1
|
Leng F, Liu J, Du E, Lei S, Xie C, Jiang X, Li TF. Recent progress in polysaccharide microsphere-based hemostatic material for intravascular and extravascular hemostasis: A review. Int J Biol Macromol 2025; 300:140280. [PMID: 39870271 DOI: 10.1016/j.ijbiomac.2025.140280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/04/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Hemorrhage, a common consequence of diseases, surgical procedures, and traffic accidents, poses a significant threat to public health. Effective hemostasis is crucial for patient survival and prognosis, particular in case of internal bleeding. While polysaccharide microsphere-based hemostatic materials have gained clinical acceptance due to their effectiveness, good biocompatibility, and versatility in both intravascular and extravascular hemostasis, they are limited by their single function and insufficient hemostatic properties. Recently, booming developments have been witnessed in microsphere-based biomaterials to achieve a combination therapy for hemostasis. This review first examines the fundamentals of coagulation process, hemostatic mechanisms, and microsphere fabrication techniques. We then discuss the latest investigations in functionalized microsphere-based hemostatic materials for controlling intravascular and extravascular hemorrhage, focusing on design strategies, hemostatic properties, and clinical implementation. Finally, we also propose some limitations and challenges of these hemostatic materials, aiming to provide valuable insights for future research in novel polysaccharide microsphere-based biomaterial.
Collapse
Affiliation(s)
- Fan Leng
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Jie Liu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Enfu Du
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Sai Lei
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Cong Xie
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
2
|
Peng HT, Bonnici T, Chen Y, Kastrup C, Beckett A. Emulsion-Based Encapsulation of Fibrinogen with Calcium Carbonate for Hemorrhage Control. J Funct Biomater 2025; 16:86. [PMID: 40137365 PMCID: PMC11942888 DOI: 10.3390/jfb16030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Hemorrhage, particularly non-compressible torso bleeding, remains the leading cause of preventable death in trauma. Self-propelling hemostats composed of thrombin-calcium carbonate (CaCO3) particles and protonated tranexamic acid (TXA+) have been shown to reduce blood loss and mortality in severe bleeding animal models. To further enhance both hemostatic and self-propelling properties, this study was to investigate fibrinogen-CaCO3 particles prepared via a water-oil-water (W/O/W) emulsion method. The particles were characterized using light and fluorescence microscopy, gel electrophoresis, rotational thromboelastometry (ROTEM), and video motion tracking. The method produced spherical micrometer-sized particles with various yields and fibrinogen content, depending on the preparation conditions. The highest yield was achieved with sodium carbonate (SC), followed by ammonium carbonate (AC) and sodium bicarbonate (SBC). AC and paraffin generated smaller particles compared to SC and heptane, which were used as the carbonate source and oil phase, respectively. Fibrinogen incorporation led to an increase in particle size, indicating a correlation between fibrinogen content and particle size. Fluorescence microscopy confirmed successful fibrinogen encapsulation, with various amounts and hemostatic effects as assessed by gel electrophoresis and ROTEM. Combining fibrinogen-CaCO3 particles with TXA+ and thrombin-CaCO3 particles showed synergistic hemostatic effects. All fibrinogen-encapsulated particles exhibited self-propulsion when mixed with TXA+ and exposed to water, regardless of fibrinogen content. This study advances current hemostatic particle technology by demonstrating enhanced self-propulsion and fibrinogen incorporation via the W/O/W emulsion method. Further optimization of the encapsulation method could enhance the effectiveness of fibrinogen-CaCO3 particles for hemorrhage control.
Collapse
Affiliation(s)
- Henry T. Peng
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada;
| | - Tristan Bonnici
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada;
| | - Yanyu Chen
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Christian Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA;
| | - Andrew Beckett
- St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada;
- Royal Canadian Medical Services, Ottawa, ON K1A 0K2, Canada
| |
Collapse
|
3
|
Ali-Mohamad N, Cau MF, Wang X, Khavari A, Ringgold K, Naveed A, Sherwood C, Peng N, Zhang Gao H, Zhang Y, Semple H, Peng H, Tenn C, Baylis JR, Beckett A, White NJ, Kastrup CJ. Ruggedized Self-Propelling Hemostatic Gauze Delivers Low Dose of Thrombin and Systemic Tranexamic Acid and Achieves High Survival in Swine With Junctional Hemorrhage. Mil Med 2023; 188:280-287. [PMID: 37948225 DOI: 10.1093/milmed/usad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/30/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Hemorrhage is responsible for 91% of preventable prehospital deaths in combat. Bleeding from anatomic junctions such as the groin, neck, and axillae make up 19% of these deaths, and reports estimate that effective control of junctional hemorrhage could have prevented 5% of fatalities in Afghanistan. Hemostatic dressings are effective but are time-consuming to apply and are limited when proper packing and manual pressure are not feasible, such as during care under fire. CounterFlow-Gauze is a hemostatic dressing that is effective without compression and delivers thrombin and tranexamic acid into wounds. Here, an advanced prototype of CounterFlow-Gauze, containing a range of low thrombin doses, was tested in a lethal swine model of junctional hemorrhage. Outcomes were compared with those of Combat Gauze, the current dressing recommended by Tactical Combat Casualty Care. MATERIALS AND METHODS CounterFlow-Gauze containing thrombin doses of 0, 20, 200, and 500 IU was prepared. Swine received femoral arteriotomies, and CounterFlow-Gauze was packed into wounds without additional manual compression. In a separate study using a similar model of junctional hemorrhage without additional compression, CounterFlow-Gauze containing 500 IU thrombin was tested and compared with Combat Gauze. In both studies, the primary outcomes were survival to 3 h and volume of blood loss. RESULTS CounterFlow-Gauze with 200 and 500 IU had the highest 3-h survival, achieving 70 and 75% survival, respectively. CounterFlow-Gauze resulted in mean peak plasma tranexamic acid concentrations of 9.6 ± 1.0 µg/mL (mean ± SEM) within 3 h. In a separate study with smaller injury, CounterFlow-Gauze with 500 IU achieved 100% survival to 3 h compared with 92% in Combat Gauze animals. CONCLUSIONS An advanced preclinical prototype of CounterFlow-Gauze formulated with a minimized thrombin dose is highly effective at managing junctional hemorrhage without compression. These results demonstrate that CounterFlow-Gauze could be developed into a feasible alternative to Combat Gauze for hemorrhage control on the battlefield.
Collapse
Affiliation(s)
- Nabil Ali-Mohamad
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Massimo F Cau
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xu Wang
- Department of Emergency Medicine, University of Washington, Seattle, WA 98104, USA
| | - Adele Khavari
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kristyn Ringgold
- Department of Emergency Medicine, University of Washington, Seattle, WA 98104, USA
| | - Asad Naveed
- Department of Surgery, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Christopher Sherwood
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nuoya Peng
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Han Zhang Gao
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Youjie Zhang
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hugh Semple
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada
| | - Henry Peng
- Defence Research and Development Canada, Toronto Research Centre, North York, ON M3K 2C9, Canada
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada
| | - James R Baylis
- CoMotion Drug Delivery Systems, Vancouver, BC V7Y 1B3, Canada
| | - Andrew Beckett
- Department of Surgery, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
- Royal Canadian Medical Service, Ottawa, ON, Canada
| | - Nathan J White
- Department of Emergency Medicine, University of Washington, Seattle, WA 98104, USA
| | - Christian J Kastrup
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Shivalkar S, Roy A, Chaudhary S, Samanta SK, Chowdhary P, Sahoo AK. Strategies in design of self-propelling hybrid micro/nanobots for bioengineering applications. Biomed Mater 2023; 18:062003. [PMID: 37703889 DOI: 10.1088/1748-605x/acf975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Micro/nanobots are integrated devices developed from engineered nanomaterials that have evolved significantly over the past decades. They can potentially be pre-programmed to operate robustly at numerous hard-to-reach organ/tissues/cellular sites for multiple bioengineering applications such as early disease diagnosis, precision surgeries, targeted drug delivery, cancer therapeutics, bio-imaging, biomolecules isolation, detoxification, bio-sensing, and clearing up clogged arteries with high soaring effectiveness and minimal exhaustion of power. Several techniques have been introduced in recent years to develop programmable, biocompatible, and energy-efficient micro/nanobots. Therefore, the primary focus of most of these techniques is to develop hybrid micro/nanobots that are an optimized combination of purely synthetic or biodegradable bots suitable for the execution of user-defined tasks more precisely and efficiently. Recent progress has been illustrated here as an overview of a few of the achievable construction principles to be used to make biomedical micro/nanobots and explores the pivotal ventures of nanotechnology-moderated development of catalytic autonomous bots. Furthermore, it is also foregrounding their advancement offering an insight into the recent trends and subsequent prospects, opportunities, and challenges involved in the accomplishments of the effective multifarious bioengineering applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Anwesha Roy
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Shrutika Chaudhary
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Pallabi Chowdhary
- Department of Biotechnology, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| |
Collapse
|
5
|
Nepal A, Tran HD, Nguyen NT, Ta HT. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis. Bioact Mater 2023; 27:231-256. [PMID: 37122895 PMCID: PMC10130630 DOI: 10.1016/j.bioactmat.2023.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
In traumatized patients, the primary cause of mortality is uncontrollable continuous bleeding and unexpected intraoperative bleeding which is likely to increase the risk of complications and surgical failure. High expansion sponges are effective clinical practice for the treatment of wound bleeding (irregular/deep/narrow) that are caused by capillaries, veins and even arterioles as they possess a high liquid absorption ratio so can absorb blood platelets easily in comparison with traditional haemostasis treatments, which involve compression, ligation, or electrical coagulation etc. When in contact with blood, haemostatic sponges can cause platelet adhesion, aggregation, and thrombosis, preventing blood from flowing out from wounds, triggering the release of coagulation factors, causing the blood to form a stable polymerized fibre protein, forming blood clots, and achieving the goal of wound bleeding control. Haemostatic sponges are found in a variety of shapes and sizes. The aim of this review is to facilitate an overview of recent research around haemostatic sponge materials, products, and technology. This paper reviews the synthesis, properties, and characteristics of haemostatic sponges, together with the haemostasis mechanisms of haemostatic sponges (composite materials), such as chitosan, cellulose, gelatin, starch, graphene oxide, hyaluronic acid, alginate, polyethylene glycol, silk fibroin, synthetic polymers silver nanoparticles, zinc oxide nanoparticles, mesoporous silica nanoparticles, and silica nanoparticles. Also, this paper reviews commercial sponges and their properties. In addition to this, we discuss various in-vitro/in-vivo approaches for the evaluation of the effect of sponges on haemostasis.
Collapse
Affiliation(s)
- Akriti Nepal
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Huong D.N. Tran
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Corresponding author. Bioscience Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia..
| |
Collapse
|
6
|
Peng N, Yeh HH, Khavari A, Zhang-Gao H, Tenn C, Semple HA, Cau MF, Beckett A, Kastrup CJ. Efficacy and safety of CounterFlow in animal models of hemorrhage. JOURNAL OF MILITARY, VETERAN AND FAMILY HEALTH 2023. [DOI: 10.3138/jmvfh-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
LAY SUMMARY The efficacy of current hemostatic technologies is limited by several factors. Outward blood flow washes hemostatic drugs away from the wound, and hemostatic drugs often require focus, training, and time to use correctly, are highly specific to one type of injury, or pose severe safety risks. CounterFlow is a novel product that could potentially save military and civilian lives by stopping heavy bleeding from a variety of organs and other bodily locations that current technology cannot easily treat. Upon contact with blood, CounterFlow releases bursts of gas to safely self-propel bio-degradable clot-forming and clot-stabilizing drugs against blood flow, delivering them to the source of bleeding. This unique mechanism allows CounterFlow to be applied quickly to a wide assortment of wounds and to act effectively with little management after application. CounterFlow was tested in multiple animal models representing common and deadly bleeding scenarios, including internal bleeding, care under fire without compression, and surgical bleeding, and it was found to outperform current care options by stopping bleeds faster and increasing survival times. CounterFlow is also safe to use and biocompatible. This narrative review summarizes studies testing the effectiveness and safety of CounterFlow, discusses useful applications, and describes future plans for the product.
Collapse
Affiliation(s)
- Nuoya Peng
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, United States
| | - Han H. Yeh
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, United States
- Department of Mechanical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Adele Khavari
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Han Zhang-Gao
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, Alberta, Canada
| | - Hugh A. Semple
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, Alberta, Canada
| | - Massimo F. Cau
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Beckett
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mechanical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian J. Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, United States
| |
Collapse
|
7
|
Maisha N, Kulkarni C, Pandala N, Zilberberg R, Schaub L, Neidert L, Glaser J, Cannon J, Janeja V, Lavik EB. PEGylated Polyester Nanoparticles Trigger Adverse Events in a Large Animal Model of Trauma and in Naı̈ve Animals: Understanding Cytokine and Cellular Correlations with These Events. ACS NANO 2022; 16:10566-10580. [PMID: 35822898 DOI: 10.1021/acsnano.2c01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intravenously infusible nanoparticles to control bleeding have shown promise in rodents, but translation into preclinical models has been challenging as many of these nanoparticle approaches have resulted in infusion responses and adverse outcomes in large animal trauma models. We developed a hemostatic nanoparticle technology that was screened to avoid one component of the infusion response: complement activation. We administered these hemostatic nanoparticles, control nanoparticles, or saline volume controls in a porcine polytrauma model. While the hemostatic nanoparticles promoted clotting as marked by a decrease in prothrombin time and both the hemostatic nanoparticles and controls did not active complement, in a subset of the animals, hard thrombi were found in uninjured tissues in both the hemostatic and control nanoparticle groups. Using data science methods that allow one to work across heterogeneous data sets, we found that the presence of these thrombi correlated with changes in IL-6, INF-alpha, lymphocytes, and neutrophils. While these findings might suggest that this formulation would not be a safe one for translation for trauma, they provide guidance for developing screening tools to make nanoparticle formulations in the complex milieux of trauma as well as for therapeutic interventions more broadly. This is important as we look to translate intravenously administered nanoparticle formulations for therapies, particularly considering the vascular changes seen in a subset of patients following COVID-19. We need to understand adverse events like thrombi more completely and screen for these events early to make nanomaterials as safe and effective as possible.
Collapse
Affiliation(s)
| | | | | | | | - Leasha Schaub
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Leslie Neidert
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jacob Glaser
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jeremy Cannon
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
8
|
Abstract
Uncontrolled bleeding is a major problem in trauma and emergency medicine. While materials for trauma applications would certainly find utility in traditional surgical settings, the unique environment of emergency medicine introduces additional design considerations, including the need for materials that are easily deployed in austere environments. Ideally, these materials would be available off the shelf, could be easily transported, and would be able to be stored at room temperature for some amount of time. Both natural and synthetic materials have been explored for the development of hemostatic materials. This review article provides an overview of classes of materials used for topical hemostats and newer developments in the area of injectable hemostats for use in emergency medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aryssa Simpson
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA; .,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA; .,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
A review of treatments for non-compressible torso hemorrhage (NCTH) and internal bleeding. Biomaterials 2022; 283:121432. [DOI: 10.1016/j.biomaterials.2022.121432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
|
10
|
Liu A, Wang Q, Zhao Z, Wu R, Wang M, Li J, Sun K, Sun Z, Lv Z, Xu J, Jiang H, Wan M, Shi D, Mao C. Nitric Oxide Nanomotor Driving Exosomes-Loaded Microneedles for Achilles Tendinopathy Healing. ACS NANO 2021; 15:13339-13350. [PMID: 34324304 DOI: 10.1021/acsnano.1c03177] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The microneedle (MN) provides a promising strategy for transdermal delivery of exosomes (EXO), in which the therapeutic effects and clinical applications are greatly reduced by the fact that EXO can only partially reach the injury site by passive diffusion. Here, we designed a detachable MN array to deliver EXO modified by a nitric oxide nanomotor (EXO/MBA) for Achilles tendinopathy (AT) healing. With the releasing of EXO/MBA, l-arginine was converted to nitric oxide by NOS or ROS as the driving force. Benefiting from the motion ability and the property of MPC tending to lower pH, EXO could accumulate at the injury site more efficiently. This work demonstrated that EXO/MBA-loaded MN notably suppressed the inflammation of AT, facilitated the proliferation of tendon cells, increased the expression of Col1a, and prevented extracellular matrix degradation, indicating its potential value in enthesiopathy healing and other related biomedical fields.
Collapse
Affiliation(s)
- Anlong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zinan Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Maochun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Kuoyang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Jia Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Huiming Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
11
|
Biomaterial and cellular implants:foreign surfaces where immunity and coagulation meet. Blood 2021; 139:1987-1998. [PMID: 34415324 DOI: 10.1182/blood.2020007209] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Exposure of blood to a foreign surface in the form of a diagnostic or therapeutic biomaterial device or implanted cells or tissues, elicits an immediate, evolutionarily conserved thrombo-inflammatory response by the host. Primarily designed to protect against invading organisms following an injury, this innate response features instantaneous activation of several blood-borne, highly interactive and well-orchestrated cascades and cellular events that limit bleeding, destroy and eliminate the foreign substance/cells, and promote healing and a return to homeostasis via delicately balanced regenerative processes. In the setting of blood-contacting synthetic or natural biomaterials and implantation of foreign cells/tissues, innate responses are robust, albeit highly context-specific. Unfortunately, they tend to be less than adequately regulated by the host's natural anti-coagulant/anti-inflammatory pathways, thereby jeopardizing the functional integrity of the device, as well as the health of the host. Strategies to achieve biocompatibility with a sustained return to homeostasis, particularly while the device remains in situ and functional, continue to elude scientists and clinicians. In this review, some of the complex mechanisms by which biomaterials and cellular transplants provide a "hub" for activation and amplification of coagulation and immunity - thrombo-inflammation - will be discussed, with a view toward the development of innovative means of overcoming the innate challenges.
Collapse
|
12
|
Abstract
Hemorrhage is the leading cause of preventable death in combat trauma and the secondary cause of death in civilian trauma. A significant number of deaths due to hemorrhage occur before and in the first hour after hospital arrival. A literature search was performed through PubMed, Scopus, and Institute of Scientific Information databases for English language articles using terms relating to hemostatic agents, prehospital, battlefield or combat dressings, and prehospital hemostatic resuscitation, followed by cross-reference searching. Abstracts were screened to determine relevance and whether appropriate further review of the original articles was warranted. Based on these findings, this paper provides a review of a variety of hemostatic agents ranging from clinically approved products for human use to newly developed concepts with great potential for use in prehospital settings. These hemostatic agents can be administered either systemically or locally to stop bleeding through different mechanisms of action. Comparisons of current hemostatic products and further directions for prehospital hemorrhage control are also discussed.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada, Toronto Research Centre, 1133 Sheppard Avenue West, Toronto, ON, M3K 2C9, Canada.
| |
Collapse
|
13
|
de Miguel R, Rubí JM. Negative Thermophoretic Force in the Strong Coupling Regime. PHYSICAL REVIEW LETTERS 2019; 123:200602. [PMID: 31809117 DOI: 10.1103/physrevlett.123.200602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Negative thermophoresis (a particle moving up the temperature gradient) is a somewhat counterintuitive phenomenon which has thus far eluded a simple thermostatistical description. The purpose of this Letter is to show that a thermodynamic framework based on the formulation of a Hamiltonian of mean force has the descriptive ability to capture this interesting and elusive phenomenon in an unusually elegant and straightforward fashion. We propose a mechanism that describes the advent of a thermophoretic force acting from cold to hot on systems that are strongly coupled to a nonisothermal heat bath. When a system is strongly coupled to the heat bath, the system's eigenenergies E_{j} become effectively temperature dependent. This adjustment of the energy levels allows the system to take heat from the environment, +d⟨E_{j}⟩, and return it as work, -d⟨TdE_{j}/dT⟩. This effect can make the temperature dependence of the effective energy profile nonmonotonic. As a result, particles may experience a force in either direction depending on the temperature.
Collapse
Affiliation(s)
- Rodrigo de Miguel
- Department of Teacher Education, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - J Miguel Rubí
- Department of Condensed Matter Physics, University of Barcelona, E-08028 Barcelona, Spain
- PoreLab-Center of Excellence, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
14
|
Girish A, Hickman DA, Banerjee A, Luc N, Ma Y, Miyazawa K, Sekhon UDS, Sun M, Huang S, Sen Gupta A. Trauma-targeted delivery of tranexamic acid improves hemostasis and survival in rat liver hemorrhage model. J Thromb Haemost 2019; 17:1632-1644. [PMID: 31220416 PMCID: PMC10124760 DOI: 10.1111/jth.14552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Trauma-associated hemorrhage and coagulopathy remain leading causes of mortality. Such coagulopathy often leads to a hyperfibrinolytic phenotype where hemostatic clots become unstable because of upregulated tissue plasminogen activator (tPA) activity. Tranexamic acid (TXA), a synthetic inhibitor of tPA, has emerged as a promising drug to mitigate fibrinolysis. TXA is US Food and Drug Administration-approved for treating heavy menstrual and postpartum bleeding, and has shown promise in trauma treatment. However, emerging reports also implicate TXA for off-target systemic coagulopathy, thromboembolic complications, and neuropathy. OBJECTIVE We hypothesized that targeted delivery of TXA to traumatic injury site can enable its clot-stabilizing action site-selectively, to improve hemostasis and survival while avoiding off-target effects. To test this, we used liposomes as a model delivery vehicle, decorated their surface with a fibrinogen-mimetic peptide for anchorage to active platelets within trauma-associated clots, and encapsulated TXA within them. METHODS The TXA-loaded trauma-targeted nanovesicles (T-tNVs) were evaluated in vitro in rat blood, and then in vivo in a liver trauma model in rats. TXA-loaded control (untargeted) nanovesicles (TNVs), free TXA, or saline were studied as comparison groups. RESULTS Our studies show that in vitro, the T-tNVs could resist lysis in tPA-spiked rat blood. In vivo, T-tNVs maintained systemic safety, significantly reduced blood loss and improved survival in the rat liver hemorrhage model. Postmortem evaluation of excised tissue from euthanized rats confirmed systemic safety and trauma-targeted activity of the T-tNVs. CONCLUSION Overall, the studies establish the potential of targeted TXA delivery for safe injury site-selective enhancement and stabilization of hemostatic clots to improve survival in trauma.
Collapse
Affiliation(s)
- Aditya Girish
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - DaShawn A. Hickman
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Ankush Banerjee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Norman Luc
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Yifeng Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Kenji Miyazawa
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Ujjal D. S. Sekhon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Michael Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Stephanie Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
15
|
|
16
|
Albini M, Salvi M, Altamura E, Dinarelli S, Di Donato L, Lucibello A, Mavelli F, Molinari F, Morbiducci U, Ramundo-Orlando A. Movement of giant lipid vesicles induced by millimeter wave radiation change when they contain magnetic nanoparticles. Drug Deliv Transl Res 2019; 9:131-143. [PMID: 30203364 DOI: 10.1007/s13346-018-0572-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. Recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Here we study the effect of external physical stimuli-such as millimeter wave radiation-on the induced movement of giant lipid vesicles in suspension containing or not containing iron oxide maghemite (γ-Fe2O3) nanoparticles (MNPs). To increase our understanding of this phenomenon, we used a new microscope image-based analysis to reveal millimeter wave (MMW)-induced effects on the movement of the vesicles. We found that in the lipid vesicles not containing MNPs, an exposure to MMW induced collective reorientation of vesicle motion occurring at the onset of MMW switch "on." Instead, no marked changes in the movements of lipid vesicles containing MNPs were observed at the onset of first MMW switch on, but, importantly, by examining the course followed; once the vesicles are already irradiated, a directional motion of vesicles was induced. The latter vesicles were characterized by a planar motion, absence of gravitational effects, and having trajectories spanning a range of deflection angles narrower than vesicles not containing MNPs. An explanation for this observed delayed response could be attributed to the possible interaction of MNPs with components of lipid membrane that, influencing, e.g., phospholipids density and membrane stiffening, ultimately leads to change vesicle movement.
Collapse
Affiliation(s)
- Martina Albini
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Massimo Salvi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | | | - Loreto Di Donato
- Department of Electrical, Electronics, and Computer Engineering, University of Catania, Catania, Italy
| | - Andrea Lucibello
- Institute of Microelectronics and Microsystems, CNR, Rome, Italy
| | - Fabio Mavelli
- Department of Chemistry, University of Bari, Bari, Italy
| | - Filippo Molinari
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | |
Collapse
|
17
|
Wang S, Liu K, Wang F, Peng F, Tu Y. The Application of Micro‐ and Nanomotors in Classified Drug Delivery. Chem Asian J 2019; 14:2336-2347. [DOI: 10.1002/asia.201900274] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/04/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Shuanghu Wang
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Kun Liu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Fei Wang
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat-sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| |
Collapse
|
18
|
Onwukwe C, Maisha N, Holland M, Varley M, Groynom R, Hickman D, Uppal N, Shoffstall A, Ustin J, Lavik E. Engineering Intravenously Administered Nanoparticles to Reduce Infusion Reaction and Stop Bleeding in a Large Animal Model of Trauma. Bioconjug Chem 2018; 29:2436-2447. [PMID: 29965731 DOI: 10.1021/acs.bioconjchem.8b00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bleeding from traumatic injury is the leading cause of death for young people across the world, but interventions are lacking. While many agents have shown promise in small animal models, translating the work to large animal models has been exceptionally difficult in great part because of infusion-associated complement activation to nanomaterials that leads to cardiopulmonary complications. Unfortunately, this reaction is seen in at least 10% of the population. We developed intravenously infusible hemostatic nanoparticles that were effective in stopping bleeding and improving survival in rodent models of trauma. To translate this work, we developed a porcine liver injury model. Infusion of the first generation of hemostatic nanoparticles and controls 5 min after injury led to massive vasodilation and exsanguination even at extremely low doses. In naïve animals, the physiological changes were consistent with a complement-associated infusion reaction. By tailoring the zeta potential, we were able to engineer a second generation of hemostatic nanoparticles and controls that did not exhibit the complement response at low and moderate doses but did at the highest doses. These second-generation nanoparticles led to cessation of bleeding within 10 min of administration even though some signs of vasodilation were still seen. While the complement response is still a challenge, this work is extremely encouraging in that it demonstrates that when the infusion-associated complement response is managed, hemostatic nanoparticles are capable of rapidly stopping bleeding in a large animal model of trauma.
Collapse
Affiliation(s)
- Chimdiya Onwukwe
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Nuzhat Maisha
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Mark Holland
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Matt Varley
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Rebecca Groynom
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - DaShawn Hickman
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Nishant Uppal
- Harvard Medical School , 25 Shattuck Street , Boston , Massachusetts 02115 , United States
| | - Andrew Shoffstall
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Jeffrey Ustin
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Erin Lavik
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| |
Collapse
|
19
|
Gao C, Lin Z, Lin X, He Q. Cell Membrane-Camouflaged Colloid Motors for Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| |
Collapse
|
20
|
Abstract
Micro- and nano-motors are emerging as novel drug delivery platforms, offering advantages such as rapid drug transport, high tissue penetration and motion controllability. They can be propelled and/or guided by endogenous (i.e., chemotaxis) or exogenous stimuli (e.g., ultrasound, magnetic fields, light) toward the area of interest. Moreover, such stimuli can be used to trigger the release of a therapeutic payload when the motor reaches certain location in order to improve the drug targeting. In this review article, we highlight medically oriented micro-/nano-motors, in particular the ones created for targeted drug delivery, and discuss their current limitations and possibilities toward in vivo applications.
Collapse
|
21
|
|