1
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
2
|
Steeg PS, Zollo M, Wieland T. A critical evaluation of biochemical activities reported for the nucleoside diphosphate kinase/Nm23/Awd family proteins: opportunities and missteps in understanding their biological functions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 384:331-9. [PMID: 21611737 PMCID: PMC10153102 DOI: 10.1007/s00210-011-0651-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|
3
|
Nallamothu G, Dammai V, Hsu T. Developmental function of Nm23/awd: a mediator of endocytosis. Mol Cell Biochem 2009; 329:35-44. [PMID: 19373545 PMCID: PMC2721904 DOI: 10.1007/s11010-009-0112-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
The metastasis suppressor gene Nm23 is highly conserved from yeast to human, implicating a critical developmental function. Studies in cultured mammalian cells have identified several potential functions, but many have not been directly verified in vivo. Here, we summarize the studies on the Drosophila homolog of the Nm23 gene, named a bnormal w ing d iscs (awd), which shares 78% amino acid identity with the human Nm23-H1 and H2 isoforms. These studies confirmed that awd gene encodes a nucleoside diphosphate kinase, and provided strong evidence of a role for awd in regulating cell differentiation and motility via regulation of growth factor receptor signaling. The latter function is mainly mediated by control of endocytosis. This review provides a historical account of the discovery and subsequent analyses of the awd gene. We will also discuss the possible molecular function of the Awd protein that underlies the endocytic function.
Collapse
Affiliation(s)
- Gouthami Nallamothu
- Department of Pathology and Laboratory Medicine, and Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Vincent Dammai
- Department of Pathology and Laboratory Medicine, and Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Tien Hsu
- Department of Pathology and Laboratory Medicine, and Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St., Charleston, SC 29425, USA
| |
Collapse
|
4
|
Seong HA, Jung H, Ha H. NM23-H1 tumor suppressor physically interacts with serine-threonine kinase receptor-associated protein, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and negatively regulates TGF-beta signaling. J Biol Chem 2007; 282:12075-96. [PMID: 17314099 DOI: 10.1074/jbc.m609832200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NM23-H1 is a member of the NM23/NDP kinase gene family and a putative metastasis suppressor. Previously, a screen for NM23-H1-interacting proteins that could potentially modulate its activity identified serine-threonine kinase receptor-associated protein (STRAP), a transforming growth factor (TGF)-beta receptor-interacting protein. Through the use of cysteine to serine amino acid substitution mutants of NM23-H1 (C4S, C109S, and C145S) and STRAP (C152S, C270S, and C152S/C270S), we demonstrated that the association between these two proteins is dependent on Cys(145) of NM23-H1 and Cys(152) and Cys(270) of STRAP but did not appear to involve Cys(4) and Cys(109) of NM23-H1, suggesting that a disulfide linkage involving Cys(145) of NM23-H1 and Cys(152) or Cys(270) of STRAP mediates complex formation. The interaction was dependent on the presence of dithiothreitol or beta-mercaptoethanol but not H(2)O(2). Ectopic expression of wild-type NM23-H1, but not NM23-H1(C145S), negatively regulated TGF-beta signaling in a dose-dependent manner, enhanced stable association between the TGF-beta receptor and Smad7, and prevented nuclear translocation of Smad3. Similarly, wild-type NM23-H1 inhibited TGF-beta-induced apoptosis and growth inhibition, whereas NM23-H1(C145S) had no effect. Knockdown of NM23-H1 by small interfering RNA stimulated TGF-beta signaling. Coexpression of wild-type STRAP, but not STRAP(C152S/C270S), significantly stimulated NM23-H1-induced growth of HaCaT cells. These results suggest that the direct interaction of NM23-H1 and STRAP is important for the regulation of TGF-beta-dependent biological activity as well as NM23-H1 activity.
Collapse
Affiliation(s)
- Hyun-A Seong
- Department of Biochemistry, Research Center for Bioresource and Health, Biotechnology Research Institute, School of Life Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | |
Collapse
|
5
|
Provost E, Hersperger G, Timmons L, Ho WQ, Hersperger E, Alcazar R, Shearn A. Loss-of-function mutations in a glutathione S-transferase suppress the prune-Killer of prune lethal interaction. Genetics 2006; 172:207-19. [PMID: 16143620 PMCID: PMC1456148 DOI: 10.1534/genetics.105.044669] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 08/25/2005] [Indexed: 11/18/2022] Open
Abstract
The prune gene of Drosophila melanogaster is predicted to encode a phosphodiesterase. Null alleles of prune are viable but cause an eye-color phenotype. The abnormal wing discs gene encodes a nucleoside diphosphate kinase. Killer of prune is a missense mutation in the abnormal wing discs gene. Although it has no phenotype by itself even when homozygous, Killer of prune when heterozygous causes lethality in the absence of prune gene function. A screen for suppressors of transgenic Killer of prune led to the recovery of three mutations, all of which are in the same gene. As heterozygotes these mutations are dominant suppressors of the prune-Killer of prune lethal interaction; as homozygotes these mutations cause early larval lethality and the absence of imaginal discs. These alleles are loss-of-function mutations in CG10065, a gene that is predicted to encode a protein with several zinc finger domains and glutathione S-transferase activity.
Collapse
Affiliation(s)
- Elayne Provost
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Lombardi D, Mileo AM. Protein interactions provide new insight into Nm23/nucleoside diphosphate kinase functions. J Bioenerg Biomembr 2004. [PMID: 12848343 DOI: 10.1023/a: 1023445907439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nm23-NDPKs besides contributing to the maintenance of the cellular nucleoside triphosphate pool, exert regulatory properties in a variety of cellular events including proliferation, invasiveness, development, differentiation, and gene regulation. This review focuses on recently discovered protein-protein interactions involving the Nm23 proteins. The findings herein summarized provide new and intriguing suggestions for a more extensive understanding of the biological functions of the Nm23 proteins.
Collapse
Affiliation(s)
- D Lombardi
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy.
| | | |
Collapse
|
7
|
Salerno M, Ouatas T, Palmieri D, Steeg PS. Inhibition of signal transduction by the nm23 metastasis suppressor: possible mechanisms. Clin Exp Metastasis 2003; 20:3-10. [PMID: 12650601 DOI: 10.1023/a:1022578000022] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The first metastasis suppressor gene identified was nm23. Transfection of nm23 into metastatic cell lines resulted in the inhibition of metastasis, but not primary tumor size in vivo. Using in vitro assays, nm23 overexpression resulted in reduced anchorage-independent colonization in response to TGF-beta, reduced invasion and motility in response to multiple factors, and increased differentiation. We hypothesize that the mechanism of action of Nm23 in metastasis suppression involves diminished signal transduction downstream of a particular receptor. Candidate biochemical mechanisms are identified and discussed herein.
Collapse
Affiliation(s)
- Massimiliano Salerno
- Women's Cancers Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
8
|
Lombardi D, Mileo AM. Protein interactions provide new insight into Nm23/nucleoside diphosphate kinase functions. J Bioenerg Biomembr 2003; 35:67-71. [PMID: 12848343 DOI: 10.1023/a:1023445907439] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nm23-NDPKs besides contributing to the maintenance of the cellular nucleoside triphosphate pool, exert regulatory properties in a variety of cellular events including proliferation, invasiveness, development, differentiation, and gene regulation. This review focuses on recently discovered protein-protein interactions involving the Nm23 proteins. The findings herein summarized provide new and intriguing suggestions for a more extensive understanding of the biological functions of the Nm23 proteins.
Collapse
Affiliation(s)
- D Lombardi
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy.
| | | |
Collapse
|
9
|
Stenberg LM, Stenflo J, Holmgren P, Brown MA. Post-translational processing of Drosophila nucleoside diphosphate kinase. Biochem Biophys Res Commun 2002; 295:689-94. [PMID: 12099695 DOI: 10.1016/s0006-291x(02)00737-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) was purified from Drosophila melanogaster by a combination of anion-exchange, hydroxyapatite, and reversed-phase chromatography. The identity of the purified enzyme was confirmed by sequencing internal peptides (the N-terminus appeared to be blocked). Post-translational modifications were investigated by using protein chemical and mass spectrometric methods. Analysis by nanoelectrospray ionization-mass spectrometry revealed that the mass of the enzyme was considerably smaller than that predicted from its amino acid sequence. Although its open-reading frame predicts a 153-residue polypeptide, the mature enzyme was found to comprise 152 amino acids, being modified by proteolytic removal of the initiator Met and N-acetylation of Ala2. This explains why the observed pI of the Drosophila enzyme is more acidic than that predicted from its amino acid sequence. No additional post-translational modifications such as glycosylation or O-phosphorylation, which have been identified on homologous NDPKs from other organisms, were detected on the Drosophila enzyme.
Collapse
Affiliation(s)
- Leisa M Stenberg
- Department of Clinical Chemistry, Lund University, University Hospital, Malmö, Sweden
| | | | | | | |
Collapse
|
10
|
Hunger-Glaser I, Hemphill A, Shalaby T, Hänni M, Seebeck T. Nucleoside diphosphate kinase of Trypanosoma brucei. Gene 2000; 257:251-7. [PMID: 11080591 DOI: 10.1016/s0378-1119(00)00401-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) is a highly conserved, multifunctional enzyme. Its originally described function is the phosphorylation of nucleoside diphosphates to the corresponding triphosphates, using ATP as the phosphate donor and a high-energy phosphorylated histidine residue as the reaction intermediate. More recently, a host of additional functions of NDPK have been discovered. Some of these correlate with the capacity of NDPK to transphosphorylate other proteins, in a manner reminiscent of bacterial two-component systems. Other functions may be mediated by direct DNA-binding of NDPK. This study describes the identification of NDPK from the parasitic protozoon Trypanosoma brucei. The genome of this major disease agent contains a single gene for NDPK. The predicted amino acid sequence of the trypanosomal enzyme is highly conserved with respect to all other species. The protein is constitutively expressed and is present in procyclic and in bloodstream forms. Immunofluorescence and immuno-electron microscopy demonstrate that trypanosomal NDPK (TbNDPK) is predominantly localized in the cell nucleus. Histidine phosphorylation of TbNDPK is essentially resistant to the experimental compound LY266500, a potent inhibitor of histidine phosphorylation of trypanosomal succinyl coenzyme A synthase.
Collapse
Affiliation(s)
- I Hunger-Glaser
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Timmons L, Shearn A. Role of AWD/nucleoside diphosphate kinase in Drosophila development. J Bioenerg Biomembr 2000; 32:293-300. [PMID: 11768313 DOI: 10.1023/a:1005545214937] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The abnormal wing discs gene of Drosophila encodes a soluble protein with nucleoside diphosphate kinase activity. This enzymic activity is necessary for the biological function of the abnormal wing discs gene product. Complete loss of function, i.e., null, mutations cause lethality after the larval stage. Most larval organs in such null mutant larvae appear to be normal, but the imaginal discs are small and incapable of normal differentiation. Killer-of-prune is a neomorphic mutation in the abnormal wing discs gene. It causes dominant lethality in larvae that lack prune gene activity. The Killer-of-prune mutant protein may have altered substrate specificity. Null mutant larvae have a low level of nucleoside diphosphate kinase activity. This suggests that there may be additional Drosophila genes that encode proteins with nucleoside dipthosphate kinase activity. Candidate genes have been found in the Drosophila genome.
Collapse
Affiliation(s)
- L Timmons
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland, 21210, USA
| | | |
Collapse
|
12
|
Lascu L, Giartosio A, Ransac S, Erent M. Quaternary structure of nucleoside diphosphate kinases. J Bioenerg Biomembr 2000; 32:227-36. [PMID: 11768306 DOI: 10.1023/a:1005580828141] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nucleoside (NDP) diphosphate kinases are oligomeric enzymes. Most are hexameric, but some bacterial enzymes are tetrameric. Hexamers and tetramers are constructed by assembling identical dimers. The hexameric structure is important for protein stability, as demonstrated by studies with natural mutants (the Killer-of-prune mutant of Drosophila NDP kinase and the S120G mutant of the human NDP kinase A in neuroblastomas) and with mutants obtained by site-directed mutagenesis. It is also essential for enzymic activity. The function of the tetrameric structure is unclear.
Collapse
Affiliation(s)
- L Lascu
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 University of Bordeaux-2 and CNRS, France.
| | | | | | | |
Collapse
|
13
|
Abstract
Tumor suppressor genes have a pivotal role in normal cells regulating cell cycle processes negatively. Furthermore, the inhibition of cell proliferation is a crucial step in the achievement of cell differentiation. Increasing evidence suggests that the nm23 genes, initially documented as suppressors of the invasive phenotype in some cancer types, are involved in the control of normal development and differentiation. In this review, we summarize some data concerning the involvement of the nm23 genes in development and differentiation, attempting to delineate an overall view of many facets of their biological role.
Collapse
Affiliation(s)
- D Lombardi
- Dipartimento di Medicina Sperimentale, Università degli Studi di L'Aquila, L'Aquila, Italy.
| | | | | |
Collapse
|
14
|
Karaschuk G, Kakuev D. Isolation of cDNA clones encoding two isoforms of nucleoside diphosphate kinase from bovine retina. FEBS Lett 1999; 449:83-7. [PMID: 10225434 DOI: 10.1016/s0014-5793(99)00349-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cDNA encoding bovine retinal isoforms of nucleoside diphosphate kinase (NDP-kinase, EC 2.7.4.6) has been cloned and sequenced. Based on the partial amino acid sequence of the enzyme determined after trypsin digestion of purified NDP-kinase, primers were synthesized and used to isolate two different cDNA clones encoding the full length of two NDP-kinase isoforms. The nucleotide sequences of these clones contained open reading frames encoding 152-residue polypeptides with calculated molecular masses of 17.262 and 17.299 kDa, similar to that determined for the subunits of purified enzyme (17.5 and 18.5 kDa). The deduced NDP-kinase sequences showed high similarity with the known NDP-kinase sequences from other sources.
Collapse
Affiliation(s)
- G Karaschuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow.
| | | |
Collapse
|
15
|
Schneider B, Xu YW, Janin J, Véron M, Deville-Bonne D. 3'-Phosphorylated nucleotides are tight binding inhibitors of nucleoside diphosphate kinase activity. J Biol Chem 1998; 273:28773-8. [PMID: 9786875 DOI: 10.1074/jbc.273.44.28773] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside diphosphate (NDP) kinase catalyzes the phosphorylation of ribo- and deoxyribonucleosides diphosphates into triphosphates. NDP kinase is also involved in malignant tumors and was shown to activate in vitro transcription of the c-myc oncogene by binding to its NHE sequence. The structure of the complex of NDP kinase with bound ADP shows that the nucleotide adopts a different conformation from that observed in other phosphokinases with an internal H bond between the 3'-OH and the beta-O made free by the phosphate transfer. We use intrinsic protein fluorescence to investigate the inhibitory and binding potential of nucleotide analogues phosphorylated in 3'-OH position of the ribose to both wild type and F64W mutant NDP kinase from Dictyostelium discoideum. Due to their 3'-phosphate, 5'-phosphoadenosine 3'-phosphate (PAP) and adenosine 3'-phosphate 5'-phosphosulfate (PAPS) can be regarded as structural analogues of enzyme-bound ADP. The KD of PAPS (10 microM) is three times lower than the KD of ADP. PAPS also acts as a competitive inhibitor toward natural substrates during catalysis, with a KI in agreement with binding data. The crystal structure of the binary complex between Dictyostelium NDP kinase and PAPS was solved at 2.8-A resolution. It shows a new mode of nucleotide binding at the active site with the 3'-phosphate of PAPS located near the catalytic histidine, at the same position as the gamma-phosphate in the transition state. The sulfate group is directed toward the protein surface. PAPS will be useful for the design of high affinity drugs targeted to NDP kinases.
Collapse
Affiliation(s)
- B Schneider
- Unité de Régulation Enzymatique des Activités Cellulaires, CNRS URA 1773, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
16
|
Engel M, Seifert M, Theisinger B, Seyfert U, Welter C. Glyceraldehyde-3-phosphate dehydrogenase and Nm23-H1/nucleoside diphosphate kinase A. Two old enzymes combine for the novel Nm23 protein phosphotransferase function. J Biol Chem 1998; 273:20058-65. [PMID: 9685345 DOI: 10.1074/jbc.273.32.20058] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently discovered an alternative function of the putative metastasis suppressor protein Nm23, which is identical to nucleoside diphosphate kinase, as a protein phosphotransferase in vitro. While purified native Nm23 protein did not phosphorylate other proteins, we could purify a Nm23-associated protein that activates the protein phosphotransferase function; it was identified as a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) isoenzyme. Co-expression and purification of (His)6-tagged GAPDH in combination with either Nm23-H1 or Nm23-H2 in baculovirus-infected Sf9 cells showed that only Nm23-H1, but not Nm23-H2, forms a stable complex with GAPDH. Protein phosphotransferase activity was confirmed for the recombinant GAPDH.Nm23-H1 complex but not for either of the enzymes alone, nor was this activity observed after simple mixing of the purified proteins in vitro. The molecular mass of the highly purified recombinant GAPDH.Nm23-H1 complex suggests that a dimer of GAPDH interacts with a dimer of Nm23-H1. In contrast to the complex with GAPDH, co-expression of Nm23-H1 with antioxidant protein (MER-5) or creatine kinase did not activate the protein phosphotransferase function, indicating that this activation may specifically require GAPDH as a binding partner.
Collapse
Affiliation(s)
- M Engel
- Department of Human Genetics, University of Saarland, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Hartsough MT, Steeg PS. Nm23-H1: genetic alterations and expression patterns in tumor metastasis. Am J Hum Genet 1998; 63:6-10. [PMID: 9634538 PMCID: PMC1377261 DOI: 10.1086/301942] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- M T Hartsough
- Women's Cancer Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
18
|
Mesnildrey S, Agou F, Karlsson A, Bonne DD, Véron M. Coupling between catalysis and oligomeric structure in nucleoside diphosphate kinase. J Biol Chem 1998; 273:4436-42. [PMID: 9468495 DOI: 10.1074/jbc.273.8.4436] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A dimeric Dictyostelium nucleoside diphosphate kinase has been stabilized by the double mutation P100S-N150stop which targets residues involved in the trimer interface (Karlsson, A., Mesnildrey, S., Xu, Y., Moréra, S., Janin, J., and Veron, M. (1996) J. Biol. Chem. 271, 19928-19934). The reassociation of this dimeric form into a hexamer similar to the wild-type enzyme is induced by the presence of a nucleotide substrate. Equilibrium sedimentation and gel filtration experiments, as well as enzymatic activity measurements, show that reactivation of the enzyme closely parallels its reassociation. A phosphorylatable intermediate with low activity participates in the association pathway while the dimeric form is shown totally devoid of enzymatic activity. Our results support the hypothesis that different oligomeric species of nucleoside diphosphate kinase are involved in different cellular processes where the enzymatic activity is not required.
Collapse
Affiliation(s)
- S Mesnildrey
- Unité de Régulation Enzymatique des Activités Cellulaires Institut Pasteur, CNRS URA 1149, 25 rue du Docteur Roux, 75724 Paris, Cedex 15, France
| | | | | | | | | |
Collapse
|
19
|
Xu Y, Sellam O, Moréra S, Sarfati S, Biondi R, Véron M, Janin J. X-ray analysis of azido-thymidine diphosphate binding to nucleoside diphosphate kinase. Proc Natl Acad Sci U S A 1997; 94:7162-5. [PMID: 9207061 PMCID: PMC23778 DOI: 10.1073/pnas.94.14.7162] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To be effective as antiviral agent, AZT (3'-azido-3'-deoxythymidine) must be converted to a triphosphate derivative by cellular kinases. The conversion is inefficient and, to understand why AZT diphosphate is a poor substrate of nucleoside diphosphate (NDP) kinase, we determined a 2.3-A x-ray structure of a complex with the N119A point mutant of Dictyostelium NDP kinase. It shows that the analog binds at the same site and, except for the sugar ring pucker which is different, binds in the same way as the natural substrate thymidine diphosphate. However, the azido group that replaces the 3'OH of the deoxyribose in AZT displaces a lysine side chain involved in catalysis. Moreover, it is unable to make an internal hydrogen bond to the oxygen bridging the beta- and gamma-phosphate, which plays an important part in phosphate transfer.
Collapse
Affiliation(s)
- Y Xu
- Laboratoire d'Enzymologie et de Biochimie Structurales, Unité Propre de Recherche 9063, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|