1
|
Alpine shrub growth follows bimodal seasonal patterns across biomes - unexpected environmental controls. Commun Biol 2022; 5:793. [PMID: 35933562 PMCID: PMC9357034 DOI: 10.1038/s42003-022-03741-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Under climate change, cold-adapted alpine ecosystems are turning into hotspots of warming. However, the complexity of driving forces of growth, associated biomass gain and carbon storage of alpine shrubs is poorly understood. We monitored alpine growth mechanisms of six common shrub species across contrasting biomes, Mediterranean and tundra, using 257 dendrometers, recording stem diameter variability at high temporal resolution. Linking shrub growth to on-site environmental conditions, we modelled intra-annual growth patterns based on distributed lag non-linear models implemented with generalized additive models. We found pronounced bimodal growth patterns across biomes, and counterintuitively, within the cold-adapted biome, moisture, and within the drought-adapted biome, temperature was crucial, with unexpected consequences. In a warmer world, the Mediterranean alpine might experience strong vegetation shifts, biomass gain and greening, while the alpine tundra might see less changes in vegetation patterns, minor modifications of biomass stocks and rather browning. Generalized additive models reveal an unexpected environmental control in shrub growth across biomes.
Collapse
|
2
|
Desforges JP, Marques GM, Beumer LT, Chimienti M, Hansen LH, Pedersen SH, Schmidt NM, van Beest FM. Environment and physiology shape Arctic ungulate population dynamics. GLOBAL CHANGE BIOLOGY 2021; 27:1755-1771. [PMID: 33319455 DOI: 10.1111/gcb.15484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Species conservation in a rapidly changing world requires an improved understanding of how individuals and populations respond to changes in their environment across temporal scales. Increased warming in the Arctic puts this region at particular risk for rapid environmental change, with potentially devastating impacts on resident populations. Here, we make use of a parameterized full life cycle, individual-based energy budget model for wild muskoxen, coupling year-round environmental data with detailed ontogenic metabolic physiology. We show how winter food accessibility, summer food availability, and density dependence drive seasonal dynamics of energy storage and thus life history and population dynamics. Winter forage accessibility defined by snow depth, more than summer forage availability, was the primary determinant of muskox population dynamics through impacts on calf recruitment and longer term carryover effects of maternal investment. Simulations of various seasonal snow depth and plant biomass and quality profiles revealed that timing of and improved/limited winter forage accessibility had marked influence on calf recruitment (±10-80%). Impacts on recruitment were the cumulative result of condition-driven reproductive performance at multiple time points across the reproductive period (ovulation to calf weaning) as a trade-off between survival and reproduction. Seasonal and generational condition effects of snow-rich winters interacted with age structure and density to cause pronounced long-term consequences on population growth and structure, with predicted population recovery times from even moderate disturbances of 10 years or more. Our results show how alteration in winter forage accessibility, mediated by snow depth, impacts the dynamics of northern herbivore populations. Further, we present here a mechanistic and state-based model framework to assess future scenarios of environmental change, such as increased or decreased snowfall or plant biomass and quality to impact winter and summer forage availability across the Arctic.
Collapse
Affiliation(s)
- Jean-Pierre Desforges
- Bioscience Department, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Gonçalo M Marques
- Marine, Environment & Technology Center (MARETEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Larissa T Beumer
- Bioscience Department, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Lars H Hansen
- Bioscience Department, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Stine Højlund Pedersen
- Cooperative Institute for Research in the Atmosphere (CIRA, Colorado State University, Fort Collins, CO, USA
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - Niels M Schmidt
- Bioscience Department, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Floris M van Beest
- Bioscience Department, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Christensen TR, Lund M, Skov K, Abermann J, López-Blanco E, Scheller J, Scheel M, Jackowicz-Korczynski M, Langley K, Murphy MJ, Mastepanov M. Multiple Ecosystem Effects of Extreme Weather Events in the Arctic. Ecosystems 2020. [DOI: 10.1007/s10021-020-00507-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe Arctic is getting warmer and wetter. Here, we document two independent examples of how associated extreme precipitation patterns have severe implications for high Arctic ecosystems. The events stand out in a 23-year record of continuous observations of a wide range of ecosystem parameters and act as an early indication of conditions projected to increase in the future. In NE Greenland, August 2015, one-quarter of the average annual precipitation fell during a 9-day intensive rain event. This ranked number one for daily sums during the 1996–2018 period and caused a strong and prolonged reduction in solar radiation decreasing CO2 uptake in the order of 18–23 g C m−2, a reduction comparable to typical annual C budgets in Arctic tundra. In a different type of event, but also due to changed weather patterns, an extreme snow melt season in 2018 triggered a dramatic gully thermokarst causing rapid transformation in ecosystem functioning from consistent annual ecosystem CO2 uptake and low methane exchange to highly elevated methane release, net source of CO2, and substantial export of organic carbon downstream as riverine and coastal input. In addition to climate warming alone, more frequent occurrence of extreme weather patterns will have large implications for otherwise undisturbed tundra ecosystems including their element transport and carbon interactions with the atmosphere and ocean.
Collapse
|
4
|
Sensitivity of Glacier Runoff to Winter Snow Thickness Investigated for Vatnajökull Ice Cap, Iceland, Using Numerical Models and Observations. ATMOSPHERE 2018. [DOI: 10.3390/atmos9110450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several simulations of the surface climate and energy balance of Vatnajökull ice cap, Iceland, are used to estimate the glacier runoff for the period 1980–2015 and the sensitivity of runoff to the spring conditions (e.g., snow thickness). The simulations are calculated using the snow pack scheme from the regional climate model HIRHAM5, forced with incoming mass and energy fluxes from the numerical weather prediction model HARMONIE-AROME. The modeled runoff is compared to available observations from two outlet glaciers to assess the quality of the simulations. To test the sensitivity of the runoff to spring conditions, simulations are repeated for the spring conditions of each of the years 1980–2015, followed by the weather of all summers in the same period. We find that for the whole ice cap, the variability in runoff as a function of varying spring conditions was on average 31% of the variability due to changing summer weather. However, some outlet glaciers are very sensitive to the amount of snow in the spring, as e.g., the variation in runoff from Brúarjökull due to changing spring conditions was on average 50% of the variability due to varying summer weather.
Collapse
|
5
|
Nabe-Nielsen J, Normand S, Hui FKC, Stewart L, Bay C, Nabe-Nielsen LI, Schmidt NM. Plant community composition and species richness in the High Arctic tundra: From the present to the future. Ecol Evol 2017; 7:10233-10242. [PMID: 29238550 PMCID: PMC5723606 DOI: 10.1002/ece3.3496] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2017] [Accepted: 09/02/2017] [Indexed: 11/23/2022] Open
Abstract
Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importance of these conditions is limited due to the scarcity of studies, especially in the High Arctic. We investigated variations in vascular plant community composition and species richness based on 288 plots distributed on three sites along a coast‐inland gradient in Northeast Greenland using a stratified random design. We used an information theoretic approach to determine whether variations in species richness were best explained by macroclimate, by factors related to local topography (including soil water) or by plant‐plant interactions. Latent variable models were used to explain patterns in plant community composition. Species richness was mainly determined by variations in soil water content, which explained 35% of the variation, and to a minor degree by other variables related to topography. Species richness was not directly related to macroclimate. Latent variable models showed that 23.0% of the variation in community composition was explained by variables related to topography, while distance to the inland ice explained an additional 6.4 %. This indicates that some species are associated with environmental conditions found in only some parts of the coast–inland gradient. Inclusion of macroclimatic variation increased the model's explanatory power by 4.2%. Our results suggest that the main impact of climate changes in the High Arctic will be mediated by their influence on local soil water conditions. Increasing temperatures are likely to cause higher evaporation rates and alter the distribution of late‐melting snow patches. This will have little impact on landscape‐scale diversity if plants are able to redistribute locally to remain in areas with sufficient soil water.
Collapse
Affiliation(s)
- Jacob Nabe-Nielsen
- Department of Bioscience Aarhus University Roskilde Denmark.,Arctic Research Centre (ARC) Aarhus University Aarhus C Denmark
| | - Signe Normand
- Department of Bioscience Aarhus University Aarhus C Denmark
| | - Francis K C Hui
- Mathematical Sciences Institute The Australian National University Acton ACT Australia
| | - Lærke Stewart
- Department of Bioscience Aarhus University Roskilde Denmark.,Arctic Research Centre (ARC) Aarhus University Aarhus C Denmark
| | - Christian Bay
- Department of Bioscience Aarhus University Roskilde Denmark.,Arctic Research Centre (ARC) Aarhus University Aarhus C Denmark
| | | | - Niels Martin Schmidt
- Department of Bioscience Aarhus University Roskilde Denmark.,Arctic Research Centre (ARC) Aarhus University Aarhus C Denmark
| |
Collapse
|
6
|
Grau O, Geml J, Pérez-Haase A, Ninot JM, Semenova-Nelsen TA, Peñuelas J. Abrupt changes in the composition and function of fungal communities along an environmental gradient in the high Arctic. Mol Ecol 2017; 26:4798-4810. [PMID: 28664999 DOI: 10.1111/mec.14227] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
Abstract
Fungi play a key role in soil-plant interactions, nutrient cycling and carbon flow and are essential for the functioning of arctic terrestrial ecosystems. Some studies have shown that the composition of fungal communities is highly sensitive to variations in environmental conditions, but little is known about how the conditions control the role of fungal communities (i.e., their ecosystem function). We used DNA metabarcoding to compare taxonomic and functional composition of fungal communities along a gradient of environmental severity in Northeast Greenland. We analysed soil samples from fell fields, heaths and snowbeds, three habitats with very contrasting abiotic conditions. We also assessed within-habitat differences by comparing three widespread microhabitats (patches with high cover of Dryas, Salix, or bare soil). The data suggest that, along the sampled mesotopographic gradient, the greatest differences in both fungal richness and community composition are observed amongst habitats, while the effect of microhabitat is weaker, although still significant. Furthermore, we found that richness and community composition of fungi are shaped primarily by abiotic factors and to a lesser, though still significant extent, by floristic composition. Along this mesotopographic gradient, environmental severity is strongly correlated with richness in all fungal functional groups: positively in saprotrophic, pathogenic and lichenised fungi, and negatively in ectomycorrhizal and root endophytic fungi. Our results suggest complex interactions amongst functional groups, possibly due to nutrient limitation or competitive exclusion, with potential implications on soil carbon stocks. These findings are important in the light of the environmental changes predicted for the Arctic.
Collapse
Affiliation(s)
- Oriol Grau
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain.,CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - József Geml
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Aaron Pérez-Haase
- Institute for Research in Biodiversity (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Josep M Ninot
- Institute for Research in Biodiversity (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Tatiana A Semenova-Nelsen
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain.,CREAF, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
7
|
Trout-Haney JV, Wood ZT, Cottingham KL. Presence of the Cyanotoxin Microcystin in Arctic Lakes of Southwestern Greenland. Toxins (Basel) 2016; 8:toxins8090256. [PMID: 27589801 PMCID: PMC5037482 DOI: 10.3390/toxins8090256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/26/2016] [Indexed: 11/23/2022] Open
Abstract
Cyanobacteria and their toxins have received significant attention in eutrophic temperate and tropical systems where conspicuous blooms of certain planktonic taxa release toxins into fresh water, threatening its potability and safe use for recreation. Although toxigenic cyanobacteria are not confined to high nutrient environments, bloom-forming species, or planktonic taxa, these other situations are studied les often studied. For example, toxin production in picoplankton and benthic cyanobacteria—the predominant photoautotrophs found in polar lakes—is poorly understood. We quantified the occurrence of microcystin (MC, a hepatotoxic cyanotoxin) across 18 Arctic lakes in southwestern Greenland. All of the focal lakes contained detectable levels of MC, with concentrations ranging from 5 ng·L−1 to >400 ng·L−1 during summer, 2013–2015. These concentrations are orders of magnitude lower than many eutrophic systems, yet the median lake MC concentration in Greenland (57 ng·L−1) was still 6.5 times higher than the median summer MC toxicity observed across 50 New Hampshire lakes between 1998 and 2008 (8.7 ng·L−1). The presence of cyanotoxins in these Greenlandic lakes demonstrates that high latitude lakes can support toxigenic cyanobacteria, and suggests that we may be underestimating the potential for these systems to develop high levels of cyanotoxins in the future.
Collapse
Affiliation(s)
- Jessica V Trout-Haney
- Graduate Program in Ecology, Evolution, Ecosystems and Society, Dartmouth College, Hanover, NH 03755, USA.
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Zachary T Wood
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Kathryn L Cottingham
- Graduate Program in Ecology, Evolution, Ecosystems and Society, Dartmouth College, Hanover, NH 03755, USA.
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
8
|
Mosses in High-Arctic lakes: in situ measurements of annual primary production and decomposition. Polar Biol 2015. [DOI: 10.1007/s00300-015-1806-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Temporal trends and variability in a high-arctic ecosystem in Greenland: multidimensional analyses of limnic and terrestrial ecosystems. Polar Biol 2014. [DOI: 10.1007/s00300-014-1501-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Pélabon C, Osler NC, Diekmann M, Graae BJ. Decoupled phenotypic variation between floral and vegetative traits: distinguishing between developmental and environmental correlations. ANNALS OF BOTANY 2013; 111:935-44. [PMID: 23471008 PMCID: PMC3631334 DOI: 10.1093/aob/mct050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS In species with specialized pollination, floral traits are expected to be relatively invariant and decoupled from the phenotypic variation affecting vegetative traits. However, inferring the degree of decoupling between morphological characters from patterns of phenotypic correlations is difficult because phenotypic correlations result from the superimposition of several sources of covariance. In this study it is hypothesized that, in some cases, negative environmental correlations generated by non-congruent reaction norms across traits overshadow positive developmental correlations and generate a decoupling of the phenotypic variation between vegetative and floral traits. METHODS To test this hypothesis, Campanula rotundifolia were grown from two distinct populations under two temperature treatments, and patterns of correlation were analysed between leaf size and flower size within and among treatments. KEY RESULTS Flower size was less sensitive to temperature variation than leaf size. Furthermore, flower size and leaf size showed temperature-induced reaction norms in opposite directions. Flower size decreased with an increasing temperature, while leaf size increased. Consequently, among treatments, correlations between leaf size and flower size were negative or absent, while, within treatments, these correlations were positive or absent in the cold and warm environments, respectively. CONCLUSIONS These results confirm that the decoupling of the phenotypic variation between vegetative and floral traits can be dependent on the environment. They also underline the importance of distinguishing sources of phenotypic covariance when testing hypotheses about phenotypic integration.
Collapse
Affiliation(s)
- Christophe Pélabon
- Centre for Conservation Biology, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | | | | | | |
Collapse
|
11
|
Christiansen CT, Svendsen SH, Schmidt NM, Michelsen A. High arctic heath soil respiration and biogeochemical dynamics during summer and autumn freeze-in - effects of long-term enhanced water and nutrient supply. GLOBAL CHANGE BIOLOGY 2012; 18:3224-3236. [PMID: 28741825 DOI: 10.1111/j.1365-2486.2012.02770.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/26/2012] [Indexed: 06/07/2023]
Abstract
In High Arctic NE Greenland, temperature and precipitation are predicted to increase during this century, however, relatively little information is available on the role of increased water supply on soil CO 2 efflux in dry, high arctic ecosystems. We measured soil respiration (Rsoil ) in summer and autumn of 2009 in combination with microbial biomass and nutrient availability during autumn freeze-in at a dry, open heath in Zackenberg, NE Greenland. This tundra site has been subject to fully factorial manipulation consisting of increased soil water supply for 14 years, and occasional nitrogen (N) addition in pulses. Summer watering enhanced Rsoil during summer, but decreased Rsoil in the following autumn. We speculate that this is due to intensified depletion of recently fixed plant carbon by soil organisms. Hence, autumn soil microbial activity seems tightly linked to growing season plant production through plant-associated carbon pools. Nitrogen addition alone consistently increased Rsoil , but when water and nitrogen were added in combination, autumn Rsoil declined similarly to when water was added alone. Despite several freeze-thaw events, the microbial biomass carbon (C) remained constant until finally being reduced by ~60% in late September. In spite of significantly reduced microbial biomass C and phosphorus (P), microbial N did not change. This suggests N released from dead microbes was quickly assimilated by surviving microbes. We observed no change in soil organic matter content after 14 years of environmental manipulations, suggesting high ecosystem resistance to environmental changes.
Collapse
Affiliation(s)
- Casper T Christiansen
- Physiological Ecology Group, Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
| | - Sarah H Svendsen
- Physiological Ecology Group, Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
| | - Niels M Schmidt
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Anders Michelsen
- Physiological Ecology Group, Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
- Center for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
| |
Collapse
|
12
|
Christiansen CT, Schmidt NM, Michelsen A. High Arctic Dry Heath CO2 Exchange During the Early Cold Season. Ecosystems 2012. [DOI: 10.1007/s10021-012-9569-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|