1
|
Rodriguez LE, Weber JM, Barge LM. Evaluating Pigments as a Biosignature: Abiotic/Prebiotic Synthesis of Pigments and Pigment Mimics in Planetary Environments. ASTROBIOLOGY 2024; 24:767-782. [PMID: 38768415 DOI: 10.1089/ast.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Pigments serve a multitude of functions in biology including light harvesting for photosynthesis, radiation protection, membrane support, and defense. The ubiquity of pigments-especially within extremophiles found in high-radiation, high-salinity, and dry environments-and their detectability via mission-ready techniques have elevated these molecules as promising targets in the search for evidence of life elsewhere. Moreover, the detection of pigments has been proposed as a "smoking gun" for extraterrestrial life as it has been suggested that these molecules cannot be generated abiotically. However, while pigments may hold promise as a biosignature, current understanding of their possible prebiotic origins remains understudied and uncertain. Better understanding of the abiotic synthesis of pigments is critical for evaluating the biogenicity of any pigment detected during missions, including by the Mars Perseverance rover or from returned samples. Compounding this uncertainty is the broad definition of pigment as it includes any compound capable of absorbing visible light and by itself does not specify a particular chemical motif. While not experimentally verified, there are promising prebiotic routes for generating pigments including hemes, chlorophylls, and carotenoids. Herein, we review the biochemistry of pigments, the inherent assumptions made when searching for these molecules in the field, their abiotic synthesis in industry and prebiotic reactions, prebiotically relevant molecules that can mimic their spectral signatures, and implications/recommendations for future work.
Collapse
Affiliation(s)
- Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
2
|
Abstract
The evolution of coenzymes, or their impact on the origin of life, is fundamental for understanding our own existence. Having established reasonable hypotheses about the emergence of prebiotic chemical building blocks, which were probably created under palaeogeochemical conditions, and surmising that these smaller compounds must have become integrated to afford complex macromolecules such as RNA, the question of coenzyme origin and its relation to the evolution of functional biochemistry should gain new impetus. Many coenzymes have a simple chemical structure and are often nucleotide-derived, which suggests that they may have coexisted with the emergence of RNA and may have played a pivotal role in early metabolism. Based on current theories of prebiotic evolution, which attempt to explain the emergence of privileged organic building blocks, this Review discusses plausible hypotheses on the prebiotic formation of key elements within selected extant coenzymes. In combination with prebiotic RNA, coenzymes may have dramatically broadened early protometabolic networks and the catalytic scope of RNA during the evolution of life.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
3
|
Sarkar S, Das S, Dagar S, Joshi MP, Mungi CV, Sawant AA, Patki GM, Rajamani S. Prebiological Membranes and Their Role in the Emergence of Early Cellular Life. J Membr Biol 2020; 253:589-608. [PMID: 33200235 DOI: 10.1007/s00232-020-00155-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/08/2020] [Indexed: 01/30/2023]
Abstract
Membrane compartmentalization is a fundamental feature of contemporary cellular life. Given this, it is rational to assume that at some stage in the early origins of life, membrane compartments would have potentially emerged to form a dynamic semipermeable barrier in primitive cells (protocells), protecting them from their surrounding environment. It is thought that such prebiological membranes would likely have played a crucial role in the emergence and evolution of life on the early Earth. Extant biological membranes are highly organized and complex, which is a consequence of a protracted evolutionary history. On the other hand, prebiotic membrane assemblies, which are thought to have preceded sophisticated contemporary membranes, are hypothesized to have been relatively simple and composed of single chain amphiphiles. Recent studies indicate that the evolution of prebiotic membranes potentially resulted from interactions between the membrane and its physicochemical environment. These studies have also speculated on the origin, composition, function and influence of environmental conditions on protocellular membranes as the niche parameters would have directly influenced their composition and biophysical properties. Nonetheless, the evolutionary pathways involved in the transition from prebiological membranes to contemporary membranes are largely unknown. This review critically evaluates existing research on prebiotic membranes in terms of their probable origin, composition, energetics, function and evolution. Notably, we outline new approaches that can further our understanding about how prebiotic membranes might have evolved in response to relevant physicochemical parameters that would have acted as pertinent selection pressures on the early Earth.
Collapse
Affiliation(s)
- Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Souradeep Das
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Chaitanya V Mungi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Anupam A Sawant
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Gauri M Patki
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
4
|
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| |
Collapse
|
5
|
Hirao K, Ono R, Manabe Y, Masui S, Atomi H, Fukase K. Total Syntheses of C60- and C100-Dolichols. J Org Chem 2020; 85:11549-11559. [PMID: 32786646 DOI: 10.1021/acs.joc.0c01327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C60- and C100-dolichols were synthesized. A Z-selective Wittig reaction was achieved with high selectivity in a microflow system to realize the scalable supply of the Z-isoprene unit. An isoprene chain was efficiently elongated by an SN2-type coupling between allyl sulfone and allyl chloride using t-BuOK. These key reactions enabled the efficient syntheses of dolichols. This study will pave the way for the functional studies of dolichols.
Collapse
Affiliation(s)
- Kohtaro Hirao
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Risako Ono
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Seiji Masui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Dalai P, Sahai N. Mineral–Lipid Interactions in the Origins of Life. Trends Biochem Sci 2019; 44:331-341. [DOI: 10.1016/j.tibs.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
|
7
|
Nakatani Y, Ribeiro N, Streiff S, Gotoh M, Pozzi G, Désaubry L, Milon A. Search for the most 'primitive' membranes and their reinforcers: a review of the polyprenyl phosphates theory. ORIGINS LIFE EVOL B 2014; 44:197-208. [PMID: 25351682 PMCID: PMC4669544 DOI: 10.1007/s11084-014-9365-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
Abstract
Terpenoids have an essential function in present-day cellular membranes, either as membrane reinforcers in Eucarya and Bacteria or as principal membrane constituents in Archaea. We have shown that some terpenoids, such as cholesterol and α, ω-dipolar carotenoids reinforce lipid membranes by measuring the water permeability of unilamellar vesicles. It was possible to arrange the known membrane terpenoids in a ‘phylogenetic’ sequence, and a retrograde analysis led us to conceive that single-chain polyprenyl phosphates might have been ‘primitive’ membrane constituents. By using an optical microscopy, we have observed that polyprenyl phosphates containing 15 to 30 C-atoms form giant vesicles in water in a wide pH range. The addition of 10 % molar of some polyprenols to polyprenyl phosphate vesicles have been shown to reduce the water permeability of membranes even more efficiently than the equimolecular addition of cholesterol. A ‘prebiotic’ synthesis of C10 and C15 prenols from C5 monoprenols was achieved in the presence of a montmorillonite clay. Hypothetical pathway from C1 or C2 units to ‘primitive’ membranes and that from ‘primitive’ membranes to archaeal lipids are presented.
Collapse
Affiliation(s)
- Yoichi Nakatani
- Institute of Chemistry, University of Strasbourg - CNRS, 67000, Strasbourg, France,
| | | | | | | | | | | | | |
Collapse
|
8
|
Nakatani Y, Ribeiro N, Streiff S, Désaubry L, Ourisson G. Search for the most primitive membranes: some remaining problems. ORIGINS LIFE EVOL B 2012; 42:497-501. [PMID: 23080009 DOI: 10.1007/s11084-012-9313-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Yoichi Nakatani
- Institut de Chimie, Université de Strasbourg, 1, rue Blaise Pascal, 67008 Strasbourg, France.
| | | | | | | | | |
Collapse
|
9
|
Cleaves HJ, Michalkova Scott A, Hill FC, Leszczynski J, Sahai N, Hazen R. Mineral-organic interfacial processes: potential roles in the origins of life. Chem Soc Rev 2012; 41:5502-25. [PMID: 22743683 DOI: 10.1039/c2cs35112a] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Life is believed to have originated on Earth ∼4.4-3.5 Ga ago, via processes in which organic compounds supplied by the environment self-organized, in some geochemical environmental niches, into systems capable of replication with hereditary mutation. This process is generally supposed to have occurred in an aqueous environment and, likely, in the presence of minerals. Mineral surfaces present rich opportunities for heterogeneous catalysis and concentration which may have significantly altered and directed the process of prebiotic organic complexification leading to life. We review here general concepts in prebiotic mineral-organic interfacial processes, as well as recent advances in the study of mineral surface-organic interactions of potential relevance to understanding the origin of life.
Collapse
Affiliation(s)
- H James Cleaves
- Blue Marble Space Institute of Science, Washington, DC 20016, USA
| | | | | | | | | | | |
Collapse
|
10
|
Stadler AM, Harrowfield J. Places and chemistry: Strasbourg—a chemical crucible seen through historical personalities. Chem Soc Rev 2011; 40:2061-108. [DOI: 10.1039/c0cs00197j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Active centrum hypothesis: the origin of chiral homogeneity and the RNA-world. Biosystems 2010; 103:1-12. [PMID: 20851736 DOI: 10.1016/j.biosystems.2010.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 09/06/2010] [Accepted: 09/06/2010] [Indexed: 11/22/2022]
Abstract
I propose a hypothesis on the origin of chiral homogeneity of bio-molecules based on chiral catalysis. The first chiral active centre may have formed on the surface of complexes comprising metal ions, amino acids, other coenzymes and oligomers (short RNAs). The complexes must have been dominated by short RNAs capable of self-reproduction with ligation. Most of the first complexes may have catalysed the production of nucleotides. A basic assumption is that such complexes can be assembled from their components almost freely, in a huge variety of combinations. This assumption implies that "a few" components can constitute "a huge" number of active centre types. Moreover, an experiment is proposed to test the performance of such complexes in vitro. If the complexes were built up freely from their elements, then Darwinian evolution would operate on the assembly mechanism of complexes. For the production of complexes, first their parts had to appear by forming a proper three-dimensional structure. Three possible re-building mechanisms of the proper geometric structure of complexes are proposed. First, the integration of RNA parts of complexes was assisted presumably by a pre-intron. Second, the binding of RNA parts of a complex may give rise to a "polluted" RNA world. Third, the pairing of short RNA parts and their geometric conformation may have been supported by a pre-genetic code. Finally, an evolutionary step-by-step scenario of the origin of homochirality and a "polluted" RNA world is also introduced based on the proposed combinatorial complex chemistry. Homochirality is evolved by Darwinian selection whenever the efficiency of the reflexive autocatalysis of a dynamical combinatorial library increases with the homochirality of the active centres of reactions cascades and the homochirality of the elements of the dynamical combinatorial library. Moreover, the potential importance of phospholipid membrane is also discussed.
Collapse
|
12
|
Brack A, Troublé M. Defining life: connecting robotics and chemistry. ORIGINS LIFE EVOL B 2010; 40:131-6. [PMID: 20204518 DOI: 10.1007/s11084-010-9191-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/15/2009] [Indexed: 10/19/2022]
Abstract
Life is commonly referred as open systems driven by organic chemistry capable to self reproduce and to evolve. The notion of life has also been extended to non chemical systems such as robots. The key characteristics of living systems, i.e. autonomy, self-replication, self-reproduction, self-organization, self-aggregation, autocatalysis, as defined in chemistry and in robotics, are compared in a dialogue between a chemist and a robotitian.
Collapse
Affiliation(s)
- André Brack
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France.
| | | |
Collapse
|
13
|
Ariga K, Lee MV, Labuta J, Okamoto K, Hill JP. Studies on Langmuir monolayers of polyprenyl phosphates towards a possible scenario for origin of life. Colloids Surf B Biointerfaces 2009; 74:426-35. [DOI: 10.1016/j.colsurfb.2009.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/21/2009] [Accepted: 07/24/2009] [Indexed: 11/26/2022]
|
14
|
Streiff S, Ribeiro N, Wu Z, Gumienna-Kontecka E, Elhabiri M, Albrecht-Gary AM, Ourisson G, Nakatani Y. “Primitive” Membrane from Polyprenyl Phosphates and Polyprenyl Alcohols. ACTA ACUST UNITED AC 2007; 14:313-9. [PMID: 17379146 DOI: 10.1016/j.chembiol.2006.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/20/2006] [Accepted: 11/20/2006] [Indexed: 11/28/2022]
Abstract
Polyprenyl phosphates, as well as polyprenyl alcohols bearing different isopentenyl C(5) units, have been synthesized. The pH range of spontaneous vesicle formation of polyprenyl phosphates with or without polyprenyl alcohols was defined by fluorescence microscopy. A variety of the acyclic or monocyclic polyprenyl phosphates studied formed stable vesicles in water over a wide range of pHs, and the addition of polyprenyl alcohols allowed the vesicle formation of polyprenyl phosphates at higher pHs. Osmotic swelling of a suspension of unilamellar vesicles using the stopped-flow/light-scattering method enabled us to evaluate the water permeability of polyprenyl phosphate vesicles with or without 10 mol% of free polyprenyl alcohol. The addition of many polyprenyl alcohols to polyprenyl phosphate vesicles decreased the water permeability, and some reduced it even more efficiently than cholesterol.
Collapse
Affiliation(s)
- Stéphane Streiff
- Centre de Neurochimie CNRS, Institut de Chimie LC3-UMR 7177, Université Louis Pasteur, 5 rue Blaise Pascal, F-67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|