1
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Ann A, Truong S, Peters J, Mootoo DR. Synthesis of alpha-Gal C-disaccharides. Bioorg Med Chem 2024; 112:117903. [PMID: 39236466 DOI: 10.1016/j.bmc.2024.117903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The synthesis of C-disaccharides of α-d-galactopyranosyl-(1 → 3)-d-galactopyranose (α-Gal), potential tools for studying the biology of α-Gal glycans, is described. The synthetic strategy, centers on the reaction of two easily available precursors 1,2-O-isopropylidene-d-glyceraldehyde and an α-C-glactosyl-E-crotylboronate, which affords a mixture of two diastereomeric anti-crotylation products. The stereoselectivity of this reaction was controlled with (R)- and (S)-TRIP catalysts, and the appropriate diastereomer was transformed to C-linked disaccharides of α-Gal, in which the aglycone segment comprised O-, C- and S-glycoside entities that can enable glycoconjugate synthesis.
Collapse
Affiliation(s)
- Alex Ann
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Steven Truong
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Jiwani Peters
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - David R Mootoo
- Department of Chemistry, Hunter College and The Graduate Center of the City University of New York, New York, NY 10016, United States.
| |
Collapse
|
3
|
Moriyama T, Yoritate M, Kato N, Saika A, Kusuhara W, Ono S, Nagatake T, Koshino H, Kiya N, Moritsuka N, Tanabe R, Hidaka Y, Usui K, Chiba S, Kudo N, Nakahashi R, Igawa K, Matoba H, Tomooka K, Ishikawa E, Takahashi S, Kunisawa J, Yamasaki S, Hirai G. Linkage-Editing Pseudo-Glycans: A Reductive α-Fluorovinyl- C-Glycosylation Strategy to Create Glycan Analogs with Altered Biological Activities. J Am Chem Soc 2024; 146:2237-2247. [PMID: 38196121 DOI: 10.1021/jacs.3c12581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The acetal (O-glycoside) bonds of glycans and glycoconjugates are chemically and biologically vulnerable, and therefore C-glycosides are of interest as more stable analogs. We hypothesized that, if the O-glycoside linkage plays a vital role in glycan function, the biological activities of C-glycoside analogs would vary depending on their substituents. Based on this idea, we adopted a "linkage-editing strategy" for the creation of glycan analogs (pseudo-glycans). We designed three types of pseudo-glycans with CH2 and CHF linkages, which resemble the O-glycoside linkage in terms of bond lengths, angles, and bulkiness, and synthesized them efficiently by means of fluorovinyl C-glycosylation and selective hydrogenation reactions. Application of this strategy to isomaltose (IM), an inducer of amylase expression, and α-GalCer, which activates iNKT cells, resulted in the discovery of CH2-IM, which shows increased amylase production ability, and CHF-α-GalCer, which shows activity opposite that of native α-GalCer, serving as an antagonist of iNKT cells.
Collapse
Affiliation(s)
- Takahiro Moriyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Kato
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Azusa Saika
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| | - Wakana Kusuhara
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunsuke Ono
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiro Nagatake
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Noriaki Kiya
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Natsuho Moritsuka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riko Tanabe
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yu Hidaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Suzuka Chiba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noyuri Kudo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Rintaro Nakahashi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, IRCCS, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Eri Ishikawa
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunji Takahashi
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jun Kunisawa
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi-Saito, Ibaraki, Osaka 567-0085, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Stylianakis I, Zervos N, Lii JH, Pantazis DA, Kolocouris A. Conformational energies of reference organic molecules: benchmarking of common efficient computational methods against coupled cluster theory. J Comput Aided Mol Des 2023; 37:607-656. [PMID: 37597063 PMCID: PMC10618395 DOI: 10.1007/s10822-023-00513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/03/2023] [Indexed: 08/21/2023]
Abstract
We selected 145 reference organic molecules that include model fragments used in computer-aided drug design. We calculated 158 conformational energies and barriers using force fields, with wide applicability in commercial and free softwares and extensive application on the calculation of conformational energies of organic molecules, e.g. the UFF and DREIDING force fields, the Allinger's force fields MM3-96, MM3-00, MM4-8, the MM2-91 clones MMX and MM+, the MMFF94 force field, MM4, ab initio Hartree-Fock (HF) theory with different basis sets, the standard density functional theory B3LYP, the second-order post-HF MP2 theory and the Domain-based Local Pair Natural Orbital Coupled Cluster DLPNO-CCSD(T) theory, with the latter used for accurate reference values. The data set of the organic molecules includes hydrocarbons, haloalkanes, conjugated compounds, and oxygen-, nitrogen-, phosphorus- and sulphur-containing compounds. We reviewed in detail the conformational aspects of these model organic molecules providing the current understanding of the steric and electronic factors that determine the stability of low energy conformers and the literature including previous experimental observations and calculated findings. While progress on the computer hardware allows the calculations of thousands of conformations for later use in drug design projects, this study is an update from previous classical studies that used, as reference values, experimental ones using a variety of methods and different environments. The lowest mean error against the DLPNO-CCSD(T) reference was calculated for MP2 (0.35 kcal mol-1), followed by B3LYP (0.69 kcal mol-1) and the HF theories (0.81-1.0 kcal mol-1). As regards the force fields, the lowest errors were observed for the Allinger's force fields MM3-00 (1.28 kcal mol-1), ΜΜ3-96 (1.40 kcal mol-1) and the Halgren's MMFF94 force field (1.30 kcal mol-1) and then for the MM2-91 clones MMX (1.77 kcal mol-1) and MM+ (2.01 kcal mol-1) and MM4 (2.05 kcal mol-1). The DREIDING (3.63 kcal mol-1) and UFF (3.77 kcal mol-1) force fields have the lowest performance. These model organic molecules we used are often present as fragments in drug-like molecules. The values calculated using DLPNO-CCSD(T) make up a valuable data set for further comparisons and for improved force field parameterization.
Collapse
Affiliation(s)
- Ioannis Stylianakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771, Athens, Greece
| | - Nikolaos Zervos
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771, Athens, Greece
| | - Jenn-Huei Lii
- Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Antonios Kolocouris
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771, Athens, Greece.
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece.
| |
Collapse
|
5
|
Hans SK, Truong S, Mootoo DR. Oxocarbenium ion cyclizations for the synthesis of disaccharide mimetics of 2-amino-2-deoxy-pyranosides: Application to the carbasugar of β-galactosamine-(1,4)-3-O-methyl-D-chiro-inositol. Carbohydr Res 2022; 518:108595. [DOI: 10.1016/j.carres.2022.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
|
6
|
Truong S, Mootoo DR. C-Glycosylcrotylboronates for the Synthesis of Glycomimetics. Org Lett 2021; 24:191-195. [PMID: 34958591 DOI: 10.1021/acs.orglett.1c03845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stereoselective synthesis of E- and Z- isomers of a C- mannosyl crotylpinacolboronate via Ni-promoted reactions on an allylic acetate and a diene precursor, respectively, is described. The E- and Z- isomers reacted with 1,2-O-isopropylidene glyceraldehyde in the presence or absence of (R)- and (S)- TRIP catalysts, to give predominantly 3,4-anti and 3,4-syn crotylation products, respectively, with moderate to high facial selectivity. These products were transformed to biologically relevant C-manno-disaccharides.
Collapse
Affiliation(s)
- Steven Truong
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States.,The Graduate Center, CUNY, 365 Fifth Avenue, New York, New York 10016, United States
| | - David R Mootoo
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States.,The Graduate Center, CUNY, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
7
|
Hevey R. The Role of Fluorine in Glycomimetic Drug Design. Chemistry 2020; 27:2240-2253. [DOI: 10.1002/chem.202003135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences University of Basel, Pharmazentrum Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
8
|
Abstract
A strategy for the synthesis of C-pseudodisaccharides that centers on the reaction of a C-linked crotyltin and a substituted pent-4-enal and a ring-closing metathesis-alkene dihydroxylation sequence on the derived crotylation products is illustrated in the preparation of analogues of the insulin modulatory inositol galactosamine-β-(1 → 4)-3-O-methyl-d- chiro-inositol (β-INS-2). The modularity of this approach and versatility of the pivotal crotylation products make this a potentially general methodology for diverse libraries of C-glycoinositols.
Collapse
Affiliation(s)
- Ahmad S Altiti
- Department of Chemistry , Hunter College , 695 Park Avenue , New York , New York 10065 , United States.,The Graduate Center , CUNY , 365 Fifth Avenue , New York , New York 10016 , United States
| | - David R Mootoo
- Department of Chemistry , Hunter College , 695 Park Avenue , New York , New York 10065 , United States.,The Graduate Center , CUNY , 365 Fifth Avenue , New York , New York 10016 , United States
| |
Collapse
|
9
|
Raich I, Lövyová Z, Trnka L, Parkan K, Kessler J, Pohl R, Kaminský J. Limitations in the description of conformational preferences of C-disaccharides: The (1 → 3)-C-mannobiose case. Carbohydr Res 2017; 451:42-50. [PMID: 28950209 DOI: 10.1016/j.carres.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022]
Abstract
Conformational preferences of two C-glycosyl analogues of Manp-(1 → 3)-Manp, were studied using a combined method of theoretical and experimental chemistry. Molecular dynamics was utilized to provide conformational behavior along C-glycosidic bonds of methyl 3-deoxy-3-C-[(α-d-mannopyranosyl)methyl]-α-d- and l-mannopyranosides. The OPLS2005 and Glycam06 force fields were used. Simulations were performed with explicit water (TIP3P) and methanol. Results were compared with a complete conformational scan at the MM4 level with the dielectric constant corresponding to methanol. In order to verify predicted conformational preferences, vicinal 3JHH NMR coupling constants were calculated by the Karplus equation on simulated potential energy surfaces (PES). A set of new parameters for the Karplus equation was also designed. Predicted 3JHH were compared with experimental data. We also used reverse methodology, in which the 3JHH coupling constants were calculated at the DFT level for each family of (ϕ, ψ)-conformers separately and then experimental values were decomposed onto calculated 3JHH couplings in order to obtain experimentally derived populations of conformers. As an alternative method of evaluation of preferred conformers, analysis of sensitive 13C chemical shifts was introduced. We were able to thoroughly discuss several fundamental issues in predictions of preferred conformers of C-saccharides, such as the solvent effect, reliability of the force field, character of empirical Karplus equation or applicability of NMR parameters in predictions of conformational preferences in general.
Collapse
Affiliation(s)
- Ivan Raich
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Zuzana Lövyová
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Ladislav Trnka
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Kamil Parkan
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry AS CR, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry AS CR, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry AS CR, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry AS CR, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| |
Collapse
|
10
|
Synthesis of β-galactosylamides as ligands of the peanut lectin. Insights into the recognition process. Carbohydr Res 2017; 443-444:58-67. [PMID: 28355582 DOI: 10.1016/j.carres.2017.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 11/21/2022]
Abstract
The synthesis of mono and divalent β-galactosylamides linked to a hydroxylated chain having a C2 symmetry axis derived from l-tartaric anhydride is reported. Reference compounds devoid of hydroxyl groups in the linker were also prepared from β-galactosylamine and succinic anhydride. After functionalization with an alkynyl residue, the resulting building blocks were grafted onto different azide-equipped scaffolds through the copper catalyzed azide-alkyne cycloaddition. Thus, a family of structurally related mono and divalent β-N-galactopyranosylamides was obtained and fully characterized. The binding affinities of the ligands towards the model lectin PNA were measured by the enzyme-linked lectin assay (ELLA). The IC50 values were significantly higher than that of galactose but the presence of hydroxyl groups in the aglycone chain improved lectin recognition. Docking and molecular dynamics experiments were in accordance with the hypothesis that a hydroxyl group properly disposed in the linker could mimic the Glc O3 in the recognition process. On the other hand, divalent presentation of the ligands led to lectin affinity enhancements.
Collapse
|
11
|
Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MB. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. Chembiochem 2017; 18:574-612. [DOI: 10.1002/cbic.201600582] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Klaus Villadsen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Manuel C. Martos-Maldonado
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
12
|
Bertolotti B, Oroszová B, Sutkeviciute I, Kniežo L, Fieschi F, Parkan K, Lovyová Z, Kašáková M, Moravcová J. Nonhydrolyzable C-disaccharides, a new class of DC-SIGN ligands. Carbohydr Res 2016; 435:7-18. [DOI: 10.1016/j.carres.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 01/01/2023]
|
13
|
Vidal P, Jiménez-Barbero J, Espinosa JF. Conformational flexibility around the Gal-β-(1 → 3)-Glc linkage: Experimental evidence for the existence of the anti-ψ conformation in aqueous solution. Carbohydr Res 2016; 433:36-40. [PMID: 27434833 DOI: 10.1016/j.carres.2016.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
Abstract
NOE-based analysis of the disaccharide β-Gal-(1 → 3)-β-Glc-OMe (1), especially a diagnostic Gal1-Glc4 NOE detected in a HSQC-NOESY spectrum, reveals the existence of the anti-ψ conformer in aqueous solution in addition to the major syn conformer. This result provides experimental proof of conformational flexibility around the aglyconic bond of β-(1 → 3) disaccharides, in contrast to previous studies that suggested that the flexibility around this linkage was restricted to the syn conformational region.
Collapse
Affiliation(s)
- Paloma Vidal
- Discovery Chemistry Research and Technologies, Centro de Investigación Lilly, Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | | | - Juan F Espinosa
- Discovery Chemistry Research and Technologies, Centro de Investigación Lilly, Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain.
| |
Collapse
|
14
|
Wu Y, Wu RWK, Cheu KW, Williams ID, Krishna S, Slavic K, Gravett AM, Liu WM, Wong HN, Haynes RK. Methylene Homologues of Artemisone: An Unexpected Structure-Activity Relationship and a Possible Implication for the Design of C10-Substituted Artemisinins. ChemMedChem 2016; 11:1469-79. [PMID: 27273875 DOI: 10.1002/cmdc.201600011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/13/2016] [Indexed: 11/12/2022]
Abstract
We sought to establish if methylene homologues of artemisone are biologically more active and more stable than artemisone. The analogy is drawn with the conversion of natural O- and N-glycosides into more stable C-glycosides that may possess enhanced biological activities and stabilities. Dihydroartemisinin was converted into 10β-cyano-10-deoxyartemisinin that was hydrolyzed to the α-primary amide. Reduction of the β-cyanide and the α-amide provided the respective methylamine epimers that upon treatment with divinyl sulfone gave the β- and α-methylene homologues, respectively, of artemisone. Surprisingly, the compounds were less active in vitro than artemisone against P. falciparum and displayed no appreciable activity against A549, HCT116, and MCF7 tumor cell lines. This loss in activity may be rationalized in terms of one model for the mechanism of action of artemisinins, namely the cofactor model, wherein the presence of a leaving group at C10 assists in driving hydride transfer from reduced flavin cofactors to the peroxide during perturbation of intracellular redox homeostasis by artemisinins. It is noted that the carba analogue of artemether is less active in vitro than the O-glycoside parent toward P. falciparum, although extrapolation of such activity differences to other artemisinins at this stage is not possible. However, literature data coupled with the leaving group rationale suggest that artemisinins bearing an amino group attached directly to C10 are optimal compounds.
Collapse
Affiliation(s)
- Yuet Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Ronald Wai Kung Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Kwan Wing Cheu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Sanjeev Krishna
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's Hospital, University of London, SW17 0RE, UK
| | - Ksenija Slavic
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's Hospital, University of London, SW17 0RE, UK
| | - Andrew M Gravett
- Department of Oncology, Division of Cellular and Molecular Medicine, St. George's Hospital, University of London, Jenner Wing, London, SW17 0RE, UK
| | - Wai M Liu
- Department of Oncology, Division of Cellular and Molecular Medicine, St. George's Hospital, University of London, Jenner Wing, London, SW17 0RE, UK
| | - Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa. , .,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China. ,
| |
Collapse
|
15
|
Altiti AS, Bachan S, Alrowhani W, Mootoo DR. An organocatalytic strategy for the stereoselective synthesis of C-galactosides with fluorine at the pseudoanomeric carbon. Org Biomol Chem 2015; 13:10328-35. [PMID: 26312438 DOI: 10.1039/c5ob01471a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The α-fluorination of α- and β-C-ethanals of galactose using Jørgensen catalysts and NFSI was investigated. The crude reaction products were transformed to their primary alcohol or methylenated derivatives, which are versatile precursors to biologically interesting fluorinated glycomimetics. The α-C-glycoside substrate gave moderate to high yields of fluorinated α-C-glycosides with minor amounts of β-C-glycoside analogues. The reactions on the β-C-glycoside were lower yielding but gave exclusively fluorinated β-C-glycosides. For both α- and β-C-glycoside substrates (R) and (S) catalyst showed complementary stereoselectivity. The preparation of difluorinated materials required the use of racemic catalyst as enantiomerically pure catalyst gave intractable mixtures of products. These results are in line with the results for simple achiral aldehydes, and suggest that stereochemistry in the reactions of these chiral, highly substituted, carbohydrate-derived aldehydes are controlled primarily by the chirality in the catalyst.
Collapse
Affiliation(s)
- Ahmad S Altiti
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
16
|
Unione L, Xu B, Díaz D, Martín-Santamaría S, Poveda A, Sardinha J, Rauter AP, Blériot Y, Zhang Y, Cañada FJ, Sollogoub M, Jiménez-Barbero J. Conformational Plasticity in Glycomimetics: Fluorocarbamethyl-L-idopyranosides Mimic the Intrinsic Dynamic Behaviour of Natural Idose Rings. Chemistry 2015; 21:10513-21. [PMID: 26096911 DOI: 10.1002/chem.201501249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/08/2015] [Indexed: 11/06/2022]
Abstract
Sugar function, structure and dynamics are intricately correlated. Ring flexibility is intrinsically related to biological activity; actually plasticity in L-iduronic rings modulates their interactions with biological receptors. However, the access to the experimental values of the energy barriers and free-energy difference for conformer interconversion in water solution has been elusive. Here, a new generation of fluorine-containing glycomimetics is presented. We have applied a combination of organic synthesis, NMR spectroscopy and computational methods to investigate the conformational behaviour of idose- and glucose-like rings. We have used low-temperature NMR spectroscopic experiments to slow down the conformational exchange of the idose-like rings. Under these conditions, the exchange rate becomes slow in the (19) F NMR spectroscopic chemical shift timescale and allows shedding light on the thermodynamic and kinetic features of the equilibrium. Despite the minimal structural differences between these compounds, a remarkable difference in their dynamic behaviour indeed occurs. The importance of introducing fluorine atoms in these sugars mimics is also highlighted. Only the use of (19) F NMR spectroscopic experiments has permitted the unveiling of key features of the conformational equilibrium that would have otherwise remained unobserved.
Collapse
Affiliation(s)
- Luca Unione
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain).,Infectious Disease Programme, CIC bioGUNE, 48160 Derio, Bizkaia (Spain)
| | - Bixue Xu
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France).,Present address: The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 202 Shachong South Road, Guiyang, 550002 (P. R. China)
| | - Dolores Díaz
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Sonsoles Martín-Santamaría
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Ana Poveda
- Infectious Disease Programme, CIC bioGUNE, 48160 Derio, Bizkaia (Spain)
| | - João Sardinha
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France).,Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, 1749-016 Lisboa (Portugal)
| | - Amelia Pilar Rauter
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, 1749-016 Lisboa (Portugal)
| | - Yves Blériot
- Université de Poitiers, UMR CNRS 7285, IC2MP, Equipe Synthèse organique, Groupe Glycochimie, 4, avenue Michel Brunet, 86022 Poitiers Cedex (France)
| | - Yongmin Zhang
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France)
| | - F Javier Cañada
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Matthieu Sollogoub
- Sorbonne Universités, UPMC Univ Paris 06, Institut Universitaire de France, UMR CNRS 8232, IPCM, 4, place Jussieu, 75005 Paris (France).
| | - Jesus Jiménez-Barbero
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain). .,Infectious Disease Programme, CIC bioGUNE, 48160 Derio, Bizkaia (Spain). .,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain).
| |
Collapse
|
17
|
Altiti AS, Mootoo DR. C-glycosphingolipid precursors via iodocyclization of homoallyic trichloroacetimidates. Carbohydr Res 2015; 407:148-53. [PMID: 25771297 PMCID: PMC5240635 DOI: 10.1016/j.carres.2015.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
The iodocyclization of homoallylic trichloroacetimidates derived from α-C-allyl galactoside were investigated. In line with the stereochemical trend observed for less substituted non-glycosylated frameworks, E and Z substrates delivered stereoselectively the 1,3-anti and 1,3-syn amino alcohol motifs, respectively. These products are advanced precursors to C-glycosides of the potent immunostimulatory glycolipid KRN7000.
Collapse
Affiliation(s)
- Ahmad S Altiti
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA; The Graduate Center, CUNY, 365 5th Avenue, New York, NY 10016, USA
| | - David R Mootoo
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA; The Graduate Center, CUNY, 365 5th Avenue, New York, NY 10016, USA.
| |
Collapse
|
18
|
Xu B, Unione L, Sardinha J, Wu S, Ethève-Quelquejeu M, Pilar Rauter A, Blériot Y, Zhang Y, Martín-Santamaría S, Díaz D, Jiménez-Barbero J, Sollogoub M. gem-Difluorocarbadisaccharides: Restoring theexo-Anomeric Effect. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Xu B, Unione L, Sardinha J, Wu S, Ethève-Quelquejeu M, Pilar Rauter A, Blériot Y, Zhang Y, Martín-Santamaría S, Díaz D, Jiménez-Barbero J, Sollogoub M. gem-Difluorocarbadisaccharides: Restoring theexo-Anomeric Effect. Angew Chem Int Ed Engl 2014; 53:9597-602. [DOI: 10.1002/anie.201405008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/06/2014] [Indexed: 11/06/2022]
|
20
|
Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta Gen Subj 2014; 1850:186-235. [PMID: 24685397 DOI: 10.1016/j.bbagen.2014.03.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The most demanding challenge in research on molecular aspects within the flow of biological information is posed by the complex carbohydrates (glycan part of cellular glycoconjugates). How the 'message' encoded in carbohydrate 'letters' is 'read' and 'translated' can only be unraveled by interdisciplinary efforts. SCOPE OF REVIEW This review provides a didactic step-by-step survey of the concept of the sugar code and the way strategic combination of experimental approaches characterizes structure-function relationships, with resources for teaching. MAJOR CONCLUSIONS The unsurpassed coding capacity of glycans is an ideal platform for generating a broad range of molecular 'messages'. Structural and functional analyses of complex carbohydrates have been made possible by advances in chemical synthesis, rendering production of oligosaccharides, glycoclusters and neoglycoconjugates possible. This availability facilitates to test the glycans as ligands for natural sugar receptors (lectins). Their interaction is a means to turn sugar-encoded information into cellular effects. Glycan/lectin structures and their spatial modes of presentation underlie the exquisite specificity of the endogenous lectins in counterreceptor selection, that is, to home in on certain cellular glycoproteins or glycolipids. GENERAL SIGNIFICANCE Understanding how sugar-encoded 'messages' are 'read' and 'translated' by lectins provides insights into fundamental mechanisms of life, with potential for medical applications.
Collapse
Affiliation(s)
- Dolores Solís
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 07110 Bunyola, Mallorca, Illes Baleares, Spain.
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117871 GSP-7, V-437, Moscow, Russian Federation.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Karel Smetana
- Charles University, 1st Faculty of Medicine, Institute of Anatomy, U nemocnice 3, 128 00 Prague 2, Czech Republic.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany.
| |
Collapse
|
21
|
Conformational Selection in Glycomimetics: Human Galectin-1 Only Recognizessyn-Ψ-Type Conformations of β-1,3-Linked Lactose and ItsC-Glycosyl Derivative. Chemistry 2013; 19:14581-90. [DOI: 10.1002/chem.201301244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/24/2013] [Indexed: 01/09/2023]
|
22
|
Guyenne S, León EI, Martín A, Pérez-Martín I, Suárez E. Intramolecular 1,8-Hydrogen Atom Transfer Reactions in Disaccharide Systems Containing Furanose Units. J Org Chem 2012; 77:7371-91. [DOI: 10.1021/jo301153u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sabrina Guyenne
- Instituto de Productos Naturales y Agrobiología del CSIC, Carretera de La Esperanza 3, 38206 La Laguna,
Tenerife, Spain
| | - Elisa I. León
- Instituto de Productos Naturales y Agrobiología del CSIC, Carretera de La Esperanza 3, 38206 La Laguna,
Tenerife, Spain
| | - Angeles Martín
- Instituto de Productos Naturales y Agrobiología del CSIC, Carretera de La Esperanza 3, 38206 La Laguna,
Tenerife, Spain
| | - Inés Pérez-Martín
- Instituto de Productos Naturales y Agrobiología del CSIC, Carretera de La Esperanza 3, 38206 La Laguna,
Tenerife, Spain
| | - Ernesto Suárez
- Instituto de Productos Naturales y Agrobiología del CSIC, Carretera de La Esperanza 3, 38206 La Laguna,
Tenerife, Spain
| |
Collapse
|
23
|
Sánchez‐Fernández EM, Rísquez‐Cuadro R, Ortiz Mellet C, García Fernández JM, Nieto PM, Angulo J. sp
2
‐Iminosugar
O
‐,
S
‐, and
N
‐Glycosides as Conformational Mimics of α‐Linked Disaccharides; Implications for Glycosidase Inhibition. Chemistry 2012; 18:8527-39. [DOI: 10.1002/chem.201200279] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/28/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Elena M. Sánchez‐Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC–Universidad de Sevilla, Avda. Americo Vespucio 49, 41092, Sevilla (Spain), Fax: (+34) 954460565
| | - Rocío Rísquez‐Cuadro
- Departmento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González 1, 41012, Sevilla (Spain), Fax: (+34) 954624960
| | - Carmen Ortiz Mellet
- Departmento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González 1, 41012, Sevilla (Spain), Fax: (+34) 954624960
| | - José M. García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC–Universidad de Sevilla, Avda. Americo Vespucio 49, 41092, Sevilla (Spain), Fax: (+34) 954460565
| | - Pedro M. Nieto
- Instituto de Investigaciones Químicas (IIQ), CSIC–Universidad de Sevilla, Avda. Americo Vespucio 49, 41092, Sevilla (Spain), Fax: (+34) 954460565
| | - Jesús Angulo
- Instituto de Investigaciones Químicas (IIQ), CSIC–Universidad de Sevilla, Avda. Americo Vespucio 49, 41092, Sevilla (Spain), Fax: (+34) 954460565
| |
Collapse
|
24
|
Wang J, Li Q, Ge Z, Li R. A versatile and convenient route to ketone C-pyranosides and ketone C-furanosides from unprotected sugars. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.11.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Abstract
A synthetic C-glycoside, α-C-galactosylceramide, is an active immunostimulant in mice. It displays better activity than α-O-galactosylceramide in several disease models. Syntheses of several α-C-galactosylceramides are described. Experiments that probe its immunostimulant activity are outlined. Possible explanations for its superior activity are discussed.
Collapse
Affiliation(s)
- Richard W Franck
- Department of Chemistry, Hunter College of CUNY 695 Park Ave., New York, NY 10021 Ph 212-772-5340 Fax 212-772-5332
| |
Collapse
|
26
|
Martín-Santamaría S, Gabius HJ, Jiménez-Barbero J. Structural studies on the interaction of saccharides and glycomimetics with galectin-1: A 3D perspective using a combined molecular modeling and NMR approach. PURE APPL CHEM 2011. [DOI: 10.1351/pac-con-11-10-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction of a variety of saccharides and mimetics thereof with lectin receptors has been studied using a combination of molecular modeling protocols and NMR spectroscopy techniques. It is shown that both methods complement each other in a synergistic manner to provide a detailed perspective of the conformational and structural features of the recognition process.
Collapse
Affiliation(s)
- Sonsoles Martín-Santamaría
- 1Department of Chemistry, Faculty of Pharmacy, Universidad San Pablo CEU, 28668-Boadilla del Monte, Madrid, Spain
| | - Hans-Joachim Gabius
- 2Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, München, Veterinärstrasse 13, 80539 München, Germany
| | - Jesús Jiménez-Barbero
- 3Department of Chemical and Physical Biology, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
27
|
León EI, Martín A, Peréz-Martín I, Quintanal LM, Suárez E. Hydrogen Atom Transfer Experiments Provide Chemical Evidence for the Conformational Differences between C- and O-Disaccharides. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000470] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Doboszewski B. D-Arabinose-based synthesis of homo-C-d4T and homo-C-thymidine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:875-901. [PMID: 20183559 DOI: 10.1080/15257770903306518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
2,3,5-Tri-O-benzyl-D-arabinofuranosyl halides (chloride, bromide) were reacted with AllMgBr, MeMgBr, and VinMgBr to furnish anomeric mixtures of the C-glycosyl products. The factors that influenced the beta/alpha ratio are discussed. The alpha,beta-C-vinyl derivative was transformed into 1-deoxy-1-C-hydroxymethyl-beta- and -alpha-D-arabinofuranoses (2,5-anhydro-D-glucitol and -mannitol, respectively), separable after isopropylidenation step. 2,5-Anhydro-1,3-O-isopropylidene-D-glucitol was converted into 2,5-anhydro-6-O-triphenylmethyl-D-erythro-hex-3,4-enitol and 2,5-anhydro-4,6-di-O-benzoyl-3-deoxy-D-ribo-hexitol, which were coupled with N-3-benzoylthymine under the Mitsunobu conditions to furnish two analogs of nucleosides with a -CH(2)- insert between sugar moieties and thymine.
Collapse
Affiliation(s)
- Bogdan Doboszewski
- Departmento de Química, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
29
|
Hans SK, Camara F, Altiti A, Martín-Montalvo A, Brautigan DL, Heimark D, Larner J, Grindrod S, Brown ML, Mootoo DR. Synthesis of C-glycoside analogues of beta-galactosamine-(1-->4)-3-O-methyl-D-chiro-inositol and assay as activator of protein phosphatases PDHP and PP2Calpha. Bioorg Med Chem 2010; 18:1103-10. [PMID: 20079654 DOI: 10.1016/j.bmc.2009.12.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
The glycan beta-galactosamine-(1-4)-3-O-methyl-D-chiro-inositol, called INS-2, was previously isolated from liver as a putative second messenger-modulator for insulin. Synthetic INS-2 injected intravenously in rats is both insulin-mimetic and insulin-sensitizing. This bioactivity is attributed to allosteric activation of pyruvate dehydrogenase phosphatase (PDHP) and protein phosphatase 2Calpha (PP2Calpha). Towards identification of potentially metabolically stable analogues of INS-2 and illumination of the mechanism of enzymatic activation, C-INS-2, the exact C-glycoside of INS-2, and C-INS-2-OH the deaminated analog of C-INS-2, were synthesized and their activity against these two enzymes evaluated. C-INS-2 activates PDHP comparable to INS-2, but failed to activate PP2Calpha. C-INS-2-OH was inactive against both phosphatases. These results and modeling of INS-2, C-INS-2 and C-INS-2-OH into the 3D structure of PDHP and PP2Calpha, suggest that INS-2 binds to distinctive sites on the two different phosphatases to activate insulin signaling. Thus the carbon analog could selectively favor glucose disposal via oxidative pathways.
Collapse
Affiliation(s)
- Sunej K Hans
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kolympadi M, Fontanella M, Venturi C, André S, Gabius HJ, Jiménez-Barbero J, Vogel P. Synthesis and Conformational Analysis of (α-D-Galactosyl)phenylmethane and α-,β-Difluoromethane Analogues: Interactions with the Plant Lectin Viscumin. Chemistry 2009; 15:2861-73. [DOI: 10.1002/chem.200801394] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Nagarajan S, Mohan Das T, Arjun P, Raaman N. Design, synthesis and gelation studies of 4,6-O-butylidene-α,β-unsaturated-β-C-glycosidic ketones: application to plant tissue culture. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b902064k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Nagarajan S, Mohan Das T. A sugar–pyrene-based fluorescent gelator: nanotubular architecture and interaction with SWCNTs. NEW J CHEM 2009. [DOI: 10.1039/b9nj00395a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Francisco C, Herrera A, Kennedy A, Martín A, Melián D, Pérez-Martín I, Quintanal L, Suárez E. Intramolecular 1,8-Hydrogen-Atom Transfer Reactions in (1→4)-O-Disaccharide Systems: Conformational and Stereochemical Requirements. Chemistry 2008; 14:10369-81. [DOI: 10.1002/chem.200801414] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Bisht SS, Pandey J, Sharma A, Tripathi RP. Aldol reaction of β-C-glycosylic ketones: synthesis of C-(E)-cinnamoyl glycosylic compounds as precursors for new biologically active C-glycosides. Carbohydr Res 2008; 343:1399-406. [DOI: 10.1016/j.carres.2008.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/11/2008] [Accepted: 04/16/2008] [Indexed: 11/27/2022]
|
35
|
Roën A, Padrón JI, Mayato C, Vázquez JT. Conformational Domino Effect in Saccharides: A Prediction from Alkyl β-(1→6)-Diglucopyranosides. J Org Chem 2008; 73:3351-63. [DOI: 10.1021/jo800191z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alfredo Roën
- Instituto Universitario de Bio-Orgánica “Antonio González”, Departamento de Química Orgánica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Juan I. Padrón
- Instituto Universitario de Bio-Orgánica “Antonio González”, Departamento de Química Orgánica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Carlos Mayato
- Instituto Universitario de Bio-Orgánica “Antonio González”, Departamento de Química Orgánica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | - Jesús T. Vázquez
- Instituto Universitario de Bio-Orgánica “Antonio González”, Departamento de Química Orgánica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
36
|
Norsikian S, Zeitouni J, Rat S, Gérard S, Lubineau A. New and general synthesis of β-C-glycosylformaldehydes from easily available β-C-glycosylpropanones. Carbohydr Res 2007; 342:2716-28. [PMID: 17892865 DOI: 10.1016/j.carres.2007.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/02/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
A highly effective method for the introduction of a formyl group at the anomeric position of pyranosides was developed via enolisation of beta-C-D-glycopyranosylpropan-2-one using thermodynamic conditions then oxidative cleavage of the more substituted double bond. This sequence affords the desired aldehydes that are conveniently protected as aminals for purification and storage and easily regenerated using Dowex resin H+. In this paper, the syntheses of nine differently protected aldehydes derived from d-glucose, d-galactose, lactose and N-acetyl-d-glucosamine are presented. Our strategy proved to be very efficient in most cases excepted in the D-mannose series.
Collapse
Affiliation(s)
- Stéphanie Norsikian
- Laboratoire de Chimie Organique Multifonctionnelle, UMR CNRS-UPS 8614 Glycochimie Moléculaire, Bât. 420, Université Paris Sud, F-91405 Orsay, France.
| | | | | | | | | |
Collapse
|
37
|
García-Aparicio V, Malapelle A, Abdallah Z, Doisneau G, Santos JI, Asensio JL, Cañada FJ, Beau JM, Jiménez-Barbero J. The solution conformation of C-glycosyl analogues of the sialyl-Tn antigen. Carbohydr Res 2007; 342:1974-82. [PMID: 17466287 DOI: 10.1016/j.carres.2007.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 03/09/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
The conformational behavior of two C-glycosyl analogues of the sialyl-Tn antigen has been determined by a combination of NMR methods and molecular mechanics calculations. Both compounds show a major solution conformation that is drastically different from the major one of the natural compound.
Collapse
|
38
|
Denton RW, Tony KA, Hernández-Gay JJ, Cañada FJ, Jiménez-Barbero J, Mootoo DR. Synthesis and conformational behavior of the difluoromethylene linked C-glycoside analog of beta-galactopyranosyl-(1<-->1)-alpha-mannopyranoside. Carbohydr Res 2007; 342:1624-35. [PMID: 17601514 PMCID: PMC2084073 DOI: 10.1016/j.carres.2007.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
C-Glycosides in which the pseudoglycosidic substituent is a methylene group have been advertised as hydrolytically stable mimetics of their parent O-glycosides. While this substitution assures greater stability, the lower polarity and increased conformational flexibility in the intersaccharide linker brought about by this change may compromise biological mimicry. In this regard, C-glycosides, in which the pseudoanomeric methylene is replaced with a difluoromethylene group, are interesting because the CF2 group is more of an isopolar replacement for oxygen than CH2. In addition, the CF2 residue is expected to instill conformational bias into the intersaccharide torsions. Herein is described the synthesis and conformational behavior of the difluoromethylene linked C-glycoside of beta-D-galactopyranosyl-(1<-->1)-alpha-D-mannopyranoside. The synthesis centers on the formation of the galactose residue via an oxocarbenium ion-enol ether cyclization. Conformational analysis, using a combination of molecular mechanics, dynamics, and NMR spectroscopy, suggests that the difluoro-C-glycoside populates the non-exo-Gal/exo-Man conformer to a major extent (ca 50%), with a minor contribution ( approximately 15%) from the exo-Gal/exo-Man conformer that corresponds to the ground sate of the parent O-glycoside.
Collapse
Affiliation(s)
- Richard W Denton
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
39
|
Hydrogen atom transfer experiments provide chemical evidence for the conformational differences between C- and O-glycosides. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.05.166] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Sardinha J, Guieu S, Deleuze A, Fernández-Alonso MC, Rauter AP, Sinaÿ P, Marrot J, Jiménez-Barbero J, Sollogoub M. gem-Difluoro-carbasugars, the cases of mannopyranose and galactopyranose. Carbohydr Res 2007; 342:1689-703. [PMID: 17559817 DOI: 10.1016/j.carres.2007.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/07/2007] [Accepted: 05/11/2007] [Indexed: 10/23/2022]
Abstract
5a-Difluoro-5a-carbamannopyranose (gem-difluoro-carbamannopyranose) and 5a-difluoro-5a-carbagalactopyranose (gem-difluoro-carbagalactopyranose), close congeners of their respective natural sugars, in which the endocyclic oxygen atom has been replaced by a gem-difluoromethylene group, were synthesized from D-mannose and D-galactose, using a rearrangement strategy.
Collapse
Affiliation(s)
- João Sardinha
- Université Pierre et Marie Curie-Paris 6, Institut de Chimie Moléculaire (FR 2769), ENS, UMR CNRS 8642, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Arjona O, Gómez AM, López JC, Plumet J. Synthesis and Conformational and Biological Aspects of Carbasugars. Chem Rev 2007; 107:1919-2036. [PMID: 17488060 DOI: 10.1021/cr0203701] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Odón Arjona
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
42
|
Mayato C, Dorta RL, Vázquez JT. The exo-deoxoanomeric effect in the conformational preferences of C-glycosides. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2007.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Denton RW, Cheng X, Tony KA, Dilhas A, Hernández JJ, Canales A, Jiménez-Barbero J, Mootoo DR. C-Disaccharides as Probes for Carbohydrate Recognition – Investigation of the Conformational Requirements for Binding of Disaccharide Mimetics of Sialyl Lewis X. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Hans S, Mootoo DR. A de novo approach to C-branched inositols: synthesis of a myo-inositol precursor for C-linked glycosyl phosphatidylinositols. Carbohydr Res 2006; 341:1322-32. [PMID: 16698000 DOI: 10.1016/j.carres.2006.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/16/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
C-Linked glycosyl inositols are valuable structure-activity probes because of their greater hydrolytic stability and different conformational behavior compared with their parent O-glycosides. Simple C-branched inositols are synthetic precursors to these and other groups of inositol mimetics. Herein is described a de novo synthesis of C-branched inositols that contain a versatile ethenyl side chain for elaboration into more complex appendages. The approach centers on a stereoselective oxocarbenium ion-allylsilane cyclization and provides C-branched inositols with different stereochemical motifs. The synthesis of C-ethenyl-di-O-isopropylidene-myo-, neo-, epi-, and allo-inositols is discussed.
Collapse
Affiliation(s)
- Sunej Hans
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10021, USA
| | | |
Collapse
|
45
|
Abstract
A high-density coding system is essential to allow cells to communicate efficiently and swiftly through complex surface interactions. All the structural requirements for forming a wide array of signals with a system of minimal size are met by oligomers of carbohydrates. These molecules surpass amino acids and nucleotides by far in information-storing capacity and serve as ligands in biorecognition processes for the transfer of information. The results of work aiming to reveal the intricate ways in which oligosaccharide determinants of cellular glycoconjugates interact with tissue lectins and thereby trigger multifarious cellular responses (e.g. in adhesion or growth regulation) are teaching amazing lessons about the range of finely tuned activities involved. The ability of enzymes to generate an enormous diversity of biochemical signals is matched by receptor proteins (lectins), which are equally elaborate. The multiformity of lectins ensures accurate signal decoding and transmission. The exquisite refinement of both sides of the protein-carbohydrate recognition system turns the structural complexity of glycans--a demanding but essentially mastered problem for analytical chemistry--into a biochemical virtue. The emerging medical importance of protein-carbohydrate recognition, for example in combating infection and the spread of tumors or in targeting drugs, also explains why this interaction system is no longer below industrial radarscopes. Our review sketches the concept of the sugar code, with a solid description of the historical background. We also place emphasis on a distinctive feature of the code, that is, the potential of a carbohydrate ligand to adopt various defined shapes, each with its own particular ligand properties (differential conformer selection). Proper consideration of the structure and shape of the ligand enables us to envision the chemical design of potent binding partners for a target (in lectin-mediated drug delivery) or ways to block lectins of medical importance (in infection, tumor spread, or inflammation).
Collapse
Affiliation(s)
- Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Veterinärstrasse 13, 80539 Munich, Germany.
| | | | | | | | | |
Collapse
|
46
|
Yi T, Wu SH, Zou W. Synthesis of C-5-thioglycopyranosides and their sulfonium derivatives from 1-C-(2′-oxoalkyl)-5-S-acetylglycofuranosides. Carbohydr Res 2005; 340:235-44. [PMID: 15639243 DOI: 10.1016/j.carres.2004.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 11/18/2004] [Indexed: 11/21/2022]
Abstract
1-C-(2'-oxoalkyl)-5-S-acetylglycofuranosides of L-arabinose, D-ribose, and D-xylose were converted to 1-C-(2'-oxoalkyl)-5-thioglycopyranosides by base treatment. The transformation was achieved through beta-elimination to an acyclic alpha,beta-conjugated aldehyde (ketone or ester), followed by an intramolecular hetero-Michael addition by the 5-thiol group. The cycloaddition was highly stereoselective in favor of an equatorial 1-C-substitution. The resultant C-5-thioglycopyranosides were further converted to the sulfonium salts by treatment with cyclic sulfate and methyl iodide. Two sulfonium isomers were obtained due to the presence of both S-axial and S-equatorial substitutions. We observed that the chemical shifts of both C-1 and C-5 in the S-axial substituted sulfonium sugars are always shifted up-field (5-10 ppm) in comparison to those in the S-equatorial substitutions (deltaC 49-53 ppm vs 42-45 ppm at C-1 and 37-42 ppm vs 32-35 ppm at C-5), which provides an easy way for determination of the stereochemistry.
Collapse
Affiliation(s)
- Tian Yi
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | | | | |
Collapse
|
47
|
The conformational behaviour of α,β-trehalose-like disaccharides and their C-glycosyl, imino-C-glycosyl and carbagalactose analogues depends on the chemical nature of the modification: an NMR investigation. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2004.11.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Dondoni A, Catozzi N, Marra A. Stereoselective Synthesis of α- and β-l-C-Fucosyl Aldehydes and Their Utility in the Assembly of C-Fucosides of Biological Relevance. J Org Chem 2004; 69:5023-36. [PMID: 15255731 DOI: 10.1021/jo049406a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient synthesis of O-benzylated derivatives of the title sugar aldehydes via thiazole addition to tri-O-benzyl-l-fuconolactone followed by highly stereoselective deoxygenation of the resulting thiazolylketose and thiazole to formyl transformation is described. Wittig olefination of these aldehydes with galactopyranose and glucopyranose 6-phosphoranes and reduction of the resulting alkenes afforded alpha- and beta-linked (1-->6)-L-C-fucosyl disaccharides, namely, beta-L-C-Fuc-(1-->6)-alpha-D-Gal, alpha-L-C-Fuc-(1-->6)-alpha-D-Gal, and alpha-L-C-Fuc-(1-->6)-alpha-d-Glc. The alpha-anomer of the above C-fucosyl aldehydes was transformed into a C-fucosylmethyl triphenylphosphonium iodide from which the corresponding C-fucosylmethylene phosphorane was generated upon treatment with BuLi. This phosphorane reacted with the Garner aldehyde (N-Boc D-serinal acetonide) and its one-carbon higher homologue to give alkenes whose reduction and unveiling of the glycinyl group from the oxazolidine ring afforded C-fucosyl alpha-amino acids, namely alpha-L-linked C-fucosyl serines and C-fucosyl asparagines. As a final test of the synthetic utility of the title aldehydes, the beta-anomer was employed as starting material in the stereoselective synthesis of both R- and S-epimer L-C-fucosyl phenylhydroxy acetates. One epimer was obtained by reaction of the sugar aldehyde with phenylmagnesium bromide, oxidation of the resulting alcohol to ketone, addition of 2-lithiothiazole to the latter, and transformation of the thiazole ring into the carboxyl group through an aldehyde intermediate. The other epimer was obtained by the same procedure and inverting the timing of phenyl and thiazolyl group addition. In both routes, the key step establishing the configuration of the quaternary carbon atom of the aliphatic chain was the highly stereoselective addition of the organometal to the ketone intermediate.
Collapse
Affiliation(s)
- Alessandro Dondoni
- Dipartimento di Chimica, Laboratorio di Chimica Organica, Università di Ferrara, Via L. Borsari 46, 44100-Ferrara, Italy
| | | | | |
Collapse
|
49
|
A short and efficient synthesis of α-C-(1→3)-linked disaccharides containing deoxyhexopyranoses. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.tetasy.2004.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Siebert HC, Jiménez-Barbero J, André S, Kaltner H, Gabius HJ. Describing topology of bound ligand by transferred nuclear Overhauser effect spectroscopy and molecular modeling. Methods Enzymol 2003; 362:417-34. [PMID: 12968380 DOI: 10.1016/s0076-6879(03)01029-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Hans-Christian Siebert
- Institute of Physiological Chemistry, Ludwig-Maximilians University, Veterinarstrasse 13, Munich D-80539, Germany
| | | | | | | | | |
Collapse
|