1
|
Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era. Front Cell Infect Microbiol 2022; 12:887907. [PMID: 35782115 PMCID: PMC9247192 DOI: 10.3389/fcimb.2022.887907] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Despite significant healthcare advances in the 21st century, the exact etiology of dental caries remains unsolved. The past two decades have witnessed a tremendous growth in our understanding of dental caries amid the advent of revolutionary omics technologies. Accordingly, a consensus has been reached that dental caries is a community-scale metabolic disorder, and its etiology is beyond a single causative organism. This conclusion was based on a variety of microbiome studies following the flow of information along the central dogma of biology from genomic data to the end products of metabolism. These studies were facilitated by the unprecedented growth of the next- generation sequencing tools and omics techniques, such as metagenomics and metatranscriptomics, to estimate the community composition of oral microbiome and its functional potential. Furthermore, the rapidly evolving proteomics and metabolomics platforms, including nuclear magnetic resonance spectroscopy and/or mass spectrometry coupled with chromatography, have enabled precise quantification of the translational outcomes. Although the majority supports 'conserved functional changes' as indicators of dysbiosis, it remains unclear how caries dynamics impact the microbiota functions and vice versa, over the course of disease onset and progression. What compounds the situation is the host-microbiota crosstalk. Genome-wide association studies have been undertaken to elucidate the interaction of host genetic variation with the microbiome. However, these studies are challenged by the complex interaction of host genetics and environmental factors. All these complementary approaches need to be orchestrated to capture the key players in this multifactorial disease. Herein, we critically review the milestones in caries research focusing on the state-of-art singular and integrative omics studies, supplemented with a bibliographic network analysis to address the oral microbiome, the host factors, and their interactions. Additionally, we highlight gaps in the dental literature and shed light on critical future research questions and study designs that could unravel the complexities of dental caries, the most globally widespread disease.
Collapse
Affiliation(s)
- Dina G. Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamer A. Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
3
|
Willmann C, Mata X, Hanghoej K, Tonasso L, Tisseyre L, Jeziorski C, Cabot E, Chevet P, Crubézy E, Orlando L, Esclassan R, Thèves C. Oral health status in historic population: Macroscopic and metagenomic evidence. PLoS One 2018; 13:e0196482. [PMID: 29768437 PMCID: PMC5955521 DOI: 10.1371/journal.pone.0196482] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Recent developments in High-Throughput DNA sequencing (HTS) technologies and ancient DNA (aDNA) research have opened access to the characterization of the microbial communities within past populations. Most studies have, however, relied on the analysis of dental calculus as one particular material type particularly prone to the molecular preservation of ancient microbial biofilms and potential of entire teeth for microbial characterization, both of healthy communities and pathogens in ancient individuals, remains overlooked. In this study, we used shotgun sequencing to characterize the bacterial composition from historical subjects showing macroscopic evidence of oral pathologies. We first carried out a macroscopic analysis aimed at identifying carious or periodontal diseases in subjects belonging to a French rural population of the 18th century AD. We next examined radiographically six subjects showing specific, characteristic dental pathologies and applied HTS shotgun sequencing to characterize the microbial communities present in and on the dental material. The presence of Streptococcus mutans and also Rothia dentocariosa, Actinomyces viscosus, Porphyromonas gingivalis, Tannerella forsythia, Pseudoramibacter alactolyticus, Olsenella uli and Parvimonas micra was confirmed through the presence of typical signatures of post-mortem DNA damage at an average depth-of-coverage ranging from 0.5 to 7X, with a minimum of 35% (from 35 to 93%) of the positions in the genome covered at least once. Each sampled tooth showed a specific bacterial signature associated with carious or periodontal pathologies. This work demonstrates that from a healthy independent tooth, without visible macroscopic pathology, we can identify a signature of specific pathogens and deduce the oral health status of an individual.
Collapse
Affiliation(s)
- Claire Willmann
- Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
- Service d’odontologie de l’Hôtel-Dieu, Toulouse, France
| | - Xavier Mata
- Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Kristian Hanghoej
- Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Laure Tonasso
- Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Lenka Tisseyre
- Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | | | - Elodie Cabot
- Institut National de Recherches Archéologiques Préventives, INRAP Grand Ouest, Cesson-Sévigné, France
- Anthropologie Bio-Culturelle, Droit, Ethique et Santé, Faculté de Médecine Site Nord (UMR 7268), Marseille, France
| | - Pierre Chevet
- Institut National de Recherches Archéologiques Préventives, INRAP Grand Ouest, Cesson-Sévigné, France
| | - Eric Crubézy
- Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Ludovic Orlando
- Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Rémi Esclassan
- Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
- Service d’odontologie de l’Hôtel-Dieu, Toulouse, France
| | - Catherine Thèves
- Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse UMR 5288, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
- * E-mail:
| |
Collapse
|
4
|
Xu P, Gunsolley J. Application of metagenomics in understanding oral health and disease. Virulence 2014; 5:424-32. [PMID: 24642489 DOI: 10.4161/viru.28532] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Oral diseases including periodontal disease and caries are some of the most prevalent infectious diseases in humans. Different microbial species cohabitate and form a polymicrobial biofilm called dental plaque in the oral cavity. Metagenomics using next generation sequencing technologies has produced bacterial profiles and genomic profiles to study the relationships between microbial diversity, genetic variation, and oral diseases. Several oral metagenomic studies have examined the oral microbiome of periodontal disease and caries. Gene annotations in these studies support the association of specific genes or metabolic pathways with oral health and with specific diseases. The roles of pathogenic species and functions of specific genes in oral disease development have been recognized by metagenomic analysis. A model is proposed in which three levels of interactions occur in the oral microbiome that determines oral health or disease.
Collapse
Affiliation(s)
- Ping Xu
- VCU Philips Institute; Virginia Commonwealth University; Richmond, VA USA; Center for the Study of Biological Complexity; Virginia Commonwealth University; Richmond, VA USA; Department of Microbiology and Immunology; Virginia Commonwealth University; Richmond, VA USA
| | - John Gunsolley
- Periodontics Department; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
6
|
Alcaraz L, Belda-Ferre P, Cabrera-Rubio R, Romero H, Simon-Soro A, Pignatelli M, Mira A. Identifying a healthy oral microbiome through metagenomics. Clin Microbiol Infect 2012; 18 Suppl 4:54-7. [DOI: 10.1111/j.1469-0691.2012.03857.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|