1
|
Dai Y, Xu X, Huo X, Faas MM. Effects of polycyclic aromatic hydrocarbons (PAHs) on pregnancy, placenta, and placental trophoblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115314. [PMID: 37536008 DOI: 10.1016/j.ecoenv.2023.115314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that are carcinogenic, mutagenic, endocrine-toxic, and immunotoxic. PAHs can be found in maternal and fetal blood and in the placenta during pregnancy. They may thus affect placental and fetal development. Therefore, the exposure levels and toxic effects of PAHs in the placenta deserve further study and discussion. This review aims to summarize current knowledge on the effects of PAHs and their metabolites on pregnancy and birth outcomes and on placental trophoblast cells. A growing number of epidemiological studies detected PAH-DNA adducts as well as the 16 high-priority PAHs in the human placenta and showed that placental PAH exposure is associated with adverse fetal outcomes. Trophoblasts are important cells in the placenta and are involved in placental development and function. In vitro studies have shown that exposure to either PAH mixtures, benzo(a)pyrene (BaP) or BaP metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) affected trophoblast cell viability, differentiation, migration, and invasion through various signaling pathways. Furthermore, similar effects of BPDE on trophoblast cells could also be observed in BaP-treated mouse models and were related to miscarriage. Although the current data show that PAHs may affect placental trophoblast cells and pregnancy outcomes, further studies (population studies, in vitro studies, and animal studies) are necessary to show the specific effects of different PAHs on placental trophoblasts and pregnancy outcomes.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
2
|
Ames J, Warner M, Mocarelli P, Brambilla P, Signorini S, Siracusa C, Huen K, Holland N, Eskenazi B. AHR gene-dioxin interactions and birthweight in the Seveso Second Generation Health Study. Int J Epidemiol 2018; 47:1992-2004. [PMID: 30124847 PMCID: PMC6280946 DOI: 10.1093/ije/dyy165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Background 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is proposed to interfere with fetal growth via altered activity of the aryl hydrocarbon receptor (protein: AHR; gene: AHR) pathway which regulates diverse biological and developmental processes including xenobiotic metabolism. Genetic variation in AHR is an important driver of susceptibility to low birthweight in children exposed to prenatal smoking, but less is known about these genetic interactions with TCDD, AHR's most potent xenobiotic ligand. Methods The Seveso Women's Health Study (SWHS), initiated in 1996, is a cohort of 981 Italian women exposed to TCDD from an industrial explosion in July 1976. We measured TCDD concentrations in maternal serum collected close to the time of the accident. In 2008 and 2014, we followed up the SWHS cohort and collected data on birth outcomes of SWHS women with post-accident pregnancies. We genotyped 19 single nucleotide polymorphisms (SNPs) in AHR among the 574 SWHS mothers. Results Among 901 singleton births, neither SNPs nor TCDD exposure alone were significantly associated with birthweight. However, we found six individual SNPs in AHR which adversely modified the association between maternal TCDD and birthweight, implicating gene-environment interaction. We saw an even stronger susceptibility to TCDD due to interaction when we examined the joint contribution of these SNPs in a risk allele score. These SNPs were all located in noncoding regions of AHR, particularly in proximity to the promoter. Conclusions This is the first study to demonstrate that genetic variation across the maternal AHR gene may shape fetal susceptibilities to TCDD exposure.
Collapse
Affiliation(s)
- Jennifer Ames
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Marcella Warner
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Paolo Mocarelli
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Paolo Brambilla
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Stefano Signorini
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Claudia Siracusa
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Karen Huen
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
3
|
Pavek P, Smutny T. Nuclear receptors in regulation of biotransformation enzymes and drug transporters in the placental barrier. Drug Metab Rev 2013; 46:19-32. [PMID: 24020384 DOI: 10.3109/03602532.2013.835819] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the past 20 years, the toxicological and protective roles of the placental barrier with respect to drug detoxification and transporter-controlled protection of the fetus have been intensively examined. Several cytochrome P450 enzymes are expressed in placental trophoblast at different stages of pregnancy, though only a few of these have functional activity to metabolize xenobiotics. Drug transporters such as P-glycoprotein/MDR1 or breast cancer resistance protein (BCRP) are highly expressed in the placenta, and their functional activities have been demonstrated in the placenta both in vitro and in vivo. In addition, several studies have reported on ligand-activated transcription factors and nuclear receptors referred to as "xenosensors" in the placenta. The xenosensors control transcriptional regulation of both xenobiotic-metabolizing enzymes and drug transporters in different organs. Their ligands include toxic compounds and environmental pollutants, drugs, as well as herbal, dietary or vitamin supplements. Nevertheless, it remains debatable whether the placental barrier adapts to toxic injuries coming either from maternal medication or environmental contamination and whether the placenta contains a mechanism to respond dynamically in protecting the developing fetus. In the present paper, we summarize current knowledge about the activity and expression of major ligand-activated transcriptional mechanisms involved in biotransformation enzymes and transporters regulation in human placenta. In particular, we highlight the emerging roles of aryl hydrocarbon (AHR), vitamin D (VDR), glucocorticoid (GR) and pregnane X (PXR) receptors in that regulation. We show that the placenta constitute a unique metabolizing organ with significant overlap of exogenous and endogenous compounds metabolism controlled by nuclear receptors.
Collapse
Affiliation(s)
- Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Centre for Drug Development, Charles University in Prague , Hradec Kralove , Czech Republic
| | | |
Collapse
|
4
|
Effects of glucocorticoids on cytochrome P450 1A1 (CYP1A1) expression in isolated human placental trophoblast. J Appl Biomed 2013. [DOI: 10.2478/v10136-012-0022-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
5
|
Stejskalova L, Vecerova L, Peréz LM, Vrzal R, Dvorak Z, Nachtigal P, Pavek P. Aryl hydrocarbon receptor and aryl hydrocarbon nuclear translocator expression in human and rat placentas and transcription activity in human trophoblast cultures. Toxicol Sci 2011; 123:26-36. [PMID: 21666223 DOI: 10.1093/toxsci/kfr150] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) and its heterodimer aryl hydrocarbon nuclear translocator (ARNT) form a ligand-activated transcription complex that regulates expression of the AHR battery of target genes that includes the most important placental biotransformation enzyme cytochrome CYP1A1. Expression, placental localization, and ontogeny of AHR/Ahr and ARNT/Arnt have not been systematically studied in either human or rat placentas. Moreover, induction of such AHR target genes as CYP1A1, CYP1A2, CYP1B1, UGT1A1, and breast cancer resistance protein (BCRP), as well as of AHR, ARNT, and aryl hydrocarbon receptor repressor (AHRR) genes, after exposure to AHR ligands have not been studied in human placental trophoblast cultures. In this article, we show that only CYP1A1 messenger RNA (mRNA), but not CYP1A2, CYP1B1, UGT1A1, BCRP, AHR, ARNT, and AHRR mRNAs, is significantly induced in human term placental trophoblast cultures after exposure to prototype AHR ligands/activators 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3-methylcholanthrene, omeprazole, and β-naphthoflavone. We localized AHR/Ahr and ARNT/Arnt in rat placental trophoblasts throughout gestation and in first trimester and term human placental trophoblast, which comprise the crucial component of the maternal-fetal barrier. We demonstrate that rat Ahr and Cyp1a1 reached highest expression during gestation days 15 and 18, which might indicate different response to Ahr ligands in placental Cyp1a1 induction during rat gestation. We also propose the JEG3 choriocarcinoma cell line as a cellular model for human trophoblast induction studies through AHR. In conclusion, we describe expression and ontogeny of AHR/Ahr and ARNT/Arnt and systematically characterize induction of major AHR target genes in human placental trophoblast forming the placental maternal-fetal morphological and metabolic barrier.
Collapse
Affiliation(s)
- Lucie Stejskalova
- Department of Pharmacology and Toxicology, Charles University in Prague, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
6
|
The human AHR: identification of single nucleotide polymorphisms from six ethnic populations. Pharmacogenet Genomics 2010; 20:283-90. [PMID: 20401977 DOI: 10.1097/fpc.0b013e32833605f8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related dioxin-like chemicals are mediated through binding-dependent activation of the cytosolic aryl hydrocarbon receptor (AHR). The human AHR is a low-affinity receptor relative to most rodents, but some reports suggest that there may be individuals with polymorphic high-affinity receptors, thereby possibly increasing the sensitivity to dioxins in such people. METHODS Although no polymorphisms have been reported in the ligand binding region of the AHR in the over 100 reported sequences, we sequenced 108 additional human AHR genes in an effort to further identify single single nucleotide polymorphisms (SNPs) within the open reading frames of the AHR locus. The DNA was sequenced from six ethnic populations that included Japanese, Chinese, European/Caucasian, African-American, South East Asian, and Hispanic. RESULTS Six exonic SNPs were identified; four had been described as previously reported and two seem to be novel. Four of the SNPs identified lead to amino acid changes in the AHR protein and two of the SNPs lead to synonymous substitutions. An additional four SNPs have been reported elsewhere that were not identified in the current analysis. With these new sequences, more than 200 human AHR gene sequences have been analyzed for SNPs. CONCLUSION The results indicate a very limited presence of polymorphisms in the core ligand binding region of the human AHR. Other regions, such as the transactivation domain, seem to be slightly more polymorphic in the human population and the impact on functionality should be further examined.
Collapse
|
7
|
Fan MQ, Bell AR, Bell DR, Clode S, Fernandes A, Foster PMD, Fry JR, Jiang T, Loizou G, MacNicoll A, Miller BG, Rose M, Shaikh-Omar O, Tran L, White S. Recombinant expression of aryl hydrocarbon receptor for quantitative ligand-binding analysis. Anal Biochem 2009; 384:279-87. [PMID: 18938125 PMCID: PMC2621304 DOI: 10.1016/j.ab.2008.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 02/03/2023]
Abstract
Recombinant expression of the aryl hydrocarbon receptor (AhR) yields small amounts of ligand-binding-competent AhR. Therefore, Spodoptera frugiperda (Sf9) cells and baculovirus have been evaluated for high-level and functional expression of AhR. Rat and human AhR were expressed as soluble protein in significant amounts. Expression of ligand-binding-competent AhR was sensitive to the protein concentration of Sf9 extract, and coexpression of the chaperone p23 failed to affect the yield of functional ligand-binding AhR. The expression system yielded high levels of functional protein, with the ligand-binding capacity (Bmax) typically 20-fold higher than that obtained with rat liver cytosol. Quantitative estimates of the ligand-binding affinity of human and rat AhR were obtained; the Kd for recombinant rat AhR was indistinguishable from that of native rat AhR, thereby validating the expression system as a faithful model for native AhR. The human AhR bound TCDD with significantly lower affinity than the rat AhR. These findings demonstrate high-level expression of ligand-binding-competent AhR, and sufficient AhR for quantitative analysis of ligand binding.
Collapse
Affiliation(s)
- Ming Qi Fan
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Alex R. Bell
- AstraZeneca plc, Alderley Park, Nr. Macclesfield, Cheshire, SK10 4TJ, UK
| | - David R Bell
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Sally Clode
- Covance Laboratories Ltd., Otley Road, Harrogate, North Yorkshire, HG3 1PY, UK
| | - Alwyn Fernandes
- Central Science Laboratory, Environment, Food and Health, Sand Hutton, York YO41 1LZ, UK
| | - Paul M D Foster
- NIEHS, PO Box 12233 (MD E1-06), 111 TW Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Jeffrey R Fry
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Tao Jiang
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - George Loizou
- Health & Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | - Alan MacNicoll
- Central Science Laboratory, Environment, Food and Health, Sand Hutton, York YO41 1LZ, UK
| | - Brian G. Miller
- Institute of Occupational Medicine, Research Park North, Riccarton, Edinburgh, EH14 4AP, UK
| | - Martin Rose
- Central Science Laboratory, Environment, Food and Health, Sand Hutton, York YO41 1LZ, UK
| | - Osama Shaikh-Omar
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Lang Tran
- Institute of Occupational Medicine, Research Park North, Riccarton, Edinburgh, EH14 4AP, UK
| | - Shaun White
- Central Science Laboratory, Environment, Food and Health, Sand Hutton, York YO41 1LZ, UK
| |
Collapse
|
8
|
Abe Y, Sinozaki H, Takagi T, Minegishi T, Kokame K, Kangawa K, Uesaka M, Miyamoto K. Identification of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible genes in human amniotic epithelial cells. Reprod Biol Endocrinol 2006; 4:27. [PMID: 16704738 PMCID: PMC1557667 DOI: 10.1186/1477-7827-4-27] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 05/17/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to dioxins results in a broad range of pathophysiological disorders in human fetuses. In order to evaluate the effects of dioxins on the feto-placental tissues, we analyzed the gene expression in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treated primary cultures of human amniotic epithelial cells. METHODS Human amniotic epithelial cells were dispersed by trypsin from amniotic membranes and cultured in DME/Ham's F12 medium supplemented with 10% FBS. Two weeks after plating, cells were treated with 50 nM TCDD or DMSO (control), further incubated for 48 hrs, and the gene expression was analyzed by DNA microarray technology and quantitative real-time PCR. RESULTS Thirty eight TCDD-inducible genes, including cytochromeP4501A1 and cytochromeP4501B1, were identified. One of the remarkable profiles of the gene expression was the prominent up-regulation of interferon-inducible genes. The genes involved in the interferon gene expression and interferon signaling pathways were also up-regulated. Furthermore, the expression of genes related to collagen synthesis or degradation was enhanced by TCDD. CONCLUSION Using DNA microarray and quantitative real-time PCR analyses, we identified TCDD-inducible genes, including interferon-inducible genes and genes related to collagen synthesis or degradation, in human amniotic epithelial cells.
Collapse
Affiliation(s)
- Yumiko Abe
- Department of Gynecology and Reproductive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Education and Research Center of Graduate School of Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiromitsu Sinozaki
- Department of Gynecology and Reproductive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takeshi Takagi
- Department of Gynecology and Reproductive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takashi Minegishi
- Department of Gynecology and Reproductive Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Koichi Kokame
- National Cardiovascular Center Research Institute, Osaka, Japan
| | - Kenji Kangawa
- National Cardiovascular Center Research Institute, Osaka, Japan
| | - Miki Uesaka
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kaoru Miyamoto
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
9
|
Connor KT, Aylward LL. Human response to dioxin: aryl hydrocarbon receptor (AhR) molecular structure, function, and dose-response data for enzyme induction indicate an impaired human AhR. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2006; 9:147-71. [PMID: 16613807 DOI: 10.1080/15287390500196487] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aryl hydrocarbon receptor (AhR) mediates nearly all studied adverse effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and many related compounds. Binding of TCDD or related ligands to AhR is the key initiating event in downstream biochemical responses. The binding affinity of AhR for TCDD is specific to species and strain, and studies of human AhR demonstrate binding affinities approximately an order of magnitude or more lower than those observed in the most sensitive laboratory strains and species. Molecular genetic studies confirmed that human AhR shares key mutations with the DBA mouse strain that result in an "impaired" AhR (with respect to TCDD binding and responsiveness). Despite a number of polymorphisms in human AhR, the key "DBA-type" mutations appear to be a constant feature of the human AhR, and no polymorphisms have been identified that compensate for the impaired binding function conferred by these mutations. Consistent with the impaired binding status of the human AhR, human cells have consistently required approximately 10-fold higher concentrations of TCDD in vitro than rodent cells to respond with enzyme induction. Recent studies of in vivo enzyme induction-related endpoints in human populations with moderately and highly increased TCDD body burdens detected no relationship between these endpoints and TCDD body burdens at body-burden levels up to 250 ng TEQ/kg body weight, or approximately 25 times above the upper range of current general population background body burdens, while marked elevations in enzyme activity were observed in persons with body burdens above 750 ng TEQ/kg. In contrast, the more sensitive laboratory rodent strains and species exposed to TCDD exhibit significant enzyme induction at body burdens below 50 ng/kg. These interspecies data on the most sensitive and best understood response to binding of TCDD and related compounds to the AhR are consistent with the binding affinity and molecular structure data and support the hypothesis that the human AhR is less functional than the AhR of the more sensitive laboratory animals at a molecular level. Quantitative risk assessments involving interspecies extrapolation from sensitive laboratory species and strains should take these fundamental differences into account when margins of exposure and safety factors are considered.
Collapse
|
10
|
Wong JM, Harper PA, Meyer UA, Bock KW, Morike K, Lagueux J, Ayotte P, Tyndale RF, Sellers EM, Manchester DK, Okey AB. Ethnic variability in the allelic distribution of human aryl hydrocarbon receptor codon 554 and assessment of variant receptor function in vitro. PHARMACOGENETICS 2001; 11:85-94. [PMID: 11207035 DOI: 10.1097/00008571-200102000-00010] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcriptional regulator of several genes including the cytochrome P4501 (CYP1) family as well as genes encoding factors involved in cell growth and differentiation. In mice, several polymorphic forms of the AHR are known, some of which have altered affinity for toxic and carcinogenic ligands. Remarkably little genetic variation has been detected in the human AHR gene. In studies on human AHR, Kawajiri et al. (Pharmacogenetics 1995; 5:151-158) reported a variation at codon 554 that results in an amino acid change from arginine to lysine; the frequency of the variant allele in a Japanese population (n = 277) was 0.43. We investigated the Lys554 allele in 386 individuals of various ethnic origins and found the frequency to be: 0.58 in Ivory Coast Africans (n = 58); 0.53 in a mixed African group (n = 20); 0.39 in Caribbean-Africans (n = 55); 0.32 in Canadian Chinese (n = 41); 0.14 in North American Indians (n = 47); 0.12 in French Canadian Caucasians (n = 20); 0.11 in a mixed ethnicity North American group (n = 45); 0.09 in Canadian Inuits (n = 22); and 0.07 in German Caucasians (n = 78). We expressed the human Lys554 allele in an in-vitro transcription-translation system and found that the receptor bearing the R554L substitution had an equivalent ability to that of the wild-type receptor to bind to a dioxin-responsive element following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The Lys554 allele also was equivalent to the wild-type receptor at stimulating CYP1A1 mRNA expression when transfected into TCDD-treated receptor-deficient mouse Hepa-1 cells. It is not yet known if any of the wide variations in allele frequency at codon 554 are related to ethnic differences in susceptibility to adverse effects of environmental chemicals.
Collapse
Affiliation(s)
- J M Wong
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|