1
|
Prazak L, Iwasaki Y, Kim AR, Kozlov K, King K, Gergen JP. A dual role for DNA binding by Runt in activation and repression of sloppy paired transcription. Mol Biol Cell 2021; 32:ar26. [PMID: 34432496 PMCID: PMC8693977 DOI: 10.1091/mbc.e20-08-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This work investigates the role of DNA binding by Runt in regulating the sloppy paired 1 (slp1) gene and in particular two distinct cis-regulatory elements that mediate regulation by Runt and other pair-rule transcription factors during Drosophila segmentation. We find that a DNA-binding-defective form of Runt is ineffective at repressing both the distal (DESE) and proximal (PESE) early stripe elements of slp1 and is also compromised for DESE-dependent activation. The function of Runt-binding sites in DESE is further investigated using site-specific transgenesis and quantitative imaging techniques. When DESE is tested as an autonomous enhancer, mutagenesis of the Runt sites results in a clear loss of Runt-dependent repression but has little to no effect on Runt-dependent activation. Notably, mutagenesis of these same sites in the context of a reporter gene construct that also contains the PESE enhancer results in a significant reduction of DESE-dependent activation as well as the loss of repression observed for the autonomous mutant DESE enhancer. These results provide strong evidence that DNA binding by Runt directly contributes to the regulatory interplay of interactions between these two enhancers in the early embryo.
Collapse
Affiliation(s)
- Lisa Prazak
- Department of Biology, Farmingdale State College, Farmingdale, NY 11735-1021.,Department of Biochemistry and Cell Biology and Center for Developmental Genetics.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Yasuno Iwasaki
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics
| | - Ah-Ram Kim
- Graduate Program in Biochemistry and Structural Biology, and
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnical University, St. Petersburg, Russia 195251
| | - Kevin King
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - J Peter Gergen
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics
| |
Collapse
|
2
|
Prazak L, Fujioka M, Gergen JP. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors. Dev Biol 2010; 344:1048-59. [PMID: 20435028 PMCID: PMC2914134 DOI: 10.1016/j.ydbio.2010.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/08/2010] [Accepted: 04/23/2010] [Indexed: 11/18/2022]
Abstract
The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair-rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from -3.1kb to -2.5kb and from -8.1kb to -7.1kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains an Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate that interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter.
Collapse
Affiliation(s)
- Lisa Prazak
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - J. Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215
| |
Collapse
|
3
|
Walrad PB, Hang S, Joseph GS, Salas J, Gergen JP. Distinct contributions of conserved modules to Runt transcription factor activity. Mol Biol Cell 2010; 21:2315-26. [PMID: 20462957 PMCID: PMC2893994 DOI: 10.1091/mbc.e09-11-0953] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An investigation of the in vivo roles of conserved regions of the Drosophila Runt protein outside of the DNA-binding Runt domain reveals distinct requirements in different regulatory activities. The conserved VWRPY-containing C-terminus required for repression of only a subset of targets is also found to participate in activation of other targets. Runx proteins play vital roles in regulating transcription in numerous developmental pathways throughout the animal kingdom. Two Runx protein hallmarks are the DNA-binding Runt domain and a C-terminal VWRPY motif that mediates interaction with TLE/Gro corepressor proteins. A phylogenetic analysis of Runt, the founding Runx family member, identifies four distinct regions C-terminal to the Runt domain that are conserved in Drosophila and other insects. We used a series of previously described ectopic expression assays to investigate the functions of these different conserved regions in regulating gene expression during embryogenesis and in controlling axonal projections in the developing eye. The results indicate each conserved region is required for a different subset of activities and identify distinct regions that participate in the transcriptional activation and repression of the segmentation gene sloppy-paired-1 (slp1). Interestingly, the C-terminal VWRPY-containing region is not required for repression but instead plays a role in slp1 activation. Genetic experiments indicating that Groucho (Gro) does not participate in slp1 regulation further suggest that Runt's conserved C-terminus interacts with other factors to promote transcriptional activation. These results provide a foundation for further studies on the molecular interactions that contribute to the context-dependent properties of Runx proteins as developmental regulators.
Collapse
Affiliation(s)
- Pegine B Walrad
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Graduate Programs in Molecular and Cellular Biology and Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
4
|
Jeong JH, Jin JS, Kim HN, Kang SM, Liu JC, Lengner CJ, Otto F, Mundlos S, Stein JL, van Wijnen AJ, Lian JB, Stein GS, Choi JY. Expression of Runx2 transcription factor in non-skeletal tissues, sperm and brain. J Cell Physiol 2008; 217:511-7. [PMID: 18636555 PMCID: PMC2612588 DOI: 10.1002/jcp.21524] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Runx2 is a master transcription factor for chondrocyte and osteoblast differentiation and bone formation. However expression of Runx2 (by RT-PCR), has been reported in non-skeletal tissues such as breast, T cells and testis. To better define Runx2 activity in non-skeletal tissues, we examined transgenic (Tg) mice expressing LacZ gene under control of 3.0 kb (3 kb Tg) or 1.0 kb (1 kb Tg) of the Runx2 distal (P1) promoter, Runx2 LacZ knock-in (Runx2(+/LacZ)) and Runx2/P1 LacZ knock-in (Runx2/P1(+/LacZ)). In the Runx2 3 kb Tg mouse, beta-galactosidase (beta-gal) expression appeared in various non-skeletal tissues including testis, skin, adrenal gland and brain. beta-gal expression from both 3 kb and 1 kb Tg, reflecting activity of the Runx2 promoter, was readily detectable in seminiferous tubules of the testis and the epididymis. At the single cell level, beta-gal was detected in spermatids and mature sperms not in sertoli or Leydig cells. We also detected a positive signal from the Runx2(+/LacZ) and Runx2/P1(+/LacZ) mice. Indeed, Runx2 expression was observed in isolated mature sperms, which was confirmed by RT-PCR and Western blot analysis. Runx2, however, was not related to sex determination and sperm motility. Runx2 mediated beta-gal activity is also found robustly in the hippocampus and frontal lobe of the brain in Runx2(+/LacZ). Collectively, these results indicate that Runx2 is expressed in several non-skeletal tissues particularly sperms of testis and hippocampus of brain. It suggests that Runx2 may play an important role in male reproductive organ testis and brain.
Collapse
Affiliation(s)
- Jae-Hwan Jeong
- Department of Biochemistry and Cell Biology, School of Medicine, Cell and Matrix Research Institute, Skeletal Diseases Genome Research Center, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Jung-Sook Jin
- Department of Biochemistry and Cell Biology, School of Medicine, Cell and Matrix Research Institute, Skeletal Diseases Genome Research Center, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Hyun-Nam Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Cell and Matrix Research Institute, Skeletal Diseases Genome Research Center, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Sang-Min Kang
- Department of Biochemistry and Cell Biology, School of Medicine, Cell and Matrix Research Institute, Skeletal Diseases Genome Research Center, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Julie C. Liu
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Christopher J. Lengner
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Florian Otto
- Division of Hematology/Oncology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
| | - Janet L. Stein
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Andre J. van Wijnen
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jane B. Lian
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Gary S. Stein
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Cell and Matrix Research Institute, Skeletal Diseases Genome Research Center, Kyungpook National University, Daegu 700-422, Republic of Korea
| |
Collapse
|
5
|
Inoue KI, Shiga T, Ito Y. Runx transcription factors in neuronal development. Neural Dev 2008; 3:20. [PMID: 18727821 PMCID: PMC2531103 DOI: 10.1186/1749-8104-3-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 08/26/2008] [Indexed: 01/07/2023] Open
Abstract
Runt-related (Runx) transcription factors control diverse aspects of embryonic development and are responsible for the pathogenesis of many human diseases. In recent years, the functions of this transcription factor family in the nervous system have just begun to be understood. In dorsal root ganglion neurons, Runx1 and Runx3 play pivotal roles in the development of nociceptive and proprioceptive sensory neurons, respectively. Runx appears to control the transcriptional regulation of neurotrophin receptors, numerous ion channels and neuropeptides. As a consequence, Runx contributes to diverse aspects of the sensory system in higher vertebrates. In this review, we summarize recent progress in determining the role of Runx in neuronal development.
Collapse
Affiliation(s)
- Ken-ichi Inoue
- Department of Medical Biochemistry, Aarhus University, DK-8000C, Aarhus, Denmark.
| | | | | |
Collapse
|
6
|
Swantek D, Gergen JP. Ftz modulates Runt-dependent activation and repression of segment-polarity gene transcription. Development 2004; 131:2281-90. [PMID: 15102703 DOI: 10.1242/dev.01109] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A crucial step in generating the segmented body plan in Drosophila is establishing stripes of expression of several key segment-polarity genes, one stripe for each parasegment, in the blastoderm stage embryo. It is well established that these patterns are generated in response to regulation by the transcription factors encoded by the pair-rule segmentation genes. However, the full set of positional cues that drive expression in either the odd- or even-numbered parasegments has not been defined for any of the segment-polarity genes. Among the complications for dissecting the pair-rule to segment-polarity transition are the regulatory interactions between the different pair-rule genes. We have used an ectopic expression system that allows for quantitative manipulation of expression levels to probe the role of the primary pair-rule transcription factor Runt in segment-polarity gene regulation. These experiments identify sloppy paired 1 (slp1) as a gene that is activated and repressed by Runt in a simple combinatorial parasegment-dependent manner. The combination of Runt and Odd-paired (Opa) is both necessary and sufficient for slp1 activation in all somatic blastoderm nuclei that do not express the Fushi tarazu (Ftz) transcription factor. By contrast, the specific combination of Runt + Ftz is sufficient for slp1 repression in all blastoderm nuclei. We furthermore find that Ftz modulates the Runt-dependent regulation of the segment-polarity genes wingless (wg) and engrailed (en). However, in the case of en the combination of Runt + Ftz gives activation. The contrasting responses of different downstream targets to Runt in the presence or absence of Ftz is thus central to the combinatorial logic of the pair-rule to segment-polarity transition. The unique and simple rules for slp1 regulation make this an attractive target for dissecting the molecular mechanisms of Runt-dependent regulation.
Collapse
Affiliation(s)
- Deborah Swantek
- Department of Biochemistry and Cell Biology and The Center for Developmental Genetics, State University of New York at Stony Brook, Stony Brook, NY 11794-5140, USA
| | | |
Collapse
|
7
|
Affiliation(s)
- Nancy A Speck
- Department of Biochemisty, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
8
|
Yu X, Li P, Roeder RG, Wang Z. Inhibition of androgen receptor-mediated transcription by amino-terminal enhancer of split. Mol Cell Biol 2001; 21:4614-25. [PMID: 11416139 PMCID: PMC87125 DOI: 10.1128/mcb.21.14.4614-4625.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A yeast two-hybrid assay has identified an androgen-dependent interaction of androgen receptor (AR) with amino-terminal enhancer of split (AES), a member of the highly conserved Groucho/TLE family of corepressors. Full-length AR, as well as the N-terminal fragment of AR, showed direct interactions with AES in in vitro protein-protein interaction assays. AES specifically inhibited AR-mediated transcription in a well-defined cell-free transcription system and interacted specifically with the basal transcription factor (TFIIE) in HeLa nuclear extract. These observations implicate AES as a selective repressor of ligand-dependent AR-mediated transcription that acts by directly interacting with AR and by targeting the basal transcription machinery.
Collapse
Affiliation(s)
- X Yu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
9
|
Henderson AM, Wang SJ, Taylor AC, Aitkenhead M, Hughes CC. The basic helix-loop-helix transcription factor HESR1 regulates endothelial cell tube formation. J Biol Chem 2001; 276:6169-76. [PMID: 11069914 DOI: 10.1074/jbc.m008506200] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human endothelial cells can be induced to form capillary-like tubular networks in collagen gels. We have used this in vitro model and representational difference analysis to identify genes involved in the formation of new blood vessels. HESR1 (HEY-1/HRT-1/CHF-2/gridlock), a basic helix-loop-helix protein related to the hairy/enhancer of split/HES family, is absent in migrating and proliferating cultures of endothelial cells but is rapidly induced during capillary-like network formation. HESR1 is detectable in all adult tissues and at high levels in well vascularized organs such as heart and brain. Its expression is also enriched in aorta and purified capillaries. Overexpression of HESR1 in endothelial cells down-regulates vascular endothelial cell growth factor receptor-2 (VEGFR2) mRNA levels and blocks proliferation, migration, and network formation. Interestingly, reduction of expression of HESR1 by antisense oligonucleotides also blocks endothelial cell network formation in vitro. Finally, HESR1 expression is altered in several breast, lung, and kidney tumors. These data are consistent with a temporal model for HESR1 action where down-regulation at the initiation of new vessel budding is required to allow VEGFR2-mediated migration and proliferation, but re-expression of HESR1 is necessary for induction of tubular network formation and continued maintenance of the mature, quiescent vessel.
Collapse
Affiliation(s)
- A M Henderson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
10
|
Miller AA, Bernardoni R, Giangrande A. Positive autoregulation of the glial promoting factor glide/gcm. EMBO J 1998; 17:6316-26. [PMID: 9799239 PMCID: PMC1170956 DOI: 10.1093/emboj/17.21.6316] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fly gliogenesis depends on the glial-cell-deficient/glial-cell-missing (glide/gcm) transcription factor. glide/gcm expression is necessary and sufficient to induce the glial fate within and outside the nervous system, indicating that the activity of this gene must be tightly regulated. The current model is that glide/gcm activates the glial fate by inducing the expression of glial-specific genes that are required to maintain such a fate. Previous observations on the null glide/gcmN7-4 allele evoked the possibility that another role of glide/gcm might be to maintain and/or amplify its own expression. Here we show that glide/gcm does positively autoregulate in vitro and in vivo, and that the glide/gcmN7-4 protein is not able to do so. We thereby provide the first direct evidence of both a target and a regulator of glide/gcm. Our data also demonstrate that glide/gcm transcription is regulated at two distinct steps: initiation, which is glide/gcm-independent, and maintenance, which requires glide/gcm. Interestingly, we have found that autoregulation requires the activity of additional cell-specific cofactors. The present results suggest transcriptional autoregulation is a mechanism for glial fate induction.
Collapse
Affiliation(s)
- A A Miller
- Institut de Génétique et Biologie Moléculaire et Cellulaire, IGBMC/CNRS/INSERM/ULP, BP 163 67404 Illkirch, Communauté Urbaine de Strasbourg, France
| | | | | |
Collapse
|
11
|
Fisher AL, Caudy M. Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 1998; 12:1931-40. [PMID: 9649497 DOI: 10.1101/gad.12.13.1931] [Citation(s) in RCA: 250] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A L Fisher
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021 USA
| | | |
Collapse
|