1
|
Mihaylova NM, Manoylov IK, Nikolova MH, Prechl J, Tchorbanov AI. DNA and protein-generated chimeric molecules for delivery of influenza viral epitopes in mouse and humanized NSG transfer models. Hum Vaccin Immunother 2024; 20:2292381. [PMID: 38193304 PMCID: PMC10793685 DOI: 10.1080/21645515.2023.2292381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Purified subunit viral antigens are weakly immunogenic and stimulate only the antibody but not the T cell-mediated immune response. An alternative approach to inducing protective immunity with small viral peptides may be the targeting of viral epitopes to immunocompetent cells by DNA and protein-engineered vaccines. This review will focus on DNA and protein-generated chimeric molecules carrying engineered fragments specific for activating cell surface co-receptors for inducing protective antiviral immunity. Adjuvanted protein-based vaccine or DNA constructs encoding simultaneously T- and B-cell peptide epitopes from influenza viral hemagglutinin, and scFvs specific for costimulatory immune cell receptors may induce a significant increase of anti-influenza antibody levels and strong CTL activity against virus-infected cells in a manner that mimics the natural infection. Here we summarize the development of several DNA and protein chimeric constructs carrying influenza virus HA317-41 fragment. The generated engineered molecules were used for immunization in intact murine and experimentally humanized NSG mouse models.
Collapse
Affiliation(s)
- Nikolina M. Mihaylova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliyan K. Manoylov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria H. Nikolova
- National Reference Laboratory of Immunology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Andrey I. Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- National Institute of Immunology, Sofia, Bulgaria
| |
Collapse
|
2
|
Liu HL, Lin WF, Hu WC, Lee YA, Chang YC. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses. Appl Environ Microbiol 2015; 81:6839-49. [PMID: 26209665 PMCID: PMC4561679 DOI: 10.1128/aem.01198-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/19/2015] [Indexed: 11/20/2022] Open
Abstract
Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli.
Collapse
Affiliation(s)
- Han-Lin Liu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Wei-Fang Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Wen-Chi Hu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Yung-An Lee
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ya-Chun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Fang X, Fang Y, Liu L, Liu G, Wu J. Mapping paratope on antithrombotic antibody 6B4 to epitope on platelet glycoprotein Ibalpha via molecular dynamic simulations. PLoS One 2012; 7:e42263. [PMID: 22860101 PMCID: PMC3408434 DOI: 10.1371/journal.pone.0042263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/04/2012] [Indexed: 11/19/2022] Open
Abstract
Binding of platelet receptor glycoprotein Ibα (GPIbα) to the A1 domain of von Willebrand factor (vWF) is a critical step in both physiologic hemostasis and pathologic thrombosis, for initiating platelet adhesion to subendothelium of blood vessels at sites of vascular injury. Gain-of-function mutations in GPIbα contribute to an abnormally high-affinity binding of platelets to vWF and can lead to thrombosis, an accurate complication causing heart attack and stroke. Of various antithrombotic monoclonal antibodies (mAbs) targeting human GPIbα, 6B4 is a potent one to inhibit the interaction between GPIbα and vWF-A1 under static and flow conditions. Mapping paratope to epitope with mutagenesis experiments, a traditional route in researches of these antithrombotic mAbs, is usually expensive and time-consuming. Here, we suggested a novel computational procedure, which combines with homology modeling, rigid body docking, free and steered molecular dynamics (MD) simulations, to identify key paratope residues on 6B4 and their partners on GPIbα, with hypothesis that the stable hydrogen bonds and salt bridges are the important linkers between paratope and epitope residues. Based on a best constructed model of 6B4 bound with GPIbα, the survival ratios and rupture times of all detected hydrogen bonds and salt bridges in binding site were examined via free and steered MD simulations and regarded as indices of thermal and mechanical stabilizations of the bonds, respectively. Five principal paratope residues with their partners were predicted with their high survival ratios and/or long rupture times of involved hydrogen bonds, or with their hydrogen bond stabilization indices ranked in top 5. Exciting, the present results were in good agreement with previous mutagenesis experiment data, meaning a wide application prospect of our novel computational procedure on researches of molecular of basis of ligand-receptor interactions, various antithrombotic mAbs and other antibodies as well as theoretically design of biomolecular drugs.
Collapse
Affiliation(s)
- Xiang Fang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Ying Fang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- * E-mail: (YF); (JW)
| | - Li Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Guangjian Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jianhua Wu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- * E-mail: (YF); (JW)
| |
Collapse
|
4
|
Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM, Hamid M. scFv antibody: principles and clinical application. Clin Dev Immunol 2012; 2012:980250. [PMID: 22474489 PMCID: PMC3312285 DOI: 10.1155/2012/980250] [Citation(s) in RCA: 500] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/07/2012] [Indexed: 01/16/2023]
Abstract
To date, generation of single-chain fragment variable (scFv) has become an established technique used to produce a completely functional antigen-binding fragment in bacterial systems. The advances in antibody engineering have now facilitated a more efficient and generally applicable method to produce Fv fragments. Basically, scFv antibodies produced from phage display can be genetically fused to the marker proteins, such as fluorescent proteins or alkaline phosphatase. These bifunctional proteins having both antigen-binding capacity and marker activity can be obtained from transformed bacteria and used for one-step immunodetection of biological agents. Alternatively, antibody fragments could also be applied in the construction of immunotoxins, therapeutic gene delivery, and anticancer intrabodies for therapeutic purposes. This paper provides an overview of the current studies on the principle, generation, and application of scFv. The potential of scFv in breast cancer research is also discussed in this paper.
Collapse
Affiliation(s)
- Zuhaida Asra Ahmad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Abdul Manaf Ali
- Faculty of Agriculture and Biotechnology, Universiti Sultan Zainal Abidin, Kampus Kota, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Malaysia
| | - Wan Yong Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Muhajir Hamid
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| |
Collapse
|
5
|
Yang J, Ji S, Dong N, Zhao Y, Ruan C. Engineering and characterization of a chimeric anti-platelet glycoprotein Ibalpha monoclonal antibody and preparation of its Fab fragment. Hybridoma (Larchmt) 2010; 29:125-32. [PMID: 20443704 DOI: 10.1089/hyb.2009.0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glycoprotein Ibalpha (GPIbalpha) is a platelet-specific membrane protein. It mediates platelet adhesion to collagen exposed at the vascular injury site by binding to von Willebrand factor (VWF) in plasma. This process is crucial for arterial thrombus formation. Blocking interaction between GPIbalpha and VWF may prevent platelet adhesion and thrombus formation. We previously generated a high affinity monoclonal antibody against human platelet GPIbalpha, SZ2, which inhibits both ristocetin- and botrocetin-induced platelet aggregation in vitro. To convert SZ2 into mouse/human chimeric antibody for anti-platelet therapy in humans, in this study, we constructed a mouse/human chimeric antibody derived from the hybridoma cells producing murine antibody against platelet glycoprotein Ibalpha, conducted its expression in dihydrofolate reductase-deficient Chinese hamster ovary (CHO) cells, and prepared its chimeric Fab fragment. Results from ELISA and Western blot analysis showed that the chimeric antibody was secreted from the cells and that the heavy and light chains were assembled correctly. Flow cytometry analysis confirmed specific binding of the chimeric antibody to the GPIb-expressing CHO cells. In vitro functional studies revealed that the chimeric antibody and its Fab fragment prevented platelet adhesion to VWF under high shear stress and inhibited ristocetin-induced platelet aggregation in a dose-dependent manner. These results demonstrated that the chimeric antibody was successfully engineered and suggested that the Fab fragment of chimeric antibody against GPIbalpha is a promising therapeutic antibody more suitable for prevention and treatment of human arterial thrombosis.
Collapse
Affiliation(s)
- Jianfeng Yang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Heath, Suzhou, China
| | | | | | | | | |
Collapse
|
6
|
Hobson-Peters J, Shan J, Hall R, Toye P. Mammalian expression of functional autologous red cell agglutination reagents for use in diagnostic assays. J Virol Methods 2010; 168:177-90. [DOI: 10.1016/j.jviromet.2010.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 11/17/2022]
|
7
|
Smith KA, Nelson PN, Warren P, Astley SJ, Murray PG, Greenman J. Demystified...recombinant antibodies. J Clin Pathol 2004; 57:912-7. [PMID: 15333649 PMCID: PMC1770420 DOI: 10.1136/jcp.2003.014407] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recombinant antibodies are important tools for biomedical research and are increasingly being used as clinical diagnostic/therapeutic reagents. In this article, a background to humanized antibodies is given, together with details of the generation of antibody fragments--for example, single chain Fv fragments. Phage antibody fragments are fast becoming popular and can be generated by simple established methods of affinity enrichment from libraries derived from immune cells. Phage display methodology can also be used for the affinity enrichment of existing antibody fragments to provide a reagent with a higher affinity. Here, phage antibodies are demystified to provide a greater understanding of the potential of these reagents and to engage clinicians and biomedical scientists alike to think about potential applications in pathology and clinical settings.
Collapse
Affiliation(s)
- K A Smith
- Division of Cell and Molecular Medicine, Postgraduate Medical Institute, University of Hull, Cottingham Rd, Hull HU6 7RX, UK.
| | | | | | | | | | | |
Collapse
|