1
|
Xue YH, Jia T, Yang N, Sun ZX, Xu ZY, Wen XL, Feng LS. Transcriptome alterations in zebrafish gill after exposure to different sizes of microplastics. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:347-356. [PMID: 35491826 DOI: 10.1080/10934529.2022.2064668] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Most studies on microplastics (MPs) focused on gut, liver, and brain, and MPs toxicity was size-dependent, but less has been reported on gill. Here, zebrafish were exposed to three sizes of MPs (45-53 μm, 90-106 μm, and 250-300 μm). Next, comparative transcriptome analysis and determination of physiological indices were performed in zebrafish gills to elucidate the size-associated toxicity of MPs to fish gills. Compared with the control, 60, 344, and 802 differentially expressed genes (DEGs) were identified after exposure to 45-53 μm, 90-106 μm, and 250-300 μm MPs for 5 days, respectively. More DEGs in treatment with bigger MPs suggested that bigger MPs might induce more changes in zebrafish gills than smaller ones. These DEGs were significantly enriched in the FoxO signaling, cellular senescence, circadian rhythm and p53 signaling pathways. Besides, 90-106 μm and 250-300 μm MPs treatments inhibited the cell cycle and prevented the apoptosis. The GSH content significantly increased after MPs exposure, suggesting the induction of oxidative stress. AChE and Na+/K+-ATPase activities were significantly lowered in all MPs treatments than in the control, suggesting the inhibition of neurotransmission and ion regulation. These changes might negatively influence the normal functioning of gills, such as osmoregulation, ion regulation, and respiration.
Collapse
Affiliation(s)
- Ying-Hao Xue
- College of Land and Environment, Shenyang Agricultural University, Shenyang, P.R. China
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Tao Jia
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Ning Yang
- Liaoning Academy of Agricultural Sciences, Shenyang, P.R. China
| | - Zhan-Xiang Sun
- Liaoning Academy of Agricultural Sciences, Shenyang, P.R. China
| | - Zhi-Yu Xu
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China
| | - Xin-Li Wen
- School of Ecology and Environment, Anhui Normal University, Wuhu, P.R. China
| | - Liang-Shan Feng
- Liaoning Academy of Agricultural Sciences, Shenyang, P.R. China
| |
Collapse
|
2
|
Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest. Sci Rep 2016; 6:25594. [PMID: 27146698 PMCID: PMC4857138 DOI: 10.1038/srep25594] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/20/2016] [Indexed: 01/06/2023] Open
Abstract
Cell cycle regulation is critical for chondrocyte differentiation and hypertrophy. Recently we identified the Notch signaling pathway as an important regulator of chondrocyte proliferation and differentiation during mouse cartilage development. To investigate the underlying mechanisms, we assessed the role for Notch signaling regulation of the cell cycle during chondrocyte differentiation. Real-time RT-PCR data showed that over-expression of the Notch Intracellular Domain (NICD) significantly induced the expression of p57, a cell cycle inhibitor, in chondrocytes. Flow cytometric analyses further confirmed that over-expression of NICD in chondrocytes enhances the G0/G1 cell cycle transition and cell cycle arrest. In contrast, treatment of chondrocytes with the Notch inhibitor, DAPT, decreased both endogenous and BMP2-induced SMAD 1/5/8 phosphorylation and knockdown of SMAD 1/5/8 impaired NICD-induced chondrocyte differentiation and p57 expression. Co-immunoprecipitation using p-SMAD 1/5/8 and NICD antibodies further showed a strong interaction of these proteins during chondrocyte maturation. Finally, RT-PCR and Western blot results revealed a significant reduction in the expression of the SMAD-related phosphatase, PPM1A, following NICD over-expression. Taken together, our results demonstrate that Notch signaling induces cell cycle arrest and thereby initiates chondrocyte hypertrophy via BMP/SMAD-mediated up-regulation of p57.
Collapse
|
3
|
Tanaka N, Araki K, Mizokami D, Miyagawa Y, Yamashita T, Tomifuji M, Ueda Y, Inoue M, Matsushita K, Nomura F, Shimada H, Shiotani A. Sendai virus-mediated gene transfer of the c-myc suppressor far-upstream element-binding protein-interacting repressor suppresses head and neck cancer. Gene Ther 2015; 22:297-304. [PMID: 25588744 DOI: 10.1038/gt.2014.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/03/2014] [Accepted: 11/20/2014] [Indexed: 01/25/2023]
Abstract
Far-upstream element-binding protein-interacting repressor (FIR) is a transcription factor that inhibits c-Myc expression and has been shown to have antitumor effects in some malignancies. Here, we evaluated the antitumor effects of FIR using fusion gene-deleted Sendai virus (SeV/ΔF) as a nontransmissible vector against head and neck squamous cell carcinoma (HNSCC). Using in vitro and in vivo xenograft mouse models, we observed efficient expression of green fluorescent protein (GFP) following transduction with the SeV/ΔF vector encoding GFP (GFP-SeV/ΔF) into HNSCC cells. In vitro and in vivo studies revealed that administration of the FIR-encoded SeV/ΔF (FIR-SeV/ΔF) vector exerted significant antitumor effects, suppressed c-Myc expression and induced apoptosis in HNSCC. Additionally, the antitumor effects of FIR or the expression of GFP following administration of the FIR- or GFP-SeV/ΔF vector, respectively, were dependent on the multiplicity of infection or titer. Furthermore, the SeV/ΔF vector itself had no cytotoxic effects. Therefore, the SeV/ΔF vector may be safe and useful for the treatment of HNSCC, allowing for high-titer SeV/ΔF vector administration for anticancer gene therapy. In addition, SeV/ΔF vector-mediated FIR gene therapy demonstrated effective tumor suppression in HNSCC, suggesting that this therapy may have the potential for clinical use as a novel strategy for HNSCC treatment.
Collapse
Affiliation(s)
- N Tanaka
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - K Araki
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - D Mizokami
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Y Miyagawa
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - T Yamashita
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - M Tomifuji
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Y Ueda
- Department of Gene Medicine, DNAVEC Corporation, Ibaraki, Japan
| | - M Inoue
- Department of Gene Medicine, DNAVEC Corporation, Ibaraki, Japan
| | - K Matsushita
- Department of Molecular Diagnosis and Division of Clinical Genetics and Proteomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - F Nomura
- Department of Molecular Diagnosis and Division of Clinical Genetics and Proteomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - H Shimada
- Department of Surgery, Toho University School of Medicine, Tokyo, Japan
| | - A Shiotani
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| |
Collapse
|
4
|
Frisa PS, Jacobberger JW. Cytometry of chromatin bound Mcm6 and PCNA identifies two states in G1 that are separated functionally by the G1 restriction point. BMC Cell Biol 2010; 11:26. [PMID: 20398392 PMCID: PMC2882901 DOI: 10.1186/1471-2121-11-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 04/16/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cytometric measurements of DNA content and chromatin-bound Mcm2 have demonstrated bimodal patterns of expression in G1. These patterns, the replication licensing function of Mcm proteins, and a correlation between Mcm loading and cell cycle commitment for cells re-entering the cell cycle, led us to test the idea that cells expressing a defined high level of chromatin-bound Mcm6 in G1 are committed--i.e., past the G1 restriction point. We developed a cell-based assay for tightly-bound PCNA (PCNA*) and Mcm6 (Mcm6*), DNA content, and a mitotic marker to clearly define G1, S, G2, and M phases of the cell cycle. hTERT-BJ1, hTERT-RPE-1, and Molt4 cells were extracted with Triton X-100 followed by methanol fixation, stained with antibodies and DAPI, then measured by cytometry. RESULTS Bivariate analysis of cytometric data demonstrated complex patterns with distinct clustering for all combinations of the 4 variables. In G1, cells clustered in two groups characterized by low and high Mcm6* expression. Serum starvation and release experiments showed that residence in the high group was in late G1, just prior to S phase. Kinetic experiments, employing serum withdrawal, and stathmokinetic analysis with aphidicolin, mimosine or nocodazole demonstrated that cells with high levels of Mcm6* cycled with the committed phases of the cell cycle (S, G2, and M). CONCLUSIONS A multivariate assay for Mcm6*, PCNA*, DNA content, and a mitotic marker provides analysis capable of estimating the fraction of pre and post-restriction point G1 cells and supports the idea that there are at least two states in G1 defined by levels of chromatin bound Mcm proteins.
Collapse
Affiliation(s)
- Phyllis S Frisa
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
5
|
|
6
|
Kalakonda S, Nallar SC, Gong P, Lindner DJ, Goldblum SE, Reddy SP, Kalvakolanu DV. Tumor suppressive protein gene associated with retinoid-interferon-induced mortality (GRIM)-19 inhibits src-induced oncogenic transformation at multiple levels. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1352-68. [PMID: 17823279 PMCID: PMC1988884 DOI: 10.2353/ajpath.2007.070241] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interferons (IFNs) inhibit the growth of infectious pathogens and tumor development. Although IFNs are potent tumor suppressors, they modestly inhibit the growth of some human solid tumors. Their weak activity against such tumors is augmented by co-treatment with differentiation-inducing agents such as retinoids. Previous studies from our laboratory identified a novel gene product, gene associated with retinoid-interferon-induced mortality (GRIM)-19, as an IFN/all-trans retinoic acid-induced growth suppressor. However, the mechanisms of its growth suppressive actions are unclear. The src-family of tyrosine kinases is important regulators of various cell growth responses. Mutational activation of src causes cellular transformation by altering transcription and cytoskeletal properties. In this study, we show that GRIM-19 suppresses src-induced cellular transformation in vitro and in vivo by down-regulating the expression of a number of signal transducer and activator of transcription-3 (STAT3)-dependent cellular genes. In addition, GRIM-19 inhibited the src-induced cell motility and metastasis by suppressing the tyrosyl phosphorylation of focal adhesion kinase, paxillin, E-cadherin, and gamma-catenin. Effects of GRIM-19 on src-induced cellular transformation are reversible in the presence of specific short hairpin RNA, indicating its direct effect on transformation. GRIM-19-mediated inhibition of the src-induced tyrosyl phosphorylation of cellular proteins, such as focal adhesion kinase and paxillin, seems to occur independently of the STAT3 protein. GRIM-19 had no significant effect on the cellular transformation induced by other oncogenes such as myc and Ha-ras. Thus, GRIM-19 not only blocks src-induced gene expression through STAT3 but also the activation of cell adhesion molecules.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Down-Regulation
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Interferons/pharmacology
- NADH, NADPH Oxidoreductases/antagonists & inhibitors
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- Phosphorylation
- RNA, Small Interfering/pharmacology
- Rats
- Retinoids/pharmacology
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- Transfection
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Tyrosine/metabolism
- src-Family Kinases/antagonists & inhibitors
Collapse
Affiliation(s)
- Sudhakar Kalakonda
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, 660 West Redwood St., Howard Hall 350, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Embryonic stem cells have the capacity for unlimited proliferation while retaining their potential to differentiate into a wide variety of cell types. Murine, primate and human embryonic stem cells (ESCs) exhibit a very unusual cell cycle structure, characterized by a short G1 phase and a high proportion of cells in S-phase. In the case of mESCs, this is associated with a unique mechanism of cell cycle regulation, underpinned by the precocious activity of cyclin dependent protein kinase (Cdk) activities. As ES cells differentiate, their cell cycle structure changes dramatically so as to incorporate a significantly longer G1 phase and their mechanism of cell cycle regulation changes to that typically seen in other mammalian cells. The unique cell cycle structure and mechanism of cell cycle control indicates that the cell cycle machinery plays a role in establishment or maintenance of the stem cell state. This idea is supported by the frequent involvement of cell cycle regulatory molecules in cell immortalization.
Collapse
Affiliation(s)
- Josephine White
- Department of Molecular Biosciences, University of Adelaide, South Australia, 5005
| | | |
Collapse
|
8
|
Hong J, Zhao Y, Huang W. Blocking c-myc and stat3 by E. coli expressed and enzyme digested siRNA in mouse melanoma. Biochem Biophys Res Commun 2006; 348:600-5. [PMID: 16890193 DOI: 10.1016/j.bbrc.2006.07.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 07/19/2006] [Indexed: 12/26/2022]
Abstract
Tumour cells often show alteration in the signal-transduction pathways, leading to proliferation in response to external signals. Oncogene overexpression and constitutive expression is a common phenomenon in the development and progression of many human cancers. Therefore oncogenes provide potential targets for cancer therapy. RNA interference (RNAi), mediated by small interfering RNA (siRNA), silences genes with a high degree of specificity and potentially represents a general approach for molecularly targeted anti-cancer therapy. The data presented in this report evaluated the method of systemically administering combined esiRNAs to multiple targets as compared with the method of using a single kind of esiRNA to a single target. Our experimental data revealed that the mixed treatment of esiC-MYC and esiSTAT3 had a better inhibition effect than the single treatment of esiC-MYC or esiSTAT3 on mouse B16 melanoma.
Collapse
Affiliation(s)
- Jie Hong
- Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | |
Collapse
|
9
|
Ponzielli R, Katz S, Barsyte-Lovejoy D, Penn LZ. Cancer therapeutics: targeting the dark side of Myc. Eur J Cancer 2005; 41:2485-501. [PMID: 16243519 DOI: 10.1016/j.ejca.2005.08.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The potent Myc oncoprotein plays a pivotal role as a regulator of tumorigenesis in numerous human cancers of diverse origin. Experimental evidence shows that inhibiting Myc significantly halts tumour cell growth and proliferation. This review summarises recent progress in understanding the function of Myc as a transcription factor, with emphasis on key protein interactions and target gene regulation. In addition, major advances in drug development aimed at eliminating Myc are described, including antisense and triple helix forming oligonucleotides, porphyrins and siRNA. Future anti-Myc strategies are also discussed that inhibit Myc at the level of expression and/or function. Targeting the dark side of Myc with novel therapeutic agents promises to have a profound impact in combating cancer.
Collapse
Affiliation(s)
- Romina Ponzielli
- Ontario Cancer Institute/Princess Margaret Hospital, Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ont., Canada M5G 2M9
| | | | | | | |
Collapse
|
10
|
Abstract
E-type cyclins (cyclin E1 and cyclin E2) are expressed during the late G1 phase of the cell cycle until the end of the S-phase. The activity of cyclin E is limiting for the passage of cells through the restriction point "R" which marks a "point of no return" for cells entering the division cycle from a resting state or passing from G1 into S-phase. Expression of cyclin E is regulated on the level of gene transcription mainly by members of the E2F trrnscription factor family and by its degradation via the proteasome pathway. Cyclin E binds and activates the kinase Cdk2 and by phosphorylating its substrates, the so-called "pocket proteins", the cyclic/Cdk2 complexes initiate a cascade of events that leads to the expression of S-phase specific genes. Aside from this specific function as a regulator of S-phase-entry, cyclin E plays a direct role in the initiation of DNA replication, the control of genomic stability, and the centrosome cycle. Surprisingly, recent studies have shown that the once thought essential cyclin E is dispensable for the development of higher eukaryotes and for the mitotic division of eukaryotic cells. Nevertheless, high level cyclin E expression has been associated with the initiation or progression of different human cancers, in particular breast cancer but also leukemia, lymphoma and others. Transgenic mouse models in which cyclin E is constitutively expressed develop malignant diseases, supporting the notion of cyclin E as a dominant onco-protein.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut für Zellbiologie (Tumorforschung) (IFZ), Universitätsklinikum Essen, Virchowstrasse 173, D-45122 Essen, Germany.
| | | |
Collapse
|
11
|
Kassam A, Der SD, Mogridge J. Differentiation of human monocytic cell lines confers susceptibility to Bacillus anthracis lethal toxin. Cell Microbiol 2004; 7:281-92. [PMID: 15659071 DOI: 10.1111/j.1462-5822.2004.00458.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anthrax lethal toxin (LT) is comprised of protective antigen and lethal factor. Lethal factor enters mammalian cells in a protective antigen-dependent process and cleaves mitogen-activated protein kinase kinases. Although LT has no observable effect on many cell types, it causes necrosis in macrophages derived from certain mouse strains and apoptosis in activated mouse macrophages. In this study, we observed that LT treatment of three different human monocytic cell lines U-937, HL-60 and THP-1 did not induce cell death. Cells did become susceptible to the toxin, however, after differentiation into a macrophage-like state. Treatment with LT resulted in decreased phosphorylation of p38, ERK1/2 and JNK in both undifferentiated and differentiated HL-60 cells, suggesting that the change in susceptibility does not result from differences in toxin delivery or substrate cleavage. Death of differentiated HL-60 cells was accompanied by chromosome condensation and DNA fragmentation, but was not inhibited by the pan-caspase inhibitor Z-VAD-FMK. In addition, we observed that the macrophage differentiation process could be inhibited by LT. Our results indicate that LT-mediated death of mouse and human macrophages may occur through distinct processes and that the differentiation state of human cells can determine susceptibility or resistance to LT.
Collapse
Affiliation(s)
- Altaf Kassam
- Department of Laboratory Medicine and Pathobiology, University of Toronto M5S 1A8, ON, Canada
| | | | | |
Collapse
|
12
|
Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 2004; 337:1-13. [PMID: 15276197 DOI: 10.1016/j.gene.2004.04.032] [Citation(s) in RCA: 514] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Revised: 04/04/2004] [Accepted: 04/26/2004] [Indexed: 11/27/2022]
Abstract
Cell cycle progression is regulated by a wide variety of external factors, amongst them are growth factors and extracellular matrix factors. During the last decades evidence has been obtained that reactive oxygen species (ROS) may also play an important role in cell cycle progression. ROS may be generated by external and internal factors. In this overview we describe briefly the generation of ROS and their effects on processes that have been demonstrated to play an essential role in cell cycle progression, including such systems as signal transduction cascades, protein ubiquitination and degradation, and the cytoskeleton. These different effects of ROS influence cell cycle progression dependent upon the amount and duration of ROS exposure. Activation of growth factor stimulated signaling cascades by low levels of ROS result in increased cell cycle progression, or, in case of prolonged exposure, to a differentiation like growth arrest. From many studies it seems clear that the cyclin kinase inhibitor protein p21 plays a prominent role, leading to cell cycle arrest at higher but not directly lethal levels of ROS. Dependent upon the nature of p21 induction, the cell cycle arrest may be transient, coupled to repair processes, or permanent. At high concentrations of ROS all of the above processes are activated, in combination with enhanced damage to the building blocks of the cell, leading to apoptosis or even necrosis.
Collapse
Affiliation(s)
- Johannes Boonstra
- Department of Cell Biology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
13
|
Wrobel CN, Debnath J, Lin E, Beausoleil S, Roussel MF, Brugge JS. Autocrine CSF-1R activation promotes Src-dependent disruption of mammary epithelial architecture. ACTA ACUST UNITED AC 2004; 165:263-73. [PMID: 15117969 PMCID: PMC2172030 DOI: 10.1083/jcb.200309102] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elevated coexpression of colony-stimulating factor receptor (CSF-1R) and its ligand, CSF-1, correlates with invasiveness and poor prognosis of a variety of epithelial tumors (Kacinski, B.M. 1995. Ann. Med. 27:79–85). Apart from recruitment of macrophages to the tumor site, the mechanisms by which CSF-1 may potentiate invasion are poorly understood. We show that autocrine CSF-1R activation induces hyperproliferation and a profound, progressive disruption of junctional integrity in acinar structures formed by human mammary epithelial cells in three-dimensional culture. Acini coexpressing receptor and ligand exhibit a dramatic relocalization of E-cadherin from the plasma membrane to punctate intracellular vesicles, accompanied by its loss from the Triton-insoluble fraction. Interfering with Src kinase activity, either by pharmacological inhibition or mutation of the Y561 docking site on CSF-1R, prevents E-cadherin translocation, suggesting that CSF-1R disrupts cell adhesion by uncoupling adherens junction complexes from the cytoskeleton and promoting cadherin internalization through a Src-dependent mechanism. These findings provide a mechanistic basis whereby CSF-1R could contribute to invasive progression in epithelial cancers.
Collapse
Affiliation(s)
- Carolyn N Wrobel
- Dept. of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
14
|
Gala S, Williamson P. E2F1 promotes cytokine mediated cell survival via a mechanism that is separable from its cell cycle regulatory effects. Immunol Invest 2004; 33:173-91. [PMID: 15195696 DOI: 10.1081/imm-120034233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cytokines are important regulators of lymphocyte proliferation and survival during immune responses. The retinoblastoma pathway constitutes an important intracellular network that forms the basis of cell cycle regulation and cellular proliferation in all mammalian cells. Transcription factors of the E2F family form a central component of this pathway, and represent important targets for activation by mitogenic cytokines such as interleukin-2 (IL-2). We have previously described a model for study of the E2F1 transcription factor by stable overexpression in the cytokine-dependent lymphoid progenitor cell line BaF-B03. In this model of IL-2 receptor signalling, E2F1 overexpressing BaF-B03 cells exhibit cytokine-independent cellular proliferation and survival, thereby supporting the concept that E2F activation is a critical step in the genesis of clonal expansion of antigen-primed lymphocytes. Here, we provide evidence linking E2FI to a serum-dependent cell survival pathway that is separable from its cell cycle regulatory effects. Our data show that the serum glycerophospholipid lysophosphatidic acid is capable of mediating this survival effect via a mechanism that is sensitive to chemical inhibition of phosphatidylinositol 3-kinase. IL-2 mediated cell survival, but not cell cycle progression, is dependent upon this serum-dependent cell survival pathway. The findings presented here provide an insight into how mitogenic cytokines such as IL-2 regulate the apparently separate processes of lymphocyte proliferation and survival via recruitment of the retinoblastoma pathway.
Collapse
Affiliation(s)
- Salvador Gala
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
15
|
Zhang B, Fenton RG. Proliferation of IL-6-independent multiple myeloma does not require the activity of extracellular signal-regulated kinases (ERK1/2). J Cell Physiol 2002; 193:42-54. [PMID: 12209879 DOI: 10.1002/jcp.10148] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The evolutionarily conserved Ras/Raf/MEK/ERK pathway is thought to be essential for proliferation of eukaryotic cells. The human multiple myeloma (MM) cell line 8226 encodes an activated K-ras allele and proliferates without requirement for the main MM growth and survival factor IL-6. Surprisingly, the addition of the MEK1/2 inhibitors PD98059 or U0126 to 8226 cultures at doses that block virtually all ERK1/2 activity had minimal effects on the rapid proliferation of this cell line. In contrast, proliferation of the IL-6-dependent MM cell line, ANBL-6 was blocked by PD98059. Levels of activated forms of the other classical MAP kinases (JNK and p38) were very low during MM cell proliferation and, therefore, do not substitute for the mitogenic activities normally regulated by ERK kinases. These data demonstrate that proliferation of 8226 cells does not require ERK1/2 activity, and suggest that IL-6-independent growth of MM may correlate with independence from a requirement for ERK activity. Other signal transduction pathways that appear to regulate cell cycle progression in these cells were examined.
Collapse
Affiliation(s)
- Bin Zhang
- Greenebaum Cancer Center, University of Maryland Medical System, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
16
|
Michalides RJAM, van de Brekel M, Balm F. Defects in G1-S cell cycle control in head and neck cancer: a review. Head Neck 2002; 24:694-704. [PMID: 12112544 DOI: 10.1002/hed.10109] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tumors gradually develop as a result of a multistep acquisition of genetic alterations and ultimately emerge as selfish, intruding and metastatic cells. The genetic defects associated with the process of tumor progression affect control of proliferation, programmed cell death, cell aging, angiogenesis, escape from immune control and metastasis. Fundamental cancer research over the last thirty years has revealed a multitude of genetic alterations which specify more or less separate steps in tumor development and which are collectively responsible for the process of tumor progression. The genes affected play in normal cells a crucial role in control over cell duplication and the interaction between cells, and between cells and their direct surrounding. This is illustrated on control during the G1/S phase of the cell cycle by its ultimate regulators: cyclins and cyclin dependent kinases. These proteins not only control the transition through the G1/S phase of the cell cycle, but also serve as mediators of the interaction between cells, and between cells and their surrounding. Defaults in the regulation of these proteins are associated with tumor progression, and, therefore, serve as targets for therapy. Defaults in those genes are found in various tumor types, although some of those prevail in particular tumor types. In this review emphasis is given to the defaults that occur in head and neck cancer.
Collapse
Affiliation(s)
- Rob J A M Michalides
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands.
| | | | | |
Collapse
|
17
|
Pinto JT, Lapsia S, Shah A, Santiago H, Kim G. Antiproliferative effects of garlic-derived and other allium related compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 492:83-106. [PMID: 11480677 DOI: 10.1007/978-1-4615-1283-7_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J T Pinto
- Nutrition Research Laboratory, Memorial Sloan-Kettering Cancer Center, and Weill Medical College of Cornell University New York, New York, USA
| | | | | | | | | |
Collapse
|
18
|
Sever-Chroneos Z, Angus SP, Fribourg AF, Wan H, Todorov I, Knudsen KE, Knudsen ES. Retinoblastoma tumor suppressor protein signals through inhibition of cyclin-dependent kinase 2 activity to disrupt PCNA function in S phase. Mol Cell Biol 2001; 21:4032-45. [PMID: 11359910 PMCID: PMC87065 DOI: 10.1128/mcb.21.12.4032-4045.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Accepted: 03/13/2001] [Indexed: 11/20/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (RB) is a negative regulator of the cell cycle that inhibits both G(1) and S-phase progression. While RB-mediated G(1) inhibition has been extensively studied, the mechanism utilized for S-phase inhibition is unknown. To delineate the mechanism through which RB inhibits DNA replication, we generated cells which inducibly express a constitutively active allele of RB (PSM-RB). We show that RB-mediated S-phase inhibition does not inhibit the chromatin binding function of MCM2 or RPA, suggesting that RB does not regulate the prereplication complex or disrupt early initiation events. However, activation of RB in S-phase cells disrupts the chromatin tethering of PCNA, a requisite component of the DNA replication machinery. The action of RB was S phase specific and did not inhibit the DNA damage-mediated association of PCNA with chromatin. We also show that RB-mediated PCNA inhibition was dependent on downregulation of CDK2 activity, which was achieved through the downregulation of cyclin A. Importantly, restoration of cyclin-dependent kinase 2 (CDK2)-cyclin A and thus PCNA activity partially restored S-phase progression in the presence of active RB. Therefore, the data presented identify RB-mediated regulation of PCNA activity via CDK2 attenuation as a mechanism through which RB regulates S-phase progression. Together, these findings identify a novel pathway of RB-mediated replication inhibition.
Collapse
Affiliation(s)
- Z Sever-Chroneos
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Bouchard M, Giannakopoulos S, Wang EH, Tanese N, Schneider RJ. Hepatitis B virus HBx protein activation of cyclin A-cyclin-dependent kinase 2 complexes and G1 transit via a Src kinase pathway. J Virol 2001; 75:4247-57. [PMID: 11287574 PMCID: PMC114170 DOI: 10.1128/jvi.75.9.4247-4257.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Numerous studies have demonstrated that the hepatitis B virus HBx protein stimulates signal transduction pathways and may bind to certain transcription factors, particularly the cyclic AMP response element binding protein, CREB. HBx has also been shown to promote early cell cycle progression, possibly by functionally replacing the TATA-binding protein-associated factor 250 (TAF(II)250), a transcriptional coactivator, and/or by stimulating cytoplasmic signal transduction pathways. To understand the basis for early cell cycle progression mediated by HBx, we characterized the molecular mechanism by which HBx promotes deregulation of the G0 and G1 cell cycle checkpoints in growth-arrested cells. We demonstrate that TAF(II)250 is absolutely required for HBx activation of the cyclin A promoter and for promotion of early cell cycle transit from G0 through G1. Thus, HBx does not functionally replace TAF(II)250 for transcriptional activity or for cell cycle progression, in contrast to a previous report. Instead, HBx is shown to activate the cyclin A promoter, induce cyclin A-cyclin-dependent kinase 2 complexes, and promote cycling of growth-arrested cells into G1 through a pathway involving activation of Src tyrosine kinases. HBx stimulation of Src kinases and cyclin gene expression was found to force growth-arrested cells to transit through G1 but to stall at the junction with S phase, which may be important for viral replication.
Collapse
Affiliation(s)
- M Bouchard
- Department of Microbiology, NYU School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
20
|
Crul M, de Klerk GJ, Beijnen JH, Schellens JH. Ras biochemistry and farnesyl transferase inhibitors: a literature survey. Anticancer Drugs 2001; 12:163-84. [PMID: 11290863 DOI: 10.1097/00001813-200103000-00001] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last decades, knowledge on the genetic defects involved in tumor formation and growth has increased rapidly. This has launched the development of novel anticancer agents, interfering with the proteins encoded by the identified mutated genes. One gene of particular interest is ras, which is found mutated at high frequency in a number of malignancies. The Ras protein is involved in signal transduction: it passes on stimuli from extracellular factors to the cell nucleus, thereby changing the expression of a number of growth regulating genes. Mutated Ras proteins remain longer in their active form than normal Ras proteins, resulting in an overstimulation of the proliferative pathway. In order to function, Ras proteins must undergo a series of post-translational modifications, the most important of which is farnesylation. Inhibition of Ras can be accomplished through inhibition of farnesyl transferase, the enzyme responsible for this modification. With this aim, a number of agents, designated farnesyl transferase inhibitors (FTIs), have been developed that possess antineoplastic activity. Several of them have recently entered clinical trials. Even though clinical testing is still at an early stage, antitumor activity has been observed. At the same time, knowledge on the biochemical mechanisms through which these drugs exert their activity is expanding. Apart from Ras, they also target other cellular proteins that require farnesylation to become activated, e.g. RhoB. Inhibition of the farnesylation of RhoB results in growth blockade of the exposed tumor cells as well as an increase in the rate of apoptosis. In conclusion, FTIs present a promising class of anticancer agents, acting through biochemical modulation of the tumor cells.
Collapse
Affiliation(s)
- M Crul
- The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Flatt PM, Pietenpol JA. Mechanisms of cell-cycle checkpoints: at the crossroads of carcinogenesis and drug discovery. Drug Metab Rev 2000; 32:283-305. [PMID: 11139130 DOI: 10.1081/dmr-100102335] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human tumors arise from multiple genetic changes that gradually transform growth-limited cells into highly invasive cells that are unresponsive to growth controls. The genetic evolution of normal cells into cancer cells is largely determined by the fidelity of DNA replication, repair, and division. Cell-cycle arrest in response to stress is integral to the maintenance of genomic integrity. The control mechanisms that restrain cell-cycle transition or induce apoptotic signaling pathways after cell stress are known as cell-cycle checkpoints. This review will focus on the mechanisms of cell-cycle checkpoint pathways and how different components of these pathways are frequently altered in the genesis of human tumors. As our knowledge of cell-cycle regulation and checkpoints increases, so will our understanding of how xenobiotic agents can affect these processes to either initiate or inhibit tumorigenesis.
Collapse
Affiliation(s)
- P M Flatt
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
22
|
Abstract
N-myc is a transcription factor expressed in the developing metanephric kidney and other organs. In mice, complete disruption of the N-myc gene results in fetal death on the first day of renal organogenesis. In addition to the null N-myc allele, others have generated a hypomorphic N-myc allele. In this study, combinations of these mutant genes were used to demonstrate that reduction in N-myc protein levels correlate with fewer developing glomeruli and collecting ducts in embryonic kidney explants. Histological sections revealed that the mutant kidneys were hypoplastic with normal developing structures. The data indicate that the hypoplasia is due to a reduction in proliferation rather than an increase in apoptosis. Thus, N-myc loss causes a decrease in numbers of ureteric bud tips and developing glomeruli in explants and hypoplastic kidneys in vivo, in a dose-dependent manner.
Collapse
Affiliation(s)
- C M Bates
- Children's Research Institute, Children's Hospital, Columbus, Ohio, 43205, USA
| | | | | | | | | |
Collapse
|
23
|
Nelson SA, Aris JP, Patel BK, LaRochelle WJ. Multiple growth factor induction of a murine early response gene that complements a lethal defect in yeast ribosome biogenesis. J Biol Chem 2000; 275:13835-41. [PMID: 10788506 DOI: 10.1074/jbc.275.18.13835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identification of the transcriptionally activated targets of receptor tyrosine kinases is critical to understanding biologic programs directing both normal and neoplastic growth. To elucidate these molecular processes, we identified genes induced by a potent mesenchymal mitogen, platelet-derived growth factor (PDGF). Using differential display reverse transcription-polymerase chain reaction technology, we isolated a novel growth factor-induced cDNA, San5. San5 transcript induction occurred within 60 min in NIH 3T3 fibroblasts and proceeded in the presence of cycloheximide. Maximal induction of the San5 transcript occurred between 8 and 16 h, concurrent with passage of fibroblasts through G(1). San5 message was potently induced by PDGF AA and BB and acidic and basic fibroblast growth factors, all strong activators of fibroblast proliferation, but not by epidermal growth factor and interleukin-4. In a murine hematopoietic progenitor cell line, San5 transcript induction strictly correlated with [(3)H]thymidine uptake. Isolation and sequencing of the murine San5 cDNA revealed amino acid sequence homology to yeast Nop5p, a nucleolar protein required for pre-rRNA processing and ribosome assembly. Strikingly, SAN5 was able to rescue a nop5 null mutant, implicating SAN5 in the process of ribosome biogenesis. Consistent with this result, SAN5 was localized to the nucleolus in both yeast and mouse. Thus, San5 may provide a link between growth factor receptor activation and the cellular translational machinery.
Collapse
Affiliation(s)
- S A Nelson
- Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
24
|
Abstract
While more and more attention has been paid to CpG-DNA with respect to its usefulness as an adjuvant, its molecular mechanism of action is less well defined. Over the last few years, at least two major signalling pathways have been shown to be utilized by CpG-DNA: the NF-kappa B activation pathway and the stress-kinase pathway. Direct downstream events of these pathways are induction of transcriptional activity of NF-kappa B and transcriptional activity of AP-1. As far as investigated, CpG-DNA uses signal transduction pathways originally described for other stimuli, such as LPS, IL-1 or TNF. Therefore, to us, the prime question is: where does CpG-DNA-induced signalling enter these known pathways? This raises questions about the existence of a CpG-DNA-sequence-specific receptor. Several points of evidence support the probability of the existence of a cellular receptor: There is a strong motif (unmethylated CpG) dependency for CpG-DNA-induced signalling. There is cell-type specificity. Dendritic cells, macrophages and B cells respond to CpG-DNA, but other cell types, such as fibroblasts and T cells, do not. In addition, classic signal-transduction pathways are rapidly switched on in a parallel manner, as is known for other receptors. Using competing non-CpG ODNs and inhibitors of endosomal acidification, some evidence has been obtained that CpG ODNs are taken up into endosomes by a CpG-independent receptor, followed by a pH-dependent step before signalling starts. A model based on these findings is proposed in Fig. 4. Nevertheless, other receptor-independent activities of CpG-DNA cannot yet be ruled out. Although unlikely, we should consider the possibility that CpG-DNA directly interacts with cellular nucleic acids either by direct hybridization with complementary nucleotides or by formation of DNA triplexes (VASQUEZ and WILSON 1998). While these possibilities have been explored by antisense technology, using a huge variety of ODNs, there is no experimental evidence that such interactions are important for the activity of CpG-DNA. In this context, it is important to note that DNA, especially phosphothioate-stabilized ODNs with poly-G stretches, have substantial CpG-independent activities, although these activities seem not to depend on specific, antisense-like DNA-DNA interactions (PISETSKY 1996). One good example comes from experiments using ODNs on primary T cells. Co-stimulation of CD3-primed T cells with CpG ODN leads to a significant increase of IL-2 secretion and proliferation; however, these effects are CpG independent (K. Heeg, personal communication). Remarkably, these poly-G stretches seem to be inactive when transferred to double-stranded DNAs, such as plasmid DNA (WLOCH et al. 1998). In contrast, to my knowledge, no immune-stimulatory effect of bacterial DNA has been described that can not be abolished by CpG-specific methylation. Taken together, CpG-dependent and CpG-independent activities must be distinguished from one another. Among these effects, CpG-dependent signalling is better defined. Much effort is going into the investigation of the pharmacological applications of CpG-DNA. Once CpG-receptor-like structures are known, the question of the physiological role of CpG-DNA can be tackled.
Collapse
Affiliation(s)
- H Häcker
- Institut für Med. Mikrobiologie, Immunologie and Hygiene, Technische Universität München, Germany.
| |
Collapse
|
25
|
Yang X, Sham JS, Ng MH, Tsao SW, Zhang D, Lowe SW, Cao L. LMP1 of Epstein-Barr virus induces proliferation of primary mouse embryonic fibroblasts and cooperatively transforms the cells with a p16-insensitive CDK4 oncogene. J Virol 2000; 74:883-91. [PMID: 10623751 PMCID: PMC111609 DOI: 10.1128/jvi.74.2.883-891.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The latent membrane protein LMP1 of Epstein-Barr virus (EBV) is often present in EBV-associated malignancies including nasopharyngeal carcinoma and Hodgkin's lymphoma. Previous work demonstrates that the LMP1 gene of EBV is sufficient to transform certain established rodent fibroblast cell lines and to induce the tumorigenicity of some human epithelial cell lines. In addition, LMP1 plays pleiotropic roles in cell growth arrest, differentiation, and apoptosis, depending on the background of the target cells. To examine the roles of LMP1 in cell proliferation and growth regulation in primary culture cells, we constructed a recombinant retrovirus containing an LMP1 gene. With this retrovirus, LMP1 was shown to stimulate the proliferation of primary mouse embryonic fibroblasts (MEF cells). It has a mitogenic activity for MEF cells, as demonstrated by an immediate induction of cell doubling time. In addition, it significantly extends the passage number of MEF cells to more than 30 after retroviral infection, compared with less than 5 for uninfected MEF cells. Furthermore, LMP1 cooperates with a p16-insensitive CDK4(R24C) oncogene in transforming MEF cells. Our results provide the first evidence of the abilities of the LMP1 gene, acting alone, to effectively induce the proliferation of primary MEF cells and of its cooperativity with another cellular oncogene in transforming primary cells.
Collapse
Affiliation(s)
- X Yang
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Dang CV, Resar LM, Emison E, Kim S, Li Q, Prescott JE, Wonsey D, Zeller K. Function of the c-Myc oncogenic transcription factor. Exp Cell Res 1999; 253:63-77. [PMID: 10579912 DOI: 10.1006/excr.1999.4686] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The c-myc gene and the expression of the c-Myc protein are frequently altered in human cancers. The c-myc gene encodes the transcription factor c-Myc, which heterodimerizes with a partner protein, termed Max, to regulate gene expression. Max also heterodimerizes with the Mad family of proteins to repress transcription, antagonize c-Myc, and promote cellular differentiation. The constitutive activation of c-myc expression is key to the genesis of many cancers, and hence the understanding of c-Myc function depends on our understanding of its target genes. In this review, we attempt to place the putative target genes of c-Myc in the context of c-Myc-mediated phenotypes. From this perspective, c-Myc emerges as an oncogenic transcription factor that integrates the cell cycle machinery with cell adhesion, cellular metabolism, and the apoptotic pathways.
Collapse
Affiliation(s)
- C V Dang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
A detailed model mechanism for the G1/S transition in the mammalian cell cycle is presented and analysed by computer simulation to investigate whether the kinetic origins of the restriction point (R-point) can be identified. The R-point occurs in mid-to-late G1 phase and marks the transition between mitogen-dependent to mitogen-independent progression of the cell cycle. For purposes of computer simulations, the R-point is defined as the first point in time after mitosis where cutting off mitogen stimulation does not prevent the cell reaching the threshold activity of cyclin-E/cdk2 required for entry into S phase. The key components of the network that generate a dynamic switching behaviour associated with the R-point include a positive feedback loop between cyclin-E/cdk2 and Cdc25A, along with the mutually negative interaction between the cdk inhibitor p27Kip1 and cyclin-E/cdk2. Simulations of the passage through the R-point were carried out and the factors affecting the position of the R-point in G1 are determined. The detailed model also shows various points in the network where the activation of cyclin-E/cdk2 can be initiated with or without the involvement of the retinoblastoma protein.
Collapse
Affiliation(s)
- B D Aguda
- Department of Chemistry & Biochemistry, Laurentian University, Sudbury, Ontario, Canada.
| | | |
Collapse
|
28
|
Michalides RJ. Cell cycle regulators: mechanisms and their role in aetiology, prognosis, and treatment of cancer. J Clin Pathol 1999; 52:555-68. [PMID: 10645224 PMCID: PMC500945 DOI: 10.1136/jcp.52.8.555] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- R J Michalides
- Division of Tumour Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| |
Collapse
|
29
|
Abstract
Differentiation of mammalian cells implies cessation of DNA replication and cell proliferation; the potential controls of this coupling are examined here. It is clear that the known or proposed mechanisms of down-regulation of replicative cellular activities vary in different lineages of cell differentiation, and occur in all phases of the cell cycle. In G1 these regulators include p21/Cip1 or p27/Kip1, pRb, and p53; the novel, recently reported mechanisms of their action are summarized. In S phase the availability of nucleotide precursors, the origin recognition complex (ORC), and other replication proteins may be important in differentiation, and in G2 phase the cdc2/cyclin B complex and replication licensing factors determine normal G2 traverse versus an arrest or polyploidisation. Other replication-related mechanisms include transcription factors, e.g., Sp1, telomerase, and nuclear matrix changes. Thus, differentiation alters the activity not only of the various checkpoint proteins, but also of the components of the replicative machinery itself.
Collapse
Affiliation(s)
- F D Coffman
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey, 07103, USA.
| | | |
Collapse
|
30
|
Beier F, Leask TA, Haque S, Chow C, Taylor AC, Lee RJ, Pestell RG, Ballock RT, LuValle P. Cell cycle genes in chondrocyte proliferation and differentiation. Matrix Biol 1999; 18:109-20. [PMID: 10372550 DOI: 10.1016/s0945-053x(99)00009-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Coordinated proliferation and differentiation of growth plate chondrocytes controls longitudinal growth of endochondral bones. While many extracellular factors regulating these processes have been identified, much less is known about the intracellular mechanisms transducing and integrating these extracellular signals. Recent evidence suggests that cell cycle proteins play an important role in the coordination of chondrocyte proliferation and differentiation. Our current knowledge of the function and regulation of cell cycle proteins in endochondral ossification is summarized.
Collapse
Affiliation(s)
- F Beier
- Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- C V Dang
- Department of Medicine, The Johns Hopkins Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|