1
|
Christian OE, Perry DA, Telchy AI, Walton PN, Williams D. Bioactive Compounds Isolated from a Marine Sponge Selectively Inhibit Neisseria gonorrhoeae. Antibiotics (Basel) 2024; 13:1229. [PMID: 39766619 PMCID: PMC11726862 DOI: 10.3390/antibiotics13121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Neisseria gonorrhoeae is the third most common sexually transmitted infection (STI), which may become untreatable soon if resistance continues to drastically increase. Due to increases in resistance to recommended antibiotics, alternative sources of novel compounds to combat this threat are being explored. Interestingly, marine sponges have proven to produce a plethora of bioactive compounds that display anticancer, antiviral, antifungal, and antibacterial activity. METHODS In this study, the extracts of the sponge collected from Saint Thomas, US Virgin Islands were examined to determine their antibacterial activity against E. coli, S. aureus, and N. gonorrhoeae. RESULTS The ethyl acetate sponge extracts significantly inhibited growth of N. gonorrhoeae, while none inhibited S. aureus and E. coli. The bioassay-guided purification of the ethyl acetate extract resulted in the isolation of 6-desmethyl-6-ethylspongosoritin A (1) and plakortone B (2). To determine if the pure sponge metabolite could improve the efficacy of ceftriaxone against a high-level ceftriaxone (HTX)-resistant gonococcal strain, an antibiotic checkerboard assay was done by combining various concentrations of either precursor fractions or the purified compound 2 with ceftriaxone. Plakortone B (2) and ceftriaxone acted in synergy against gonococcal strains and inhibited growth by increasing membrane permeability when exposed for 4 h and 24 h. CONCLUSIONS This suggests that marine sponges may serve as a source for novel bioactive compounds against antibiotic-resistant strains of N. gonorrhoeae, as well as improve the efficacy of currently prescribed antibiotics.
Collapse
Affiliation(s)
- Omar E. Christian
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707, USA;
| | - Dreyona A. Perry
- Department of Biological Sciences and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (D.A.P.); (A.I.T.)
| | - Alaa I. Telchy
- Department of Biological Sciences and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (D.A.P.); (A.I.T.)
| | - Preston N. Walton
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Daniel Williams
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| |
Collapse
|
2
|
Armstrong DW, Berthod A. Occurrence of D-amino acids in natural products. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:47. [PMID: 37932633 PMCID: PMC10628113 DOI: 10.1007/s13659-023-00412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Since the identified standard genetic code contains 61 triplet codons of three bases for the 20 L-proteinogenic amino acids (AAs), no D-AA should be found in natural products. This is not what is observed in the living world. D-AAs are found in numerous natural compounds produced by bacteria, algae, fungi, or marine animals, and even vertebrates. A review of the literature indicated the existence of at least 132 peptide natural compounds in which D-AAs are an essential part of their structure. All compounds are listed, numbered and described herein. The two biosynthetic routes leading to the presence of D-AA in natural products are: non-ribosomal peptide synthesis (NRPS), and ribosomally synthesized and post-translationally modified peptide (RiPP) synthesis which are described. The methods used to identify the AA chirality within naturally occurring peptides are briefly discussed. The biological activity of an all-L synthetic peptide is most often completely different from that of the D-containing natural compounds. Analyzing the selected natural compounds showed that D-Ala, D-Val, D-Leu and D-Ser are the most commonly encountered D-AAs closely followed by the non-proteinogenic D-allo-Thr. D-Lys and D-Met were the least prevalent D-AAs in naturally occurring compounds.
Collapse
Affiliation(s)
- Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA.
| | - Alain Berthod
- Institut des Sciences Analytiques, CNRS, University of Lyon 1, 69100, Villeurbanne, France
| |
Collapse
|
3
|
Lee Y, Phat C, Hong SC. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017; 95:94-105. [PMID: 28610952 DOI: 10.1016/j.peptides.2017.06.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/28/2023]
Abstract
Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides.
Collapse
Affiliation(s)
- Yeji Lee
- College of Medicine, Korea University, Seoul, Republic of Korea
| | - Chanvorleak Phat
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Soon-Cheol Hong
- College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Ponnappan N, Budagavi DP, Yadav BK, Chugh A. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects. Probiotics Antimicrob Proteins 2016; 7:75-89. [PMID: 25559972 DOI: 10.1007/s12602-014-9182-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino-alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.
Collapse
Affiliation(s)
- Nisha Ponnappan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | | | | |
Collapse
|
5
|
Santhakumar G, Payne RJ. Total Synthesis of Polydiscamides B, C, and D via a Convergent Native Chemical Ligation–Oxidation Strategy. Org Lett 2014; 16:4500-3. [DOI: 10.1021/ol502045u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gajan Santhakumar
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Ribosomally synthesized peptides from natural sources. J Antibiot (Tokyo) 2014; 67:277-89. [DOI: 10.1038/ja.2013.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 10/07/2013] [Accepted: 11/25/2013] [Indexed: 01/28/2023]
|
7
|
Yeo SH, Seo HJ, Lim DY. Synthesis of Halicylindramide A Mimetics Containing Lactone Isosteres. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.8.2916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Affiliation(s)
- Hyunju Seo
- Department of Chemistry, Sejong University, Seoul 143-747, South Korea
| | - Dongyeol Lim
- Department of Chemistry, Sejong University, Seoul 143-747, South Korea
| |
Collapse
|
9
|
Hugonin L, Vukojević V, Bakalkin G, Gräslund A. Calcium influx into phospholipid vesicles caused by dynorphin neuropeptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1267-73. [PMID: 18339302 DOI: 10.1016/j.bbamem.2008.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 01/21/2008] [Accepted: 02/11/2008] [Indexed: 11/19/2022]
Abstract
Dynorphins, endogeneous opioid peptides, function as ligands to the opioid kappa receptors but also induce non-opioid excitotoxic effects. Dynorphin A can increase the intra-neuronal calcium concentration through a non-opioid and non-NMDA mechanism. In this investigation, we show that big dynorphin, dynorphin A and to some extent dynorphin A (1-13), but not dynorphin B, allow calcium to enter into large unilamellar phospholipid vesicles with partly negative headgroups. The effects parallel the previously studied potency of dynorphins to translocate through biological membranes and to cause calcein leakage from large unilamellar phospholipid vesicles. There is no calcium ion influx into vesicles with zwitterionic headgroups. We have also investigated if the dynorphins can translocate through the vesicle membranes and estimated the relative strength of interaction of the peptides with the vesicles by fluorescence resonance energy transfer. The results show that dynorphins do not translocate in this membrane model system. There is a strong electrostatic contribution to the interaction of the peptides with the membrane model system.
Collapse
Affiliation(s)
- Loïc Hugonin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
10
|
Laird DW, LaBarbera DV, Feng X, Bugni TS, Harper MK, Ireland CM. Halogenated cyclic peptides isolated from the sponge Corticium sp. JOURNAL OF NATURAL PRODUCTS 2007; 70:741-6. [PMID: 17391049 PMCID: PMC2533844 DOI: 10.1021/np060489v] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fractionation of two Fijian specimens of the sponge Corticium sp. led to the isolation of the known active alkaloid steroid plakinamine A and two new halogenated cyclic peptides, corticiamide A (1) and cyclocinamide B (2). Structural elucidation of 1 and 2 was achieved by an extensive combination of high-field NMR and HRFT MS/MS experiments, and the absolute stereochemistry of 2 was determined by acid hydrolysis and Marfey's analysis. Corticiamide A (1) and cyclocinamide B (2) represent the first peptides to be described from the genus Corticium.
Collapse
Affiliation(s)
- Damian W Laird
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
This review presents more than 260 naturally occurring (as well as 47 synthesized) neo fatty (carboxylic) acids, neo alkanes, and their analogs and derivatives, isolated and identified from plants, algae, fungi, marine invertebrates, and microorganisms, that demonstrate different biological activities. These natural metabolites are good prospects for future chemical preparations as antioxidants, and also as anticancer, antimicrobial, and antibacterial agents. Described also are some synthetic bioactive compounds containing a tertiary butyl group(s) that have shown high anticancer, antifungal, and other activities. Applications of some neo fatty (carboxylic) acid derivatives in cosmetic, agronomic, and pharmaceutical industries also are considered. This is the first review to consider naturally occurring neo fatty (carboxylic) acids, neo alkanes, and other metabolites containing a tertiary butyl group(s) [or tert-butyl unit(s)].
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
12
|
Rangel M, Konno K, Brunaldi K, Procopio J, De Freitas JC. Neurotoxic activity induced by a haemolytic substance in the extract of the marine sponge Geodia corticostylifera. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:207-15. [PMID: 16023894 DOI: 10.1016/j.cca.2005.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 06/16/2005] [Accepted: 06/18/2005] [Indexed: 11/28/2022]
Abstract
In our search for marine bioactive compounds we chose a Brazilian Coast sponge, Geodia corticostylifera (Demospongiae), whose extracts showed previously antibacterial and antifungal activities. In the present work we studied the following toxic properties of G. corticostylifera extract: neurotoxic (in mouse neuromuscular junction); mouse acute toxicity (IP) and haemolytic (against mouse and frog erythrocytes). Insertion of ionic channels in planar lipid bilayers in presence of a haemolytic purified fraction of the extract was observed. The toxic activities of G. corticostylifera crude extract are related to the formation of ionic pores in the cell membrane, which induce the release of haemoglobin from erythrocytes, and depolarization of nerve and muscle membranes. These last physiological effects cause the blockade of the diaphragm contractions, leading to death through respiratory arrest.
Collapse
Affiliation(s)
- Marisa Rangel
- Department of Physiology of Biosciences Institute and Marine Biology Center, University of Sao Paulo, Sao Paulo, 05508-900, SP, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Mayer AMS, Hamann MT. Marine pharmacology in 2001--2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:265-86. [PMID: 15919242 PMCID: PMC4928201 DOI: 10.1016/j.cca.2005.04.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 04/01/2005] [Accepted: 04/03/2005] [Indexed: 11/25/2022]
Abstract
During 2001--2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors' 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001--2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515, USA.
| | | |
Collapse
|