANESE JOURNAL OF PHYSIOLOGY 2002; 52:199-205. [PMID: 12139778 DOI: 10.2170/jjphysiol.52.199] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The histidine-containing dipeptide carnosine (beta-alanyl-L-histidine) has been shown to significantly contribute to the physicochemical buffering in skeletal muscles, which maintains acid-base balance when a large quantity of H(+) is produced in association with lactic acid accumulation during high-intensity exercise. The purpose of the present study was to examine the relations among the skeletal muscle carnosine concentration, fiber-type distribution, and high-intensity exercise performance. The subjects were 11 healthy men. Muscle biopsy samples were taken from the vastus lateralis at rest. The carnosine concentration was determined by the use of an amino acid autoanalyzer. The fiber-type distribution was determined by the staining intensity of myosin adenosinetriphosphatase. The high-intensity exercise performance was assessed by the use of 30-s maximal cycle ergometer sprinting. A significant correlation was demonstrated between the carnosine concentration and the type IIX fiber composition (r=0.646, p<0.05). The carnosine concentration was significantly correlated with the mean power per body mass (r=0.785, p<0.01) during the 30-s sprinting. When dividing the sprinting into 6 phases (0-5, 6-10, 11-15, 16-20, 21-25, 26-30 s), significant correlations were observed between the carnosine concentration and the mean power per body mass of the final 2 phases (21-25 s: r=0.694, p<0.05; 26-30 s: r=0.660, p<0.05). These results indicated that the carnosine concentration could be an important factor in determining the high-intensity exercise performance.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- Doctoral Program in Health and Sport Sciences, University of Tsukuba, Japan
| | | | | | | | | |
Collapse
|
48
|
Essén-Gustavsson B, Blomstrand E. Effect of exercise on concentrations of free amino acids in pools of type I and type II fibres in human muscle with reduced glycogen stores. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 174:275-81. [PMID: 11906327 DOI: 10.1046/j.1365-201x.2002.00942.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A few animal studies have shown that some amino acid concentrations vary between different muscle fibre types. In the present study, amino acid concentrations were measured in separate pools of different fibre types in human skeletal muscle, with reduced glycogen stores, before and after sustained exercise. Five subjects exercised at a submaximal work rate for 60 min and then at a maximal rate for 20 min. Biopsy samples were taken from the vastus lateralis muscle before and after exercise; they were freeze-dried and individual fibres were dissected out. Fragments of these fibres were stained for myosin-adenosine triphosphatase (ATPase) and identified as type I or type II fibres. The concentrations of free amino acids were measured by high performance liquid chromatography (HPLC) in perchloric acid (PCA) extracts containing pools of either type of fibre. After exercise, glycogen was decreased in type I fibres (53%) and in four subjects also in type II fibres. The concentrations of most amino acids were similar in the two fibre types before exercise, but the glutamate, aspartate and arginine levels were 10% higher in type II than in type I fibres. After exercise, the glutamate concentration was decreased by 45% in both fibre types and the branched-chain amino acids (BCAA) were decreased in type II fibres (14%). Exercise caused an increase by 25-30% in tyrosine concentration in both type I and type II fibres. The results show that amino acids can be measured in pools of fibre fragments and suggest that amino acid metabolism play an important role in both type I and type II fibres during exercise.
Collapse
Affiliation(s)
- B Essén-Gustavsson
- Department of Large Animal Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
49
|
Maynard LM, Boissonneault GA, Chow CK, Bruckner GG. High levels of dietary carnosine are associated with increased concentrations of carnosine and histidine in rat soleus muscle. J Nutr 2001; 131:287-90. [PMID: 11160547 DOI: 10.1093/jn/131.2.287] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aims of this investigation were to: 1) determine the effect of a moderately high dose of carnosine on muscle concentrations of carnosine, histidine and vitamin E at deficient, minimally adequate and sufficient levels of dietary vitamin E and 2) compare the effects of moderately high and pharmacological doses of carnosine on muscle concentrations of carnosine, histidine and vitamin E when dietary vitamin E is minimally adequate. Muscle concentrations of carnosine, histidine and vitamin E were measured in the lateral gastrocnemius and red and white vastus lateralis; carnosine and histidine concentrations were also measured in soleus muscle. Male Sprague-Dawley rats (n = 12/group) were fed a basal vitamin E-deficient diet supplemented with either 0, 0.001 or 0.01% vitamin E and 0, 0.1 or 1.8% carnosine. After 8 wk, 1.8% carnosine resulted in significant fivefold increases in carnosine and twofold increases in histidine in the soleus muscle (P < or = 0.05). Muscle vitamin E concentrations were not significantly affected by dietary carnosine. Thus, very high levels of dietary carnosine are associated with increases in carnosine and histidine concentrations in rat soleus muscle.
Collapse
Affiliation(s)
- L M Maynard
- Department of Clinical Science/Division of Clinical Nutrition, University of Kentucky, Lexington, Kentucky 40506, USA.
| | | | | | | |
Collapse
|
50
|
C. Harris R, Dunnett M, Greenhaff PL. Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. J Sports Sci 1998. [DOI: 10.1080/026404198366443] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|