1
|
Bollu VS, Chen YC, Zhang F, Gowda K, Amin S, Sharma AK, Schell TD, Zhu J, Robertson GP. Managing telomerase and telomere dysfunction in acral melanoma. Pharmacol Res 2025; 215:107700. [PMID: 40097124 DOI: 10.1016/j.phrs.2025.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Acral Lentiginous Melanoma is a rare and aggressive subtype of melanoma that commonly affects the palms, soles, and nail beds. It is more prevalent in individuals with darker skin tones, including Asian, African, and Hispanic populations. Unlike cutaneous melanomas, acral melanoma is not associated with UV exposure and has a distinct genetic and molecular profile, underscoring the need for tailored research and treatment strategies. Standard treatments, such as surgery, chemotherapy, immunotherapy, and targeted therapies, have shown limited success for this melanoma subtype, highlighting the urgency of developing more effective interventions. Telomerase is an enzyme that extends telomeres and is a key target in acral melanoma which exhibits' high telomerase activity, driven by mutations in the telomerase reverse transcriptase TERT promoter, which contributes to uncontrolled tumor cell proliferation, cancer cell immortality, and resistance to conventional therapies. Therefore, targeting telomerase presents a promising therapeutic avenue for acral melanoma patients who do not respond well to current treatments. Several approaches for targeting telomerase deregulation have been developed, and their potential for the management of acral melanoma is discussed in this review. Specifically, the promise of telomerase-targeted therapies for acral melanoma is emphasized and explores how these strategies could improve outcomes for patients with this challenging skin cancer. By focusing on the role of telomerase in tumorigenesis and treatment resistance, telomerase-targeted strategies hold potential as a foundational component of therapies for acral melanoma, complementing existing approaches.
Collapse
Affiliation(s)
- Vishnu Sravan Bollu
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Yu-Chi Chen
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Fan Zhang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA 99202, United States
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Arun K Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Todd D Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Jiyue Zhu
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA 99202, United States
| | - Gavin P Robertson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Foreman Foundation for Melanoma Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Melanoma and Skin Cancer Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Melanoma Therapeutics Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
2
|
Pradere U, Garnier-Amblard E, Coats SJ, Amblard F, Schinazi RF. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem Rev 2014; 114:9154-218. [PMID: 25144792 PMCID: PMC4173794 DOI: 10.1021/cr5002035] [Citation(s) in RCA: 420] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Ugo Pradere
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | | | | | - Franck Amblard
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | - Raymond F. Schinazi
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Cho JH, Coats SJ, Schinazi RF. Efficient synthesis of exo-N-carbamoyl nucleosides: application to the synthesis of phosphoramidate prodrugs. Org Lett 2012; 14:2488-91. [PMID: 22554490 DOI: 10.1021/ol300777p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An efficient protection protocol for the 6-exo-amino group of purine nucleosides with various chloroformates was developed utilizing N-methylimidazole (NMI). The reaction of an exo-N(6)-group of adenosine analogue 1 with alkyl/and aryl chloroformates under optimized conditions provided the N(6)-carbamoyl adenosines (2a-j) in good to excellent yields. The reaction of N(6)-Cbz-protected nucleosides (5a-c) with phenyl phosphoryl chloride (7) using t-BuMgCl followed by catalytic hydrogenation afforded the corresponding phosphoramidate pronucleotides (8a-c) in excellent yield.
Collapse
Affiliation(s)
- Jong Hyun Cho
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , and Veterans Affairs Medical Center, Decatur, Georgia 30033, United States, and RFS Pharma, LLC , 1860 Montreal Road, Tucker, Georgia 30084, United States
| | | | | |
Collapse
|
6
|
Abstract
In order to overcome restrictions imposed by activation (phosphorylation) mechanism of antiviral and antitumor nucleoside analogues several prodrug approaches have been designed. Lipophilic pronucleotides are capable of intracellular delivery of monophosphates of nucleoside analogues, thus circumventing the limitations of enzymic phosphorylation. One of the successful approaches employs lipophilic amino acid ester (alanine) phenyl phosphoramidates as pronucleotides. This approach was applied to AIDS drugs such as AZT, d4T and related analogues but also to nonclassical nucleoside analogues based on allenic and methylenecyclopropane structure. Antiviral effects of the parent analogues were in many cases increased by conversion to phenyl phosphoralaninate (PPA) pronucleotides. Although cytotoxicity increase frequently accompanies antiviral effects of these pronucleotides, a favorable selectivity index can be obtained by manipulation of the parent structure as shown, e.g., for 2,6-diaminopurine methylenecyclopropane pronucleotide 15c. A lack of in vivo toxicity was demonstrated for 2-amino-6-methoxypurine methylenecyclopropane pronucleotide 15e in mice. The PPA pronucleotides can overcome deficiency of phosphorylating enzymes and offer favorable cross-resistance patterns when compared with other antiviral drugs.
Collapse
Affiliation(s)
- Jiri Zemlicka
- Department of Chemistry, Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 110 E. Warren Ave., Detroit, MI 48201-1379, USA.
| |
Collapse
|
7
|
Fletcher TM, Cathers BE, Ravikumar KS, Mamiya BM, Kerwin SM. Inhibition of human telomerase by 7-deaza-2'-deoxyguanosine nucleoside triphosphate analogs: potent inhibition by 6-thio-7-deaza-2'-deoxyguanosine 5'-triphosphate. Bioorg Chem 2001; 29:36-55. [PMID: 11300694 DOI: 10.1006/bioo.2000.1194] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined analogs of the previously reported 7-deaza-2'-deoxypurine nucleoside triphosphate series of human telomerase inhibitors. Two new telomerase-inhibiting nucleotides are reported: 6-methoxy-7-deaza-2'-deoxyguanosine 5'-triphosphate (OMDG-TP) and 6-thio-7-deaza-2'-deoxyguanosine 5'-triphosphate (TDG-TP). In particular, TDG-TP is a very potent inhibitor of human telomerase with an IC(50) of 60 nM. TDG-TP can substitute for dGTP as a substrate for telomerase, but only at relatively high concentrations. Under conditions in which TDG-TP is the only available guanosine substrate, telomerase becomes nonprocessive, synthesizing short products that appear to contain only one to three TDG residues. Similarly, the less potent telomerase inhibitor OMDG-TP gives rise to short telomerase products, but less efficiently than TDG-TP. We show here that TDG-TP, and to a lesser extent OMDG-TP, can serve as substrates for both templated (Klenow exo) and nontemplated (terminal transferase) DNA polymerases. For either polymerase, the products arising from TDG-TP are relatively short, and give rise to bands of unusual mobility under PAGE conditions. These anomalous bands revert, under treatment with DTT, to normal mobility bands, indicating that these products may contain thiol-labile disulfide linkages involving the incorporated TDG residues. This observation of potential TDG-crosslinks may have bearing on the mechanism of telomerase inhibition by this nucleotide analog.
Collapse
Affiliation(s)
- T M Fletcher
- College of Pharmacy, University of Texas, Austin, Texas 78712-1074, USA
| | | | | | | | | |
Collapse
|