1
|
Cui T, Liu P, Chen X, Liu Z, Wang B, Gao C, Wang Z, Li C, Yang N. Identification and functional characterization of caspases in turbot (Scophthalmus maximus) in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108757. [PMID: 37084854 DOI: 10.1016/j.fsi.2023.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Apoptosis is the autonomous and orderly death of cells under genetic control to maintain the stability of the internal environment, and is a programmed cell death process with unique morphological and biochemical properties that is regulated by a variety of factors. Caspase gene family has a significant function in the process of apoptosis. However, the knowledge of caspases in turbot remains largely unknown. In present study, a total of nine turbot caspase genes were identified. The mRNA length of these caspase genes was ranged from 1149 bp (caspase-1) to 3216 bp (caspase-2), and the protein length was ranged from 281 aa (caspase-3a) to 507 aa (caspase-10). Phylogenetic analysis showed these caspase genes were divided into three subfamilies. The qRT-PCR results showed that turbot caspase genes were expressed in all the examined organs, especially the intestine, kidney, blood and gills. Meanwhile, we explored the expression patterns of caspase genes in the intestine, skin and gills after Vibrio anguillarum and Aeromonas salmonids infections. The results showed that caspase genes showed different expression patterns in mucosal tissues after bacterial infection, demonstrating the critical role of caspase genes in mucosal immune responses. In addition, protein-protein interaction analysis showed that caspase proteins interacted with immune molecules such as NLR, IL-1β, and birc. The results of interference and overexpression experiments showed that caspase-1 might play key roles in the regulation of the IL-1β production, but the detailed mechanism needs to be further studied. The results of this study provide valuable information for further study the roles of caspase genes in turbot, which could help us to further understand the inflammatory pathways in teleost.
Collapse
Affiliation(s)
- Tong Cui
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Peng Liu
- Yantai Marine Economic Research Institute, Yantai, China
| | - Xuan Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhe Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongyi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Valero Y, Mercado L, Arizcun M, Cuesta A, Chaves-Pozo E. Priming European Sea Bass Female Broodstock Improves the Antimicrobial Immunity of Their Offspring. Animals (Basel) 2023; 13:ani13030415. [PMID: 36766303 PMCID: PMC9913748 DOI: 10.3390/ani13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Acquiring immunocompetence is essential in the development of fish embryos, as they are exposed to environmental pathogens even before they are fertilized. Despite the importance of the antimicrobial function as the first line of defense against foreign microorganisms, little knowledge is available about its role in larval development. In vertebrates, transgenerational immune priming influences the acquisition of immunocompetence of specimens, regulating the selective allocation of nongenetic resources to their progeny and modulating their development. In this work, we primed teleost European sea bass broodstock females with a viral protein expression vector in order to evaluate the innate immunity development of their offspring. Several antimicrobial functions, the pattern of expression of gene coding for different antimicrobial peptides (AMPs), and their protein levels, were evaluated in eggs and larvae during development. Our data determined the presence of antimicrobial proteins of maternal origin in eggs, and that female vaccination increases antimicrobial activities and the transcription and synthesis of AMPs during larval development.
Collapse
Affiliation(s)
- Yulema Valero
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Spanish National Research Council, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
| | - Marta Arizcun
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Spanish National Research Council, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Elena Chaves-Pozo
- Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Spanish National Research Council, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
- Correspondence: ; Tel.: +34-968153339; Fax: +34-968153934
| |
Collapse
|
3
|
Characterization of Nervous Necrosis Virus (NNV) Nonstructural Protein B2 and Its Enhancement on Virus Proliferation. Viruses 2022; 14:v14122818. [PMID: 36560822 PMCID: PMC9786564 DOI: 10.3390/v14122818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The nerve necrosis virus (NNV), a pathogen of viral nervous necrosis disease in several important mariculture economic fish species, causes economic loss. Its nonstructural protein B2 encoded by the sub-genomic RNA3 affects the amplification of the virus. In this study, the B2 protein was recombinantly expressed, the polyclonal antibodies were produced and the dynamics of the B2 protein and genomes were measured in vivo and in vitro after NNV infection. Then, the effects of the overexpressed B2 protein on virus proliferation were investigated. The results showed that the polyclonal antibodies can recognize the B2 protein in both SSN-1 cells and the brain/eye of the grouper. The RNA3 expression significantly increased at 12 h and kept rising till the end of the experiment; it was 106.9 copies/μL at 120 h. The B2 protein could be first detected at 3 h post-infection, which was earlier than the capsid protein was first detected (12 h post-infection). The B2 protein can be detected in the brain, eye and heart on day 3 and the copy number of genomes reached a maximum at 6 d post-infection. There was a low expression of NNV genomes in the liver, spleen and kidney, and no virus was detected in the gill, stomach and intestine. In the meantime, the B2 protein was successfully expressed in GF-1 cells and significantly enhanced virus proliferation, which produced an earlier cytopathic effect and higher cell death rates after 3 d post-infection than the control. In conclusion, the B2 protein acts as an early expressed protein during virus replication and proliferation and is involved in the early infection of NNV. The results may provide insight into the early stage of virus infection and prevention of the disease.
Collapse
|
4
|
Jia P, Zhang W, Xiang Y, Lu X, Chen X, Pan H, Yi M, Jia K. The Capsid Protein of Nervous Necrosis Virus Antagonizes Host Type I IFN Production by a Dual Strategy to Negatively Regulate Retinoic Acid-Inducible Gene-I-like Receptor Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:326-336. [PMID: 35777851 DOI: 10.4049/jimmunol.2100690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022]
Abstract
Nervous necrosis virus (NNV), a highly pathogenic RNA virus, is a major pathogen in the global aquaculture industry. To efficiently infect fish, NNV must evade or subvert the host IFN for their replication; however, the precise mechanisms remain to be elucidated. In this study, we reported that capsid protein (CP) of red-spotted grouper NNV (RGNNV) suppressed the IFN antiviral response to promote RGNNV replication in Lateolabrax japonicus brain cells, which depended on the ARM, S, and P domains of CP. CP showed an indirect or direct association with the key components of retinoic acid-inducible gene-I-like receptors signaling, L. japonicus TNFR-associated factor 3 (LjTRAF3) and IFN regulatory factor (LjIRF3), respectively, and degraded LjTRAF3 and LjIRF3 through the ubiquitin-proteasome pathway in HEK293T cells. Furthermore, we found that CP potentiated LjTRAF3 K48 ubiquitination degradation in a L. japonicus ring finger protein 114-dependent manner. LjIRF3 interacted with CP through the S domain of CP and the transcriptional activation domain or regulatory domain of LjIRF3. CP promoted LjIRF3 K48 ubiquitination degradation, leading to the reduced phosphorylation level and nuclear translocation of LjIRF3. Taken together, we demonstrated that CP inhibited type I IFN response by a dual strategy to potentiate the ubiquitination degradation of LjTRAF3 and LjIRF3. This study reveals a novel mechanism of RGNNV evading host immune response via its CP protein that will provide insights into the complex pathogenesis of NNV.
Collapse
Affiliation(s)
- Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; and
| | - Wanwan Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; and
| | - Yangxi Xiang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; and.,State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaobing Lu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; and
| | - Xiaoqi Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongbo Pan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; and
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; and
| |
Collapse
|
5
|
Lin T, Xing J, Tang X, Sheng X, Chi H, Zhan W. Development and Evaluation of a Bicistronic DNA Vaccine against Nervous Necrosis Virus in Pearl Gentian Grouper ( Epinephelus lanceolatus × Epinephelus fuscoguttatus). Vaccines (Basel) 2022; 10:946. [PMID: 35746554 PMCID: PMC9228064 DOI: 10.3390/vaccines10060946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Nervous necrosis virus (NNV) can cause enormous economic losses in mariculture. Vaccines are promising ways to control the disease. In this study: the interferon regulatory factor 3 (IRF3) gene of pearl gentian grouper was cloned and functionally analyzed; then a bicistronic DNA vaccine encoding both capsid protein (CP) and IRF3 was constructed; then the cellular, humoral, and local immune responses in the grouper after immunization were investigated; and then the protective effects after the NNV challenge were investigated. The results showed that the vaccine successfully expressed CP and IRF3. After immunization, the lymphocytes were recruited at the injection site in the muscles. The percentage of sIgM+ lymphocytes in the head, kidney, and spleen significantly increased and peaked at 28.8 ± 3.1% and 42.6 ± 4.2% at the 3rd to 4th weeks. Six immune-related genes were significantly up-regulated. In the meantime, the total antibodies, anti-NNV specific antibodies, and neutralizing antibody titers in serum increased. After the challenge with 105, 106 or 107 TCID50/fish, the relative percent survival rate was 81.25%, 73.91%, and 66.67%, respectively. In 106 TCID50/fish groups, the percentages of sIgM+ lymphocytes, antibodies, and the viral load were investigated. In conclusion, the bicistronic vaccine significantly induced humoral and cellular responses in pearl gentian grouper and provided effective protection against NVV infection.
Collapse
Affiliation(s)
- Tianwen Lin
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (T.L.); (X.T.); (X.S.); (H.C.); (W.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China
| |
Collapse
|
6
|
Wang Y, Xu L, Ma W, Sun H, Huang Z, Cai S, Jian J, Huang Y. Mass mortalities associated with viral nervous necrosis in Murray cod in China. JOURNAL OF FISH DISEASES 2022; 45:277-287. [PMID: 34778980 DOI: 10.1111/jfd.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
In December 2019, a mass mortality among cultured Murray cod (Maccullochella peelii peelii) fry occurred on a freshwater farm located at Foshan city of Guangdong province, China. The cumulative mortality was up to 45% within 15 days. The diseased fish showed clinical signs, including abnormal swimming behaviour, loss of appetite and dark body colouration before mass mortality. Samples of brain and retina tissues were collected from affected fish and subjected to reverse transcriptase polymerase chain reaction detection and virus isolation in cell culture. Approximately 430 bp product was detected from the brain and retina tissues and culture supernatant of betanodavirus-infected SSN-1 cells. The typical cytopathic effect of betanodavirus infection, which is characterized by vacuolation, was observed in SSN-1 cells at three days after inoculating with the tissue filtrate of diseased Murry cod fry, and the TCID50 of the infected SSN-1 cell supernatant was 107.8 . Histopathological examinations revealed vacuolation and necrosis in the brain and retina of naturally and experimentally infected Murray cod fry. Electron microscopic observation also showed the aggregation of numerous spherical, non-enveloped viral particles measuring 22-28 nm in diameter in the cytoplasm of betanodavirus-infected SSN-1 cells. Sequence and phylogenetic analysis based on RdRp and Cp genes further indicated that the betanodavirus isolated from Murray cod belonged to the RGNNV genotype. Much higher mortality was obtained in challenged Murray cod fry compared with the controls through immersion challenge. This study is the first report of the natural infection of betanodavirus in freshwater fish in China.
Collapse
Affiliation(s)
- Yifan Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, South China Sea Fisheries Research Institute of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Weixiang Ma
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Heng Sun
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Zengchao Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Shuanghu Cai
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Yucong Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
7
|
Nervous Necrosis Virus Coat Protein Mediates Host Translation Shutoff through Nuclear Translocalization and Degradation of Polyadenylate Binding Protein. J Virol 2021; 95:e0236420. [PMID: 34133901 DOI: 10.1128/jvi.02364-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nervous necrosis virus (NNV) belongs to the Betanodavirus genus of the Nodaviridae family and is the main cause of viral nervous necrosis disease in marine fish larvae and juveniles worldwide. The NNV virion contains two positive-sense, single-stranded RNA genomes, which encode RNA-dependent RNA polymerase, coat protein, and B2 protein. Interestingly, NNV infection can shut off host translation in orange-spotted grouper (Epinephelus coioides) brain cells; however, the detailed mechanisms of this action remain unknown. In this study, we discovered that the host translation factor, polyadenylate binding protein (PABP), is a key target during NNV takeover of host translation machinery. Additionally, ectopic expression of NNV coat protein is sufficient to trigger nuclear translocalization and degradation of PABP, followed by translation shutoff. A direct interaction between NNV coat protein and PABP was demonstrated, and this binding requires the NNV coat protein N-terminal shell domain and PABP proline-rich linker region. Notably, we also showed that degradation of PABP during later stages of infection is mediated by the ubiquitin-proteasome pathway. Thus, our study reveals that the NNV coat protein hijacks host PABP, causing its relocalization to the nucleus and promoting its degradation to stimulate host translation shutoff. IMPORTANCE Globally, more than 200 species of aquacultured and wild marine fish are susceptible to NNV infection. Devastating outbreaks of this virus have been responsible for massive economic damage in the aquaculture industry, but the molecular mechanisms by which NNV affects its host remain largely unclear. In this study, we show that NNV hijacks translation in host brain cells, with the viral coat protein binding to host PABP to promote its nuclear translocalization and degradation. This previously unknown mechanism of NNV-induced host translation shutoff greatly enhances the understanding of NNV pathogenesis and provides useful insights and novel tools for development of NNV treatments, such as the use of orange-spotted grouper brain cells as an in vitro model system.
Collapse
|
8
|
Chen YM, Tan CS, Wang TY, Hwong CL, Chen TY. Characterization of betanodavirus quasispecies influences on the subcellular localization and expression of tumor necrosis factor (TNF). FISH & SHELLFISH IMMUNOLOGY 2020; 103:332-341. [PMID: 32446969 DOI: 10.1016/j.fsi.2020.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to investigate the influence of variant coat proteins (CPs) from different quasispecies of betanodavirus on diverse aspects of nodavirus-induced pathogenesis. It is known that variant CPs can acquire either nuclear or cytoplasmic localization, depending on the nodavirus CP genotype, and this variation may arise during viral replication and influence the regulation of host and viral gene transcription. To investigate the role of these variant CPs in pathogenesis, six variant CP expression plasmids were constructed, each containing different quasispecies CP variants from nodavirus genotype red spotted grouper nervous necrosis virus (RGNNV). The CP expression plasmids were transiently transfected into grouper GF-1 cells. At different times, the cell cycle and cell proliferation were assayed using flow cytometry and methyl thiazolyl tetrazolium (MTT) assays, respectively. The proportion of G2/M-phase GF-1 cells transfected with CP expression plasmids was higher than that of cells transfected with the blank plasmid, especially in regards to quasispecies 2 (QS2). The proliferation ratio of cells transfected with the CP expression plasmids was significantly higher than that of cells transfected with the blank plasmid, with the exception of QS6. We also found that the different quasispecies CPs downregulated the promoter activity of the tumor necrosis factor (TNF) gene to different degrees. In addition, this is the first report showing the betanodavirus CP derived from different quasispecies of RGNNV provide evidence of a chronically nodavirus-infected grouper. Overall, this study represents the first comprehensive analysis of variant CPs from grouper with persistent nodavirus infections and their effects on different aspects of pathogenesis.
Collapse
Affiliation(s)
- Young-Mao Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan; Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chor Siong Tan
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yu Wang
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Long Hwong
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsung, Taiwan.
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Betanodavirus and VER Disease: A 30-year Research Review. Pathogens 2020; 9:pathogens9020106. [PMID: 32050492 PMCID: PMC7168202 DOI: 10.3390/pathogens9020106] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control.
Collapse
|
10
|
Miccoli A, Saraceni PR, Scapigliati G. Vaccines and immune protection of principal Mediterranean marine fish species. FISH & SHELLFISH IMMUNOLOGY 2019; 94:800-809. [PMID: 31580938 DOI: 10.1016/j.fsi.2019.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
This review describes and summarizes the knowledge on established and experimental vaccines developed against viral and bacterial pathologies affecting the most important farmed marine finfish species present in the Mediterranean area, namely European seabass Dicentrarchus labrax, sea bream Sparus aurata, turbot Psetta maxima and meagre Argyrosomus regius. The diseases that have been recorded in seabass, sea bream and meagre are caused by bacteria Vibrio anguillarum, Photobacterium damselae, Tenacibaculum maritimum as well as by viruses such as Viral Encephalopathy and Retinopathy/Viral Nervous Necrosis and Lymphocystic disease. The main pathologies of turbot are instead bacteriosis provoked by Tenacibaculum maritimum, Aeromonas sp. and Vibrio anguillarum, and virosis by viral hemorrhagic septicaemia virus. Some vaccines have been optimized and are now regularly available for the majority of the above-mentioned pathogens. A measurable immune protection has been conferred principally against Vibrio anguillarum, Photobacterium damselae sub. piscicida and VER/VNN.
Collapse
Affiliation(s)
- A Miccoli
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy
| | - P R Saraceni
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy
| | - G Scapigliati
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
11
|
Guo CJ, He J, He JG. The immune evasion strategies of fish viruses. FISH & SHELLFISH IMMUNOLOGY 2019; 86:772-784. [PMID: 30543936 DOI: 10.1016/j.fsi.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Viral infection of a host rapidly triggers intracellular signaling events that induce interferon production and a cellular antiviral state. Viral diseases are important concerns in fish aquaculture. The major mechanisms of the fish antiviral immune response are suggested to be similar to those of mammals, although the specific details of the process require further studies. Throughout the process of pathogen-host coevolution, fish viruses have developed a battery of distinct strategies to overcome the biochemical and immunological defenses of the host. Such strategies include signaling interference, effector modulation, and manipulation of host apoptosis. This review provide an overview of the different mechanisms that fish viruses use to evade host immune responses. The basic mechanisms of immune evasion of fish virus are discussed, and some examples are provided to illustrate particular points.
Collapse
Affiliation(s)
- C J Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J G He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
12
|
Low CF, Md Yusoff MR, Kuppusamy G, Ahmad Nadzri NF. Molecular biology of Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. JOURNAL OF FISH DISEASES 2018; 41:1771-1781. [PMID: 30270534 DOI: 10.1111/jfd.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) has been threatening the giant freshwater prawn aquaculture since 1997, causing white tail disease in the prawn species that leads to 100% lethality of the infected postlarvae. Comprehension of the viral infectivity and pathogenesis at molecular biology level has recently resolved the viral capsid protein and evidenced the significant difference in the viral structural protein compared to other nodaviruses that infect fish and insect. Cumulative researches have remarked the proposal to assert MrNV as a member of new genus, gammanodavirus to the Nodaviridae family. The significance of molecular biology in MrNV infection is being highlighted in this current review, revolving the viral life cycle from virus binding and entry into host, virus replication in host cell, to virus assembly and release. The current review also highlights the emerging aptamers technology that is also known as synthetic antibody, its application in disease diagnosis, and its prophylactic and therapeutic properties. The future perspective of synthetic virology technology in understanding viral pathogenesis, as well as its potential in viral vaccine development, is also discussed.
Collapse
Affiliation(s)
- Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, Malaysia
| | | | | | | |
Collapse
|
13
|
Investigation of nervous necrosis virus (NNV) replication in vitro using RNA in situ hybridization. Virus Res 2018; 260:78-85. [PMID: 30472093 DOI: 10.1016/j.virusres.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022]
Abstract
Nervous necrosis virus (NNV) belongs to the genus Betanodavirus of family Nodaviridae. Its genome consists of two RNA segments, RNA1 and RNA2. Several studies have investigated NNV detection by in situ hybridization (ISH), but these have typically focused on the detection of the RNA2 gene. In this study, we localized both RNA1 and RNA2 NNV segments in viral-infected cells by ISH, using labeled RNA probes (RNA-ISH). Also, immunocytochemistry (ICC) assay was carried out for localization of viral particle by targeting the coat protein. Further, viral quantification assays were performed by quantitative RT-PCR and viral infectivity (TCID50) in SSN-1 cells. Viral segments were observed by RNA-ISH at 6 h post infection (hpi), while NNV particles were detected at 24 hpi by ICC. Use of double labeling RNA-ISH revealed the co-expression of the two viral segments in the same area of the cells, while RNA1 was also detected separately. Comparison of the level of viral genomic segments and viral infectivity revealed significantly more copies of RNA1 at each time points than copies of RNA2 and greater NNV titers. The results suggest that RNA1 might be expressed in the early stages of replication, with RNA2 expressed later. The virions then assemble through initially expressed viral genomic segments. Even though infectious particles displayed very efficient packaging, the RNA1 segment was still over-produced.
Collapse
|
14
|
Su YC, Reshi L, Chen LJ, Li WH, Chiu HW, Hong JR. Nuclear targeting of the betanodavirus B1 protein via two arginine-rich domains induces G1/S cell cycle arrest mediated by upregulation of p53/p21. Sci Rep 2018; 8:3079. [PMID: 29449573 PMCID: PMC5814437 DOI: 10.1038/s41598-018-21340-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
The molecular functions of betanodavirus non-structural protein B and its role in host cell survival remain unclear. In the present study, we examined the roles of specific nuclear targeting domains in B1 localization as well as the effect of B1 nuclear localization on the cell cycle and host cell survival. The B1 protein of the Red spotted grouper nervous necrosis virus (RGNNV) was detected in GF-1 grouper cells as early as 24 hours post-infection (hpi). Using an EYFP-B1 fusion construct, we observed nuclear localization of the B1 protein (up to 99%) in GF-1 cells at 48 hpi. The nuclear localization of B1 was mediated by two arginine-rich nuclear targeting domains (B domain: 46RRSRR51; C domain: 63RDKRPRR70) and domain C was more important than domain B in this process. B1 nuclear localization correlated with upregulation of p53 and p21(wef1/cip1); downregulation of Cyclin D1, CDK4 and Mdm2; and G1/S cell cycle arrest in GF-1 cells. In conclusion, nuclear targeting of the RGNNV B1 protein via two targeting domains causes cell cycle arrest by up-regulating p53/p21 and down-regulating Mdm2, thereby regulating host cell survival.
Collapse
Affiliation(s)
- Yu-Chin Su
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Latif Reshi
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Life Science, College of Bioscience & Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Lei-Jia Chen
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Han Li
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hsuan-Wen Chiu
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan. .,Department of Biotechnology and Bioindustry, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
15
|
Low CF, Syarul Nataqain B, Chee HY, Rozaini MZH, Najiah M. Betanodavirus: Dissection of the viral life cycle. JOURNAL OF FISH DISEASES 2017; 40:1489-1496. [PMID: 28449248 DOI: 10.1111/jfd.12638] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 05/27/2023]
Abstract
Progressive research has been recently made in dissecting the molecular biology of Betanodavirus life cycle, the causative pathogen of viral encephalopathy and retinopathy in economic important marine fish species. Establishment of betanodavirus infectious clone allows the manipulation of virus genome for functional genomic study, which elucidates the biological event of the viral life cycle at molecular level. The betanodavirus strategizes its replication by expressing anti-apoptosis/antinecrotic proteins to maintain the cell viability during early infection. Subsequently utilizes and controls the biological machinery of the infected cells for viral genome replication. Towards the late phase of infection, mass production of capsid protein for virion assembly induces the activation of host apoptosis pathway. It eventually leads to the cell lysis and death, which the lysis of cell contributes to the accomplishment of viral shedding that completes a viral life cycle. The recent efforts to dissect the entire betanodavirus life cycle are currently reviewed.
Collapse
Affiliation(s)
- C-F Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - B Syarul Nataqain
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - H-Y Chee
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M Z H Rozaini
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - M Najiah
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
16
|
Doan QK, Vandeputte M, Chatain B, Morin T, Allal F. Viral encephalopathy and retinopathy in aquaculture: a review. JOURNAL OF FISH DISEASES 2017; 40:717-742. [PMID: 27633881 DOI: 10.1111/jfd.12541] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 05/22/2023]
Abstract
Viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN), is a major devastating threat for aquatic animals. Betanodaviruses have been isolated in at least 70 aquatic animal species in marine and in freshwater environments throughout the world, with the notable exception of South America. In this review, the main features of betanodavirus, including its diversity, its distribution and its transmission modes in fish, are firstly presented. Then, the existing diagnosis and detection methods, as well as the different control procedures of this disease, are reviewed. Finally, the potential of selective breeding, including both conventional and genomic selection, as an opportunity to obtain resistant commercial populations, is examined.
Collapse
Affiliation(s)
- Q K Doan
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
- TNU, Thai Nguyen University of Agriculture and Forestry (TUAF), Quyet Thang Commune, Thai Nguyen City, Vietnam
| | - M Vandeputte
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
- INRA, GABI, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - B Chatain
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
| | - T Morin
- Anses, Ploufragan-Plouzané Laboratory, Unit Viral Diseases of Fish, Plouzané, France
| | - F Allal
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
| |
Collapse
|
17
|
Wen CM. Characterization and viral susceptibility of a brain cell line from brown-marbled grouper Epinephelus fuscoguttatus (Forsskål) with persistent betanodavirus infection. JOURNAL OF FISH DISEASES 2016; 39:1335-1346. [PMID: 27087415 DOI: 10.1111/jfd.12464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
A continuous cell line designated BMGB (brown-marbled grouper brain) was established from the brain tissues of the brown-marbled grouper Epinephelus fuscoguttatus and characterized. BMGB cells were identified as astroglial progenitor cells because they expressed glial fibrillary acidic protein and keratin and were persistently infected by betanodavirus, as confirmed through immunocytochemistry, polymerase chain reaction and immunoblot analyses. Because few intact virions were present in the BMGB cell culture fluid, the cytopathic effect (CPE) was not observed when the culture fluid was inoculated with GBC1 cells. However, BMGB cells displayed typical CPE after infection with additional betanodavirus, megalocytivirus and chum salmon reovirus. BMGB cells showed low myxovirus resistance (Mx) protein expression, which increased following betanodavirus and reovirus infection. Because the cells contained several unusual or degraded viral proteins, the persistent infection of betanodavirus in the BMGB cells may have resulted from a mechanism that destroys the viral proteins rather than the result of Mx protein expression. Despite the persistent betanodavirus infection, BMGB cells proliferated in a manner similar to other normal tropic fish cells and supported the propagation of several piscine viruses; however, the yield was lower than that of normal cells. The BMGB cells will be useful for investigating virus and host cell interaction.
Collapse
Affiliation(s)
- C M Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Liu P, Wang L, Kwang J, Yue GH, Wong SM. Transcriptome analysis of genes responding to NNV infection in Asian seabass epithelial cells. FISH & SHELLFISH IMMUNOLOGY 2016; 54:342-52. [PMID: 27109582 DOI: 10.1016/j.fsi.2016.04.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 05/07/2023]
Abstract
Asian seabass is an important food fish in Southeast Asia. Viral nervous necrosis (VNN) disease, triggered by nervous necrosis virus (NNV) infection, has caused mass mortality of Asian seabass larvae, resulting in enormous economic losses in the Asian seabass industry. In order to better understand the complex molecular interaction between Asian seabass and NNV, we investigated the transcriptome profiles of Asian seabass epithelial cells, which play an essential role in immune regulation, after NNV infection. Using the next generation sequencing (NGS) technology, we sequenced mRNA from eight samples (6, 12, 24, 48 h post-inoculation) of mock and NNV-infected Asian seabass epithelial cell line, respectively. Clean reads were de novo assembled into a transcriptome consisting of 89026 transcripts with a N50 of 2617 bp. Furthermore, 251 differentially expressed genes (DEGs) in response to NNV infection were identified. Top DEGs include protein asteroid homolog 1-like (ASTE1), receptor-transporting protein 3 (RTP3), heat shock proteins 30 (HSP30) and 70 (HSP70), Viperin, interferon regulatory factor 3 (IRF3) and other genes related to innate immunity. Our data suggest that abundant and diverse genes corresponding to NNV infection. The results of this study could also offer vital information not only for identification of novel genes involved in Asian seabass-NNV interaction, but also for our understanding of the molecular mechanism of Asian seabass' response to viral infection. In addition, 24807 simple sequence repeats (SSRs) were detected in the assembled transcriptome, providing valuable resources for studying genetic variations and accelerating quantitative trait loci (QTL) mapping for disease resistance in Asian seabass in the future.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Le Wang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Jimmy Kwang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Gen Hua Yue
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore; School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, 637551, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
19
|
Costa JZ, Thompson KD. Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. FISH & SHELLFISH IMMUNOLOGY 2016; 53:35-49. [PMID: 26997200 DOI: 10.1016/j.fsi.2016.03.033] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
Over the last three decades, the causative agent of viral encephalopathy and retinopathy (VER) disease has become a serious problem of marine finfish aquaculture, and more recently the disease has also been associated with farmed freshwater fish. The virus has been classified as a Betanodavirus within the family Nodaviridae, and the fact that Betanodaviruses are known to affect more than 120 different farmed and wild fish and invertebrate species, highlights the risk that Betanodaviruses pose to global aquaculture production. Betanodaviruses have been clustered into four genotypes, based on the RNA sequence of the T4 variable region of their capsid protein, and are named after the fish species from which they were first derived i.e. Striped Jack nervous necrosis virus (SJNNV), Tiger puffer nervous necrosis virus (TPNNV), Barfin flounder nervous necrosis virus (BFNNV) and Red-spotted grouper nervous necrosis virus (RGNNV), while an additional genotype turbot betanodavirus strain (TNV) has also been proposed. However, these genotypes tend to be associated with a particular water temperature range rather than being species-specific. Larvae and juvenile fish are especially susceptible to VER, with up to 100% mortality resulting in these age groups during disease episodes, with vertical transmission of the virus increasing the disease problem in smaller fish. A number of vaccine preparations have been tested in the laboratory and in the field e.g. inactivated virus, recombinant proteins, virus-like particles and DNA based vaccines, and their efficacy, based on relative percentage survival, has ranged from medium to high levels of protection to little or no protection. Ultimately a combination of effective prophylactic measures, including vaccination, is needed to control VER, and should also target larvae and broodstock stages of production to help the industry deal with the problem of vertical transmission. As yet there are no commercial vaccines for VER and the aquaculture industry eagerly awaits such a product. In this review we provide an overview on the current state of knowledge of the disease, the pathogen, and interactions between betanodavirus and its host, to provide a greater understanding of the multiple factors involved in the disease process. Such knowledge is needed to develop effective methods for controlling VER in the field, to protect the various aquaculture species farmed globally from the different Betanodavirus genotypes to which they are susceptible.
Collapse
Affiliation(s)
- Janina Z Costa
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom
| |
Collapse
|
20
|
Susceptibility of Chinese Perch Brain (CPB) Cell and Mandarin Fish to Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) Infection. Int J Mol Sci 2016; 17:ijms17050740. [PMID: 27213348 PMCID: PMC4881562 DOI: 10.3390/ijms17050740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/10/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
Nervous necrosis virus (NNV) is the causative agent of viral encephalopathy and retinopathy (VER), a neurological disease responsible for high mortality of fish species worldwide. Taking advantage of our established Chinese perch brain (CPB) cell line derived from brain tissues of Mandarin fish (Siniperca chuatsi), the susceptibility of CPB cell to Red-Spotted Grouper nervous necrosis virus (RGNNV) was evaluated. The results showed that RGNNV replicated well in CPB cells, resulting in cellular apoptosis. Moreover, the susceptibility of Mandarin fish to RGNNV was also evaluated. Abnormal swimming was observed in RGNNV-infected Mandarin fish. In addition, the cellular vacuolation and viral particles were also observed in brain tissues of RGNNV-infected Mandarin fish by Hematoxylin-eosin staining or electronic microscopy. The established RGNNV susceptible brain cell line from freshwater fish will pave a new way for the study of the pathogenicity and replication of NNV in the future.
Collapse
|
21
|
Wu CS, Wang TY, Liu CF, Lin HP, Chen YM, Chen TY. Molecular cloning and characterization of orange-spotted grouper (Epinephelus coioides) CXC chemokine ligand 12. FISH & SHELLFISH IMMUNOLOGY 2015; 47:996-1005. [PMID: 26549177 DOI: 10.1016/j.fsi.2015.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Chemokines are a family of soluble peptides that can recruit a wide range of immune cells to sites of infection and disease. The CXCL12 is a chemokine that binds to its cognate receptor CXCR4 and thus involved in multiple physiological and pathophysiological processes. In this study, we cloned and characterized CXCL12 from Epinephelus coioides (osgCXCL12). We found that the open reading frame of osgCXCL12 consists of 98 amino acid residues with the small cytokine C-X-C domain located between residues 29 and 87. Higher expression levels for osgCXCL12 were detected at the kitting stage, compared with the prolarva and larva shape stages. The expression patterns revealed that osgCXCL12 may play a key role in early grouper development. We detected mRNA transcripts for osgCXCL12 in healthy tissues and found the highest osgCXCL12 expression in the head kidney. Furthermore, a time-course analysis revealed significantly increased osgCXCL12 and osgCXCR4 expression levels after the nervous necrosis virus (NNV) challenge. In addition, expression of osgCXCL12 was affected by injection with microbial mimics [LPS and poly(I:C)]. These results suggest that osgCXCL12 is associated with inflammatory and developmental processes in the grouper.
Collapse
Affiliation(s)
- Chen-Shiou Wu
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yu Wang
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chin-Feng Liu
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hao-Ping Lin
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Young-Mao Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Ocean Environment and Technology, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
22
|
Reshi L, Wu JL, Wang HV, Hong JR. Aquatic viruses induce host cell death pathways and its application. Virus Res 2015; 211:133-44. [PMID: 26494167 DOI: 10.1016/j.virusres.2015.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 11/15/2022]
Abstract
Virus infections of mammalian and animal cells consist of a series of events. As intracellular parasites, viruses rely on the use of host cellular machinery. Through the use of cell culture and molecular approaches over the past decade, our knowledge of the biology of aquatic viruses has grown exponentially. The increase in aquaculture operations worldwide has provided new approaches for the transmission of aquatic viruses that include RNA and DNA viruses. Therefore, the struggle between the virus and the host for control of the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host to complete their replication cycle. This paper updates the discussion on the detailed mechanisms of action that various aquatic viruses use to induce cell death pathways in the host, such as Bad-mediated, mitochondria-mediated, ROS-mediated and Fas-mediated cell death circuits. Understanding how viruses exploit the apoptotic pathways of their hosts may provide great opportunities for the development of future potential therapeutic strategies and pathogenic insights into different aquatic viral diseases.
Collapse
Affiliation(s)
- Latif Reshi
- Laboratory of Molecular Virology and Biotechnology, College of Bioscience and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City 701, Taiwan, ROC; Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1. University Road, Tainan City 701, Taiwan, ROC
| | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Hao-Ven Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1. University Road, Tainan City 701, Taiwan, ROC
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, College of Bioscience and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City 701, Taiwan, ROC.
| |
Collapse
|
23
|
Zaman J, Jeddi S, Daneshpour MS, Zarkesh M, Daneshian Z, Ghasemi A. Ischemic postconditioning provides cardioprotective and antiapoptotic effects against ischemia–reperfusion injury through iNOS inhibition in hyperthyroid rats. Gene 2015; 570:185-90. [DOI: 10.1016/j.gene.2015.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/17/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023]
|
24
|
Chen YM, Kuo CE, Chen GR, Kao YT, Zou J, Secombes CJ, Chen TY. Functional analysis of an orange-spotted grouper (Epinephelus coioides) interferon gene and characterisation of its expression in response to nodavirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:117-28. [PMID: 24731841 DOI: 10.1016/j.dci.2014.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/03/2014] [Accepted: 04/06/2014] [Indexed: 05/22/2023]
Abstract
We cloned and sequenced 2C I-IFN, a two-cysteine containing type I interferon (I-IFN) gene, in orange-spotted grouper (Epinephelus coioides). The cDNA has 769 base pairs, the protein has 172 amino acids, and the predicted signal peptide has 18 amino acids with two cysteines. This gene is similar to I-FNs from sea bass and other teleosts. 2C I-IFN has 5 exons and 4 introns, also similar to other teleost I-IFNs. Immunohistochemical (IHC) analysis indicated that expression is predominantly membrane-localized in healthy grouper, but has a zonal distribution in nodavirus-infected grouper. Grouper infected with nodavirus had elevated levels of 2C I-IFN at 72 h and Mx at days 6-7. Recombinant 2C I-IFN activated grouper Mx, leading to upregulated antiviral activity. The grouper Mx promoter was highly induced after treatment with recombinant 2C I-IFN. The present results suggest that expression of grouper 2C I-IFN may participate in the immunologic barrier function against nodavirus.
Collapse
Affiliation(s)
- Young-Mao Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cham-En Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung 92641, Taiwan
| | - Guan-Ru Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Ting Kao
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Ocean Environment and Technology, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
25
|
Chen YM, Wang TY, Chen TY. Immunity to betanodavirus infections of marine fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:174-83. [PMID: 23916690 DOI: 10.1016/j.dci.2013.07.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 05/07/2023]
Abstract
Betanodaviruses cause viral nervous necrosis in numerous fish species, but some species are resistant to infection by these viruses. It is essential to fully characterize the immune responses that underlie this protective response. Complete characterization of the immune responses against nodaviruses may allow the development of methods that stimulate fish immunity and of an effective betanodavirus vaccine. Such strategies could include stimulation of specific immune system responses or blockage of factors that decrease the immune response. The innate immune system clearly provides a front-line defense, and this includes the production of interferons and other cytokines. Interferons that are released inside infected cells and that suppress viral replication may be the most ancient form of innate immunity. This review focuses on the immune responses of fish to betanodavirus infection.
Collapse
Affiliation(s)
- Young-Mao Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yu Wang
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Ocean Environment and Technology, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
26
|
Hong JR. Betanodavirus: Mitochondrial disruption and necrotic cell death. World J Virol 2013; 2:1-5. [PMID: 24175224 PMCID: PMC3785042 DOI: 10.5501/wjv.v2.i1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/01/2013] [Indexed: 02/05/2023] Open
Abstract
Betanodaviruses cause viral nervous necrosis, an infectious neuropathological condition in fish that is characterized by necrosis of the central nervous system, including the brain and retina. This disease can cause mass mortality in larval and juvenile populations of several teleost species and is of global economic importance. The mechanism of brain and retina damage during betanodavirus infection is poorly understood. In this review, we will focus recent results that highlight betanodavirus infection-induced molecular death mechanisms in vitro. Betanodavirus can induce host cellular death and post-apoptotic necrosis in fish cells. Betanodavirus-induced necrotic cell death is also correlated with loss of mitochondrial membrane potential in fish cells, as this necrotic cell death is blocked by the mitochondrial membrane permeability transition pore inhibitor bongkrekic acid and the expression of the anti-apoptotic Bcl-2 family member zfBcl-xL. Moreover, this mitochondria-mediated necrotic cell death may require a caspase-independent pathway. A possible cellular death pathway involving mitochondrial function and the modulator zfBcl-xs is discussed which may provide new insights into the necrotic pathogenesis of betanodavirus.
Collapse
|
27
|
Chen YM, Kuo CE, Lin CM, Shie PS, Chen TY. Cloning of crystallin from orange-spotted grouper and characterization of its activity as potential protective agent. RESULTS IN IMMUNOLOGY 2011; 1:60-9. [PMID: 24371554 DOI: 10.1016/j.rinim.2011.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 11/28/2022]
Abstract
Oxidative stress associated with nodavirus infection is poorly understood, especially pertaining to infection-mediated brain injury. Indirect evidence indicates that infection increases cellular abundance of reactive oxygen species (ROS) with consequent increase in cellular dityrosine production. The detection of dityrosine in nodavirus-infected grouper was demonstrated using immunohistochemical (IHC) staining. Proteomic analyses with eye tissues of healthy grouper revealed more abundant expression of crystallin protein in the eye than in various tissues, which was confirmed by real-time polymerase chain reaction and IHC analyses. Grouper crystallin belongs to a small heat shock protein family with chaperone-like function that prevents heat-induced and oxidative stress-induced protein aggregation. Recombinant crystallin induced nitric oxide (NO) production in RAW 264.7 cells after treatment. The results provide new insight into the pathogenesis of nodavirus and demonstrate an experimental rationale for antioxidant therapy research.
Collapse
Affiliation(s)
- Young-Mao Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan ; Research Center of Ocean Environment and Technology, National Cheng Kung University, Tainan 70101, Taiwan ; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cham-En Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung 92641, Taiwan
| | - Chun-Mao Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Shiuan Shie
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan ; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan ; Research Center of Ocean Environment and Technology, National Cheng Kung University, Tainan 70101, Taiwan ; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
28
|
Su YC, Wu JL, Hong JR. Betanodavirus up-regulates chaperone GRP78 via ER stress: roles of GRP78 in viral replication and host mitochondria-mediated cell death. Apoptosis 2011; 16:272-87. [PMID: 21170590 DOI: 10.1007/s10495-010-0565-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Whether viral pathogens that induce ER stress responses benefit the host or the virus remains controversial. In this study we show that betanodavirus induced ER stress responses up-regulate GRP78, which regulates the viral replication and host cellular mitochondrial-mediated cell death. Betanodavirus (redspotted grouper nervous necrosis virus, RGNNV) infection resulted in the following increased ER stress responses in fish GF-1 grouper fin cells: (1) IRE-1 and ATF-6 sensors at 48 h post-infection (p.i.) that up-regulated chaperone protein GRP78; (2) activation of caspase-12; and (3) PERK phosphorylation and down-regulation of Bcl-2. Analyses of GRP78 functions during viral replication using either loss-of-function or gain-of-function approaches showed that GRP78 over-expression also enhanced viral replication and induced cell death. Then, we found that zfGRP78 localization gradually increased in mitochondria after RGNNV infection by EGFP tagging approach. Furthermore, zfGRP78 can interact with viral RNA-dependent RNA polymerase (RdRp) by using immunofluorescent and immunoprecipitation assays. Finally, we found that blocking GRP78-mediated ER signals can reduce the viral death factors protein α and protein B2 expression and decrease the Bcl-2 down-regulation mediated mitochondria-dependent cell death, which also enhances host cellular viability. Taken together, our results suggest that RGNNV infection and expression can trigger ER stress responses, which up-regulate the chaperone GRP78 at early replication stage. Then, GRP78 can interact with RdRp that may enhance the viral replication for increasing viral death factors' expressions at middle-late replication stage, which can enhance mitochondrial-mediated cell death pathway and viral spreading. These results may provide new insights into the mechanism of ER stress-mediated cell death in RNA viruses.
Collapse
Affiliation(s)
- Yu-Chin Su
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | | | | |
Collapse
|
29
|
Su YC, Hong JR. Betanodavirus B2 causes ATP depletion-induced cell death via mitochondrial targeting and complex II inhibition in vitro and in vivo. J Biol Chem 2010; 285:39801-10. [PMID: 20870718 DOI: 10.1074/jbc.m110.164988] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The betanodavirus non-structural protein B2 is a newly discovered necrotic death factor with a still unknown role in regulation of mitochondrial function. In the present study, we examined protein B2-mediated inhibition of mitochondrial complex II activity, which results in ATP depletion and thereby in a bioenergetic crisis in vitro and in vivo. Expression of protein B2 was detected early at 24 h postinfection with red-spotted grouper nervous necrosis virus in the cytoplasm. Later B2 was found in mitochondria using enhanced yellow fluorescent protein (EYFP) and immuno-EM analysis. Furthermore, the B2 mitochondrial targeting signal peptide was analyzed by serial deletion and specific point mutation. The sequence of the B2 targeting signal peptide ((41)RTFVISAHAA(50)) was identified and its presence correlated with loss of mitochondrial membrane potential in fish cells. Protein B2 also was found to dramatically inhibit complex II (succinate dehydrogenase) activity, which impairs ATP synthesis in fish GF-1 cells as well as human embryonic kidney 293T cells. Furthermore, when B2 was injected into zebrafish embryos at the one-cell stage to determine its cytotoxicity and ability to inhibit ATP synthesis, we found that B2 caused massive embryonic cell death and depleted ATP resulting in further embryonic death at 10 and 24 h post-fertilization. Taken together, our results indicate that betanodavirus protein B2-induced cell death is due to direct targeting of the mitochondrial matrix by a specific signal peptide that targets mitochondria and inhibits mitochondrial complex II activity thereby reducing ATP synthesis.
Collapse
Affiliation(s)
- Yu-Chin Su
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | |
Collapse
|
30
|
Sepulcre MP, Muñoz I, Roca FJ, López-Muñoz A, Mulero V. Molecular strategies used by fish pathogens to interfere with host-programmed cell death. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:603-610. [PMID: 20097221 DOI: 10.1016/j.dci.2010.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 05/28/2023]
Abstract
Cell death is of pivotal importance in the regulation of the immune response and has a direct impact in disease resistance. Fish are becoming an interesting model organism to study the immune response since they hold a key phylogenetic position and many species are of high economic interest. The role of cell death in the immune response has recently been investigated in fish and the molecules and pathways orchestrating cell death in this group of animals have begun to be elucidated. In this study, we will summarize the different molecular strategies displayed by major fish bacterial and viral pathogens to interfere with programmed cell death of the host as well as the relevance of cell death in the resolution of the infectious diseases caused by these pathogens.
Collapse
Affiliation(s)
- María P Sepulcre
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|
31
|
Chen LJ, Su YC, Hong JR. Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 2009; 385:444-54. [PMID: 19136133 DOI: 10.1016/j.virol.2008.11.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/03/2008] [Accepted: 11/25/2008] [Indexed: 12/30/2022]
Abstract
The functions of the Betanodavirus non-structural protein B1 is still unknown. We examined B1 expression patterns and investigated novel cell death regulatory functions for this viral protein following RGNNV infection in fish cells. The B1 gene (336 nt) was cloned from the redspotted grouper nervous necrosis virus (RGNNV) genome. B1 mRNA was rapidly expressed in the fish cells from viral RNA3 at 12 h post-infection (p.i.). At the protein level, expression was low at 12 h p.i., and then increased rapidly between 24 h and 72 h p.i. In RGNNV-infected, B1-containing fish cells, over expression of RGNNV B1 reduced Annexin-V positive cells by 50% and 65% at 48 h and 72 h p.i., respectively, and decreased loss of mitochondrial membrane potential (MMP) by 20% and 70% at 48 h and 72 h p.i., respectively. Finally, B1 knockdown during RGNNV infection using anti-sense RNA increased necrotic cell death and reduced cell viability during the early replication cycle (24 h p.i.). Our results suggest that B1 is an early expression protein that has an anti-necrotic cell death function which reduces the MMP loss and enhances viral host cell viability. This finding provides new insights into RNA viral pathogenesis and disease control.
Collapse
Affiliation(s)
- Lei-Jia Chen
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology; National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
32
|
Su YC, Wu JL, Hong JR. Betanodavirus non-structural protein B2: A novel necrotic death factor that induces mitochondria-mediated cell death in fish cells. Virology 2008; 385:143-54. [PMID: 19116179 DOI: 10.1016/j.virol.2008.11.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/17/2008] [Accepted: 11/13/2008] [Indexed: 12/31/2022]
Abstract
The Betanodavirus non-structural protein B2 plays a role in silencing RNA interference (RNAi), which mediated regulation of animal and plant innate immune responses, but little is known regarding the role of B2 in cell death. The present study examined the effects of B2 on mitochondria-mediated necrotic cell death in grouper liver (GL-av) cells. B2 was expressed at 12 h post-infection (pi), with increased expression between 24 and 72 h pi by Western blot. B2 was transiently expressed to investigate possible novel protein functions. Transient expression of B2 in GL-av cells resulted in apoptotic cell features and positive TUNEL assays (28%) at 24 h post-transfection (pt). During mechanistic studies of cell death, B2 upregulated expression of the proapoptotic gene Bax (2.8 fold at 48 h pt) and induced loss of mitochondria membrane potential (MMP) but not mitochondrial cytochrome c release. Furthermore, over expression of Bcl-2 family member zfBcl-xL effectively prevented B2-induced, mitochondria-mediated necrotic cell death. Finally, using RNA interference to reduce B2 expression, both B2 and Bax expression were downregulated and RGNNV-infected cells were rescued from secondary necrosis. Taken together, our results suggest that B2 upregulates Bax and triggers mitochondria-mediated necrotic cell death independent of cytochrome c release.
Collapse
Affiliation(s)
- Yu-Chin Su
- Institute of Biotechnology, National Cheng Kung University, Taiwan, ROC
| | | | | |
Collapse
|
33
|
Takizawa N, Adachi K, Ichinose T, Kobayashi N. Efficient propagation of betanodavirus in a murine astrocytoma cell line. Virus Res 2008; 136:206-10. [PMID: 18556083 DOI: 10.1016/j.virusres.2008.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/30/2008] [Accepted: 05/05/2008] [Indexed: 12/01/2022]
Abstract
Betanodavirus, a bipartite RNA virus of fishes and a member of Nodaviridae family, targets nervous tissues and is the causative agent of viral nervous necrosis in marine farmed fish. Betanodavirus is thought to be propagated only in fish cells because betanodavirus has only been isolated in fish and it is not well propagated in mammalian culture cells. However, the host specificity of betanodavirus has not yet been well analyzed. To analyze the host specificity of betanodavirus, various mammalian cells were screened for their permissiveness to betanodavirus. As a result, redspotted grouper nervous necrosis virus can be propagated efficiently in the murine astrocytoma cell line, DBT. The level of viral production in DBT was 10-fold-higher than in the fish cell line, E-11. This result is the first to demonstrate the efficient propagation of betanodavirus in mammalian cells and may help to elucidate the mechanism of the host specificity of betanodavirus.
Collapse
Affiliation(s)
- Naoki Takizawa
- Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | |
Collapse
|
34
|
Establishment of reverse genetics system of betanodavirus for the efficient recovery of infectious particles. J Virol Methods 2008; 151:271-276. [PMID: 18508134 DOI: 10.1016/j.jviromet.2008.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/29/2008] [Accepted: 04/03/2008] [Indexed: 11/21/2022]
Abstract
Betanodaviruses, a member of the family Nodaviridae, have small positive-stranded bipartite RNA genomes and are the causal agent of viral nervous necrosis in marine-farmed fish. To facilitate the study of betanodavirus, infectious cDNA clones of its two genomic RNAs were generated. The full-length cDNA of the new Redspotted grouper nervous necrosis virus strain (SG2001Nag) RNA1 and RNA2 were co-transcribed by T7 RNA polymerase in baby hamster kidney cells expressing T7 RNA polymerase. The transcription of precise viral RNAs from cDNAs neither lead to viral protein synthesis nor the production of infectious particles. However, the additional two guanine residues following T7 promoter increased the transcription of viral RNAs from cDNAs, and 1.0 x 10(6)TCID(50)/ml of infectious particles was collected from the transfected cells. The ability to reproduce the entire life cycle of betanodavirus from cDNA clones by this reverse genetics system would therefore facilitate a further analysis of the mechanism of betanodavirus RNA replication, structure, and assembly. These findings may thus help in the future development of a betanodavirus vaccine.
Collapse
|
35
|
Wu HC, Chiu CS, Wu JL, Gong HY, Chen MC, Lu MW, Hong JR. Zebrafish anti-apoptotic protein zfBcl-xL can block betanodavirus protein alpha-induced mitochondria-mediated secondary necrosis cell death. FISH & SHELLFISH IMMUNOLOGY 2008; 24:436-449. [PMID: 18276161 DOI: 10.1016/j.fsi.2008.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 12/18/2007] [Accepted: 01/02/2008] [Indexed: 05/25/2023]
Abstract
Betanodavirus protein alpha induces cell apoptosis or secondary necrosis by a poorly understood process. In the present work, red spotted grouper nervous necrosis virus (RGNNV) RNA 2 was cloned and transfected into tissue culture cells (GF-1) which then underwent apoptosis or post-apoptotic necrosis. In the early apoptotic stage, progressive phosphatidylserine externalization was evident at 24h post-transfection (p.t.) by Annexin V-FLUOS staining. TUNEL assay revealed apoptotic cells at 24-72 h p.t, after which post-apoptotic necrotic cells were identified by acridine orange/ethidium bromide dual dye staining from 48 to 72 h p.t. Protein alpha induced progressive loss of mitochondrial membrane potential (MMP) which was detected in RNA2-transfected GF-1 cells at 24, 48, and 72 h p.t., which correlated with cytochrome c release, especially at 72 h p.t. To assess the effect of zfBcl-xL on cell death, RNA2-transfected cells were co-transfected with zfBcl-x(L). Co-transfection of GF-1 cells prevented loss of MMP at 24 h and 48 h p.t. and blocked initiator caspase-8 and effector caspase-3 activation at 48 h p.t. We conclude that RGNNV protein alpha induces apoptosis followed by secondary necrotic cell death through a mitochondria-mediated death pathway and activation of caspases-8 and -3.
Collapse
Affiliation(s)
- Horng-Cherng Wu
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Flock house virus induces apoptosis by depletion of Drosophila inhibitor-of-apoptosis protein DIAP1. J Virol 2007; 82:1378-88. [PMID: 17989181 DOI: 10.1128/jvi.01941-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanisms by which RNA viruses induce apoptosis and apoptosis-associated pathology are not fully understood. Here we show that flock house virus (FHV), one of the simplest RNA viruses (family, Nodaviridae), induces robust apoptosis of permissive Drosophila Line-1 (DL-1) cells. To define the pathway by which FHV triggers apoptosis in this model invertebrate system, we investigated the potential role of Drosophila apoptotic effectors during infection. Suggesting the involvement of host caspases, the pancaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluromethylketone (z-VAD-fmk) prevented FHV-induced cytopathology and prolonged cell survival. RNA interference-mediated ablation of the principal Drosophila effector caspase DrICE or its upstream initiator caspase DRONC prevented FHV-induced apoptosis and demonstrated direct participation of this intrinsic caspase pathway. Prior to the FHV-induced activation of DrICE, the intracellular level of inhibitor-of-apoptosis (IAP) protein DIAP1, the principal caspase regulator in Drosophila melanogaster, was dramatically reduced. DIAP1 was depleted despite z-VAD-fmk-mediated caspase inhibition during infection, suggesting that the loss of DIAP1 was caused by an upstream FHV-induced signal. The RNA interference-mediated knockdown of DIAP1 caused rapid and uniform apoptosis of DL-1 cells and thus indicated that DIAP1 depletion is sufficient to trigger apoptosis. Confirming this conclusion, the elevation of intracellular DIAP1 levels in stable diap1-transfected cells blocked caspase activation and prevented FHV-induced apoptosis. Collectively, our findings suggest that DIAP1 is a critical sensor of virus infection, which upon virus-signaled depletion relieves caspase inhibition, which subsequently executes apoptotic death. Thus, our study supports the hypothesis that altering the level or the activity of cellular IAP proteins is a general mechanism by which RNA viruses trigger apoptosis.
Collapse
|
37
|
Chen SP, Wu JL, Su YC, Hong JR. Anti-Bcl-2 family members, zfBcl-x(L) and zfMcl-1a, prevent cytochrome c release from cells undergoing betanodavirus-induced secondary necrotic cell death. Apoptosis 2007; 12:1043-60. [PMID: 17245642 DOI: 10.1007/s10495-006-0032-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nervous necrosis virus (NNV)-induced, host cell apoptosis mediates secondary necrosis by an ill-understood process. In this study, redspotted grouper nervous necrosis virus (RGNNV) is shown to induce mitochondria-mediated necrotic cell death in GL-av cells (fish cells) via cytochrome c release, and anti-apoptotic proteins are shown to protect these cells from death. Western blots revealed that cytochrome c release coincided with disruption of mitochondrial ultrastructure and preceded necrosis, but did not correlate with caspases activation. To identify the mediator(s) of this necrotic process, a protein synthesis inhibitor (cycloheximide; CHX; 0.33 microg/ml) was used to block cytochrome c release as well as PS exposure and mitochondrial membrane permeability transition pore (MMP) loss. CHX (0.33 microg/ml) completely blocked viral protein B2 expression, and partly blocked protein A, protein alpha, and a pro-apoptotic death protein (Bad) expression. Overexpression of B2 gene increased necrotic-like cell death up to 30% at 48 h post-transfection, suggesting that newly synthesized protein (B2) may be involved in this necrotic process. Finally, necrotic death was prevented by overexpression of Bcl-2 family proteins, zfBcl-x(L) and xfMcl-1a. Thus, new protein synthesis and release of cytochrome c are required for RGNNV-induced necrotic cell death, which can be blocked by anti-apoptotic Bcl-2 members.
Collapse
Affiliation(s)
- Shi-Ping Chen
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
38
|
Tomasicchio M, Venter PA, H J Gordon K, N Hanzlik T, Dorrington RA. Induction of apoptosis in Saccharomyces cerevisiae results in the spontaneous maturation of tetravirus procapsids in vivo. J Gen Virol 2007; 88:1576-1582. [PMID: 17412989 DOI: 10.1099/vir.0.82250-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Tetraviridae are a family of small, non-enveloped, insect RNA viruses consisting of one or two single-stranded, positive-sense genomic RNAs encapsidated in an icosahedral capsid with T=4 symmetry. Tetravirus procapsids undergo maturation when exposed to a low pH environment in vitro. While the structural biology of the conformational changes that mediate acid-dependent maturation is well understood, little is known about the significance of acid-dependent maturation in vivo. To address this question, the capsid-coding sequence of the tetravirus Helicoverpa armigera stunt virus was expressed in Saccharomyces cerevisiae cells. Virus-like particles were shown to assemble as procapsids that matured spontaneously in vivo as the cells began to age. Growth in the presence of hydrogen peroxide or acetic acid, which induced apoptosis or programmed cell death in the yeast cells, resulted in virus-like particle maturation. The results demonstrate that assembly-dependent maturation of tetravirus procapsids in vivo is linked to the onset of apoptosis in yeast cells. We propose that the reduction in pH required for tetraviral maturation may be the result of cytosolic acidification, which is associated with the early onset of programmed cell death in infected cells.
Collapse
Affiliation(s)
- Michele Tomasicchio
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Philip Arno Venter
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | | | | | - Rosemary Ann Dorrington
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
39
|
Chen YM, Wei CY, Chien CH, Chang HW, Huang SI, Yang HL, Chen TY. Myostatin gene organization and nodavirus-influenced expression in orange-spotted grouper (Epinephelus coioides). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:215-27. [PMID: 20483295 DOI: 10.1016/j.cbd.2007.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/21/2007] [Accepted: 04/23/2007] [Indexed: 11/24/2022]
Abstract
The relationship(s) between nodavirus infection and myostatin expression in the skeletal muscle tissue of grouper is unclear. To investigate, the grouper (Epinephelus coioides) myostatin gene was cloned and cDNA was utilized to examine the expression of the gene in skeletal muscle and serum of healthy (uninfected) grouper and fish naturally infected with nodavirus. The myostatin gene comprises three exons and two introns and is transcribed as a 2778-bp mRNA length that encodes a 376-aa precursor protein. All exon-intron boundaries conformed to the consensus sequences. Alignment of the upstream sequences indicated that the grouper myostatin promoter has been highly conserved during evolution. Sequence analyses of 1936 bp of the upstream region revealed ten E-box motifs. The protein was consistent with the predicted molecular weight (approximately 42 kDa) of the unprocessed monomeric precursor protein and the processed myostatin form of the protein secreted into the plasma. Transient transfection studies revealed that the activity of the myostatin promoter decreased in a subset of viral titers. Grouper naturally infected with nodavirus displayed downregulation of the myostatin protein.
Collapse
Affiliation(s)
- Y-M Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Fenner BJ, Thiagarajan R, Chua HK, Kwang J. Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J Virol 2007; 80:85-94. [PMID: 16352533 PMCID: PMC1317529 DOI: 10.1128/jvi.80.1.85-94.2006] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Betanodaviruses are small positive-sense bipartite RNA viruses that infect a wide variety of fish species and are notorious for causing lethal outbreaks in juvenile fish hatcheries worldwide. The function of a small nonstructural protein, B2, encoded by the subgenomic RNA3 of betanodaviruses, has remained obscure. Greasy grouper nervous necrosis virus, a betanodavirus model, was used to develop a facile DNA-based reverse genetics system that recapitulated the virus infection cycle, and we used this system to show that B2 is a small nonstructural protein that is essential for high level accumulation of viral RNA1 after RNA transfection of fish, mammalian, and avian cells. The defect in RNA1 accumulation in a B2 mutant was partially complemented by supplying B2 RNA in trans. Confocal analysis of the cellular distribution of B2 indicated that B2 is able to enter the nucleus and accumulates there during the late stages of GGNNV infection. Using human HeLa cells as a cellular RNA interference model, we found that B2 could efficiently antagonize RNA interference, which is a property shared by the distantly related alphanodavirus B2 proteins. This function provides appears to provide an explanation, at least in part, for why B2 mutant RNA1 is severely impaired in its intracellular accumulation.
Collapse
Affiliation(s)
- Beau J Fenner
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | | | | | | |
Collapse
|
41
|
Chen SP, Yang HL, Lin HY, Chen MC, Wu JL, Hong JR. Enhanced viability of a nervous necrosis virus-infected stable cell line over-expressing a fusion product of the zfBcl-xL and green fluorescent protein genes. JOURNAL OF FISH DISEASES 2006; 29:347-54. [PMID: 16768715 DOI: 10.1111/j.1365-2761.2006.00725.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nervous necrosis virus (NNV) infection induces host cell apoptosis by an ill-understood process. We utilized a fusion between enhanced green fluorescent protein (EGFP) and the zfBcl-x(L) gene in GL-av cells to select for zfBcl-x(L) stable cell lines and to assess the effectiveness of the anti-apoptotic protein Bcl-x(L) in circumventing NNV-induced cell death. Stable EGFP and EGFP-Bcl-x(L)-expressing clones were obtained at high purity within 2.5-3 months. In the latter, the EGFP-Bcl-x(L) fusion protein (approximately 58.2 kDa, as ascertained by Western blot) was predominantly targeted to mitochondria. We assayed for apoptosis in red-spotted grouper NNV Tainan no. 1 (RGNNV TN1)-infected cells with terminal deoxynucleotidyl transferase (TdT)-mediated end labelling (TUNEL) of DNA at different virus doses. NNV infection of NNV Bcl-x(L) GL-av cell line revealed a protective effect, with a decrease in TUNEL-positive cells of 7%, 8% and 31.8% at 24, 48 and 72 h, respectively. In addition, RGNNV infection of the Bcl-x(L) GL-av cell line revealed a protective effect, with an enhanced viability of 3%, 40% and 73% at 24, 48, and 72 h, respectively. We conclude that NNV-induced apoptotic cell death can be lessened in transgenic grouper fish cells.
Collapse
Affiliation(s)
- S-P Chen
- Laboratory of Molecular Virology and Biotechnology, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Chen SP, Yang HL, Her GM, Lin HY, Jeng MF, Wu JL, Hong JR. Betanodavirus induces phosphatidylserine exposure and loss of mitochondrial membrane potential in secondary necrotic cells, both of which are blocked by bongkrekic acid. Virology 2006; 347:379-91. [PMID: 16430940 DOI: 10.1016/j.virol.2005.11.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 09/27/2005] [Accepted: 11/29/2005] [Indexed: 01/02/2023]
Abstract
In this study, we show how the red spotted grouper nervous necrosis virus (RGNNV) causes loss of mitochondrial membrane potential and promotes host secondary apoptotic necrosis. RGNNV viral proteins such as protein alpha (42 kDa) and protein A (110 kDa) were quickly expressed between 12 h and 24 h postinfection (p.i.) in GL-av cells. Annexin V staining revealed that the NNV infection of GL-av cells induced phosphatidylserine (PS) externalization and development of bulb-like vesicles (bleb formation) at 24 h p.i. NNV infection also induced DNA fragmentation detectable by TUNEL assay between 12 h (8%) and 72 h (32%) p.i. Bongkrekic acid (1.6 microM; BKA) blocked permeability of the mitochondrial permeability transition pore, but cyclosporine A (CsA) did not block secondary necrosis. Finally, secondary necrotic cells were not engulfed by neighboring cells. Our data suggest that RGNNV induces apoptotic death via opening the mitochondrial permeability transition pore thereby triggering secondary necrosis in the mid-apoptotic phase.
Collapse
Affiliation(s)
- Shi-Ping Chen
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
43
|
Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori KI, Arimoto M, Okuno T, Nakai T. Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 2005; 86:2807-2816. [PMID: 16186236 DOI: 10.1099/vir.0.80902-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Striped jack nervous necrosis virus (SJNNV), which infects fish, is the type species of the genus Betanodavirus. This virus has a bipartite genome of positive-strand RNAs, designated RNAs 1 and 2. A small RNA (ca. 0.4 kb) has been detected from SJNNV-infected cells, which was newly synthesized and corresponded to the 3'-terminal region of RNA1. Rapid amplification of cDNA ends analysis showed that the 5' end of this small RNA (designated RNA3) initiated at nt 2730 of the corresponding RNA1 sequence and contained a 5' cap structure. Substitution of the first nucleotide of the subgenomic RNA sequence within RNA1 selectively inhibited production of the positive-strand RNA3 but not of the negative-strand RNA3, which suggests that RNA3 may be synthesized via a premature termination model. The single RNA3-encoded protein (designated protein B2) was expressed in Escherichia coli, purified and used to immunize a rabbit to obtain an anti-protein B2 polyclonal antibody. An immunological test showed that the antigen was specifically detected in the central nervous system and retina of infected striped jack larvae (Pseudocaranx dentex), and in the cytoplasm of infected cultured E-11 cells. These results indicate that SJNNV produces subgenomic RNA3 from RNA1 and synthesizes protein B2 during virus multiplication, as reported for alphanodaviruses. In addition, an Agrobacterium co-infiltration assay established in transgenic plants that express green fluorescent protein showed that SJNNV protein B2 has a potent RNA silencing-suppression activity, as discovered for the protein B2 of insect-infecting alphanodaviruses.
Collapse
Affiliation(s)
- Tokinori Iwamoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Kazuyuki Mise
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Takeda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yasushi Okinaka
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Koh-Ichiro Mori
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Misao Arimoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Tetsuro Okuno
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Toshihiro Nakai
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| |
Collapse
|
44
|
Imajoh M, Hirayama T, Oshima SI. Frequent occurrence of apoptosis is not associated with pathogenic infectious pancreatic necrosis virus (IPNV) during persistent infection. FISH & SHELLFISH IMMUNOLOGY 2005; 18:163-177. [PMID: 15475312 DOI: 10.1016/j.fsi.2004.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 07/01/2004] [Indexed: 05/24/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV), a member of the genus Aquabirnavirus and family Birnaviridae, is an unenveloped icosahedral virus with two segments of double-stranded RNA. IPNV causes acute infection in salmonid fry and fingerlings with high mortality. However, this mortality is low as the age increases and survivors become IPNV-carrier fish. In this study, IPNV persistent infection was established in rainbow trout with no clinical signs or mortality. TUNEL staining and immunohistochemistry showed that IPNV antigen-positive cells did not have an apoptotic nucleus in almost all tissue sections and leucocyte smears, indicating that apoptosis was not induced in IPNV antigen-positive cells. The IPNV genome detected by in situ RT-PCR was more frequent than detection of the IPNV antigen by immunohistochemistry in the kidney, spleen, and liver. This result implies that the successive replication would not occur in many IPNV-infected cells. Further, apoptotic cells were predominant in the tissue sections where the signal-positive cells were frequently detected. Therefore, the presence of apoptosis in this study might be associated with host defense mechanisms, which eliminates IPNV-infected cells by the recognition of IPNV genome at the early stage of infection.
Collapse
Affiliation(s)
- Masayuki Imajoh
- Laboratory of Cell Structure and Function, Division of Marine Bioresource Science, Graduate School of Kuroshio Science, Kochi University, Nankoku Kochi 783-8502, Japan
| | | | | |
Collapse
|
45
|
Joseph T, Cepica A, Brown L, Ikede BO, Kibenge FSB. Mechanism of cell death during infectious salmon anemia virus infection is cell type-specific. J Gen Virol 2004; 85:3027-3036. [PMID: 15448366 DOI: 10.1099/vir.0.80091-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infectious salmon anemia virus (ISAV) is a very important fish virus in the Northern hemisphere and there is continued interest in understanding the mechanisms of its pathogenesis and persistence in fish. In this study, the permissive fish cell lines SHK-1, CHSE-214 and TO were used to determine whether ISAV-induced cytopathic effect (CPE) is due to apoptosis or necrosis. Characteristic apoptotic DNA fragmentation was observed only in ISAV-infected SHK-1 and CHSE-214 cells. Apoptosis in ISAV-infected SHK-1 cells was confirmed by fragment end-labelling assay, suggesting that CPE in these cells is associated with apoptosis. ISAV-infected TO cells did not undergo apoptosis, but showed leakage of high-mobility group 1 (HMGB1) protein from the nucleus, which is characteristic of cells undergoing necrosis; this suggests that CPE in these cells is associated with necrosis. ISAV-infected SHK-1 cells did not show leakage of HMGB1 protein. Infection with two different strains of ISAV showed that induction of apoptosis was correlated with the appearance of CPE in SHK-1 cells. ISAV-induced apoptosis was inhibited by a pan-caspase inhibitor, Z-VAD-fmk, indicating a caspase-activation pathway. The ISAV putative PB2 protein and proteins encoded by RNA segment 7 bound caspase-8 specifically in vitro, suggesting that these viral proteins may have a role in ISAV-induced apoptosis. These findings demonstrate for the first time that the mechanism of cell death during ISAV infection is dependent on the cell type, which may have implications for ISAV pathogenesis and persistence.
Collapse
Affiliation(s)
- Tomy Joseph
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada C1A 4P3
| | - Arnost Cepica
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada C1A 4P3
| | - Laura Brown
- Institute of Marine Biosciences, National Research Council, Halifax, NS, Canada
| | - Basil O Ikede
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada C1A 4P3
| | - Frederick S B Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada C1A 4P3
| |
Collapse
|
46
|
Guo YX, Chan SW, Kwang J. Membrane association of greasy grouper nervous necrosis virus protein A and characterization of its mitochondrial localization targeting signal. J Virol 2004; 78:6498-508. [PMID: 15163743 PMCID: PMC416515 DOI: 10.1128/jvi.78.12.6498-6508.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Localization of RNA replication to intracellular membranes is a universal feature of positive-strand RNA viruses. The betanodavirus greasy grouper (Epinephelus tauvina) nervous necrosis virus (GGNNV) is a positive-RNA virus with one of the smallest genomes among RNA viruses replicating in fish cells. To understand the localization of GGNNV replication complexes, we generated polyclonal antisera against protein A, the GGNNV RNA-dependent RNA polymerase. Protein A was detected at 5 h postinfection in infected sea bass cells. Biochemical fractionation experiments revealed that GGNNV protein A sedimented with intracellular membranes upon treatment with an alkaline pH and a high salt concentration, indicating that GGNNV protein A is tightly associated with intracellular membranes in infected cells. Confocal immunofluorescence microscopy and bromo-UTP incorporation studies identified mitochondria as the intracellular site of protein A localization and viral RNA synthesis. In addition, protein A fused with green fluorescent protein (GFP) was detected in the mitochondria in transfected cells and was demonstrated to be tightly associated with intracellular membranes by biochemical fractionation analysis and membrane flotation assays, indicating that protein A alone was sufficient for mitochondrial localization in the absence of RNA replication, nonstructural protein B, or capsid proteins. Three sequence analysis programs showed two regions of hydrophobic amino acid residues, amino acids 153 to 173 and 229 to 249, to be transmembrane domains (TMD) that might contain a membrane association domain. Membrane fraction analysis showed that the major domain is N-terminal amino acids 215 to 255, containing the predicted TMD from amino acids 229 to 249. Using GFP as the reporter by systematically introducing deletions of these two regions in the constructs, we further confirmed that the N-terminal amino acids 215 to 255 of protein A function as a mitochondrial targeting signal.
Collapse
Affiliation(s)
- Yan Xiang Guo
- Animal Health Biotechnology Unit, Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore 117604
| | | | | |
Collapse
|