1
|
Fan M, Rao T, Zacco E, Ahmed MT, Shukla A, Ojha A, Freeke J, Robinson CV, Benesch JL, Lund PA. The unusual mycobacterial chaperonins: evidence for in vivo oligomerization and specialization of function. Mol Microbiol 2012; 85:934-44. [PMID: 22834700 DOI: 10.1111/j.1365-2958.2012.08150.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pathogen Mycobacterium tuberculosis expresses two chaperonins, one (Cpn60.1) dispensable and one (Cpn60.2) essential. These proteins have been reported not to form oligomers despite the fact that oligomerization of chaperonins is regarded as essential for their function. We show here that the Cpn60.2 homologue from Mycobacterium smegmatis also fails to oligomerize under standard conditions. However, we also show that the Cpn60.2 proteins from both organisms can replace the essential groEL gene of Escherichia coli, and that they can function with E. coli GroES cochaperonin, as well as with their cognate cochaperonin proteins, strongly implying that they form oligomers in vivo. We show that the Cpn60.1 proteins, but not the Cpn60.2 proteins, can complement for loss of the M. smegmatis cpn60.1 gene. We investigated the oligomerization of the Cpn60.2 proteins using analytical ultracentrifugation and mass spectroscopy. Both form monomers under standard conditions, but they form higher order oligomers in the presence of kosmotropes and ADP or ATP. Under these conditions, their ATPase activity is significantly enhanced. We conclude that the essential mycobacterial chaperonins, while unstable compared to many other bacterial chaperonins, do act as oligomers in vivo, and that there has been specialization of function of the mycobacterial chaperonins following gene duplication.
Collapse
Affiliation(s)
- MingQi Fan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Pereira JH, Ralston CY, Douglas NR, Meyer D, Knee KM, Goulet DR, King JA, Frydman J, Adams PD. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J Biol Chem 2010; 285:27958-66. [PMID: 20573955 PMCID: PMC2934662 DOI: 10.1074/jbc.m110.125344] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/02/2010] [Indexed: 11/06/2022] Open
Abstract
Chaperonins are large protein complexes consisting of two stacked multisubunit rings, which open and close in an ATP-dependent manner to create a protected environment for protein folding. Here, we describe the first crystal structure of a group II chaperonin in an open conformation. We have obtained structures of the archaeal chaperonin from Methanococcus maripaludis in both a peptide acceptor (open) state and a protein folding (closed) state. In contrast with group I chaperonins, in which the equatorial domains share a similar conformation between the open and closed states and the largest motions occurs at the intermediate and apical domains, the three domains of the archaeal chaperonin subunit reorient as a single rigid body. The large rotation observed from the open state to the closed state results in a 65% decrease of the folding chamber volume and creates a highly hydrophilic surface inside the cage. These results suggest a completely distinct closing mechanism in the group II chaperonins as compared with the group I chaperonins.
Collapse
Affiliation(s)
- Jose H. Pereira
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Corie Y. Ralston
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Nicholai R. Douglas
- the Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Daniel Meyer
- the Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Kelly M. Knee
- the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Daniel R. Goulet
- the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Jonathan A. King
- the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Judith Frydman
- the Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Paul D. Adams
- From the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- the Department of Bioengineering, University of California, Berkeley, California 94720
| |
Collapse
|
3
|
Rao T, Lund PA. Differential expression of the multiple chaperonins of Mycobacterium smegmatis. FEMS Microbiol Lett 2010; 310:24-31. [DOI: 10.1111/j.1574-6968.2010.02039.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Deuerling E, Bukau B. Chaperone-Assisted Folding of Newly Synthesized Proteins in the Cytosol. Crit Rev Biochem Mol Biol 2010; 39:261-77. [PMID: 15763705 DOI: 10.1080/10409230490892496] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The way in which a newly synthesized polypeptide chain folds into its unique three-dimensional structure remains one of the fundamental questions in molecular biology. Protein folding in the cell is a problematic process and, in many cases, requires the assistance of a network of molecular chaperones to support productive protein foldingin vivo. During protein biosynthesis, ribosome-associated chaperones guide the folding of the nascent polypeptide emerging from the ribosomal tunnel. In this review we summarize the basic principles of the protein-folding process and the involved chaperones, and focus on the role of ribosome-associated chaperones. Our discussion emphasizes the bacterial Trigger Factor, which is the best studied chaperone of this type. Recent advances have determined the atomic structure of the Trigger Factor, providing new, exciting insights into the role of ribosome-associated chaperones in co-translational protein folding.
Collapse
Affiliation(s)
- Elke Deuerling
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
5
|
Jewett AI, Shea JE. Reconciling theories of chaperonin accelerated folding with experimental evidence. Cell Mol Life Sci 2010; 67:255-76. [PMID: 19851829 PMCID: PMC11115962 DOI: 10.1007/s00018-009-0164-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/14/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
For the last 20 years, a large volume of experimental and theoretical work has been undertaken to understand how chaperones like GroEL can assist protein folding in the cell. The most accepted explanation appears to be the simplest: GroEL, like most other chaperones, helps proteins fold by preventing aggregation. However, evidence suggests that, under some conditions, GroEL can play a more active role by accelerating protein folding. A large number of models have been proposed to explain how this could occur. Focused experiments have been designed and carried out using different protein substrates with conclusions that support many different mechanisms. In the current article, we attempt to see the forest through the trees. We review all suggested mechanisms for chaperonin-mediated folding and weigh the plausibility of each in light of what we now know about the most stringent, essential, GroEL-dependent protein substrates.
Collapse
Affiliation(s)
- Andrew I. Jewett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
- Department of Physics, University of California, Santa Barbara, CA 93106 USA
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
- Department of Physics, University of California, Santa Barbara, CA 93106 USA
| |
Collapse
|
6
|
Kovács E, Sun Z, Liu H, Scott DJ, Karsisiotis AI, Clarke AR, Burston SG, Lund PA. Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity. J Mol Biol 2009; 396:1271-83. [PMID: 20006619 DOI: 10.1016/j.jmb.2009.11.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 11/30/2022]
Abstract
Binding and folding of substrate proteins by the molecular chaperone GroEL alternates between its two seven-membered rings in an ATP-regulated manner. The association of ATP and GroES to a polypeptide-bound ring of GroEL encapsulates the folding proteins in the central cavity of that ring (cis ring) and allows it to fold in a protected environment where the risk of aggregation is reduced. ATP hydrolysis in the cis ring changes the potentials within the system such that ATP binding to the opposite (trans) ring triggers the release of all ligands from the cis ring of GroEL through a complex network of allosteric communication between the rings. Inter-ring allosteric communication thus appears indispensable for the function of GroEL, and an engineered single-ring version (SR1) cannot substitute for GroEL in vivo. We describe here the isolation and characterisation of an active single-ring form of the GroEL protein (SR-A92T), which has an exceptionally low ATPase activity that is strongly stimulated by the addition of GroES. Dissection of the kinetic pathway of the ATP-induced structural changes in this active single ring can be explained by the fact that the mutation effectively blocks progression through the full allosteric pathway of the GroEL reaction cycle, thus trapping an early allosteric intermediate. Addition of GroES is able to overcome this block by binding this intermediate and pulling the allosteric pathway to completion via mass action, explaining how bacterial cells expressing this protein as their only chaperonin are viable.
Collapse
Affiliation(s)
- Eszter Kovács
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
A method for the alignment of heterogeneous macromolecules from electron microscopy. J Struct Biol 2008; 166:67-78. [PMID: 19166941 DOI: 10.1016/j.jsb.2008.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 12/13/2008] [Accepted: 12/18/2008] [Indexed: 11/24/2022]
Abstract
We propose a feature-based image alignment method for single-particle electron microscopy that is able to accommodate various similarity scoring functions while efficiently sampling the two-dimensional transformational space. We use this image alignment method to evaluate the performance of a scoring function that is based on the Mutual Information (MI) of two images rather than one that is based on the cross-correlation function. We show that alignment using MI for the scoring function has far less model-dependent bias than is found with cross-correlation based alignment. We also demonstrate that MI improves the alignment of some types of heterogeneous data, provided that the signal-to-noise ratio is relatively high. These results indicate, therefore, that use of MI as the scoring function is well suited for the alignment of class-averages computed from single-particle images. Our method is tested on data from three model structures and one real dataset.
Collapse
|
8
|
Setting the chaperonin timer: a two-stroke, two-speed, protein machine. Proc Natl Acad Sci U S A 2008; 105:17339-44. [PMID: 18988739 DOI: 10.1073/pnas.0807418105] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a study of the timing mechanism of the chaperonin nanomachine we show that the hemicycle time (HCT) is determined by the mean residence time (MRT) of GroES on the cis ring of GroEL. In turn, this is governed by allosteric interactions within the trans ring of GroEL. Ligands that enhance the R (relaxed) state (residual ADP, the product of the previous hemicycle, and K(+)) extend the MRT and the HCT, whereas ligands that enhance the T (taut) state (unfolded substrate protein, SP) decrease the MRT and the HCT. In the absence of SP, the chaperonin machine idles in the resting state, but in the presence of SP it operates close to the speed limit, set by the rate of ATP hydrolysis by the cis ring. Thus, the conformational states of the trans ring largely control the speed of the complete chaperonin cycle.
Collapse
|
9
|
Setting the chaperonin timer: the effects of K+ and substrate protein on ATP hydrolysis. Proc Natl Acad Sci U S A 2008; 105:17334-8. [PMID: 18988745 DOI: 10.1073/pnas.0807429105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effects of potassium ion on the nested allostery of GroEL are due to increases in the affinity for nucleotide. Both positive allosteric transitions, TT-TR and TR-RR, occur at lower [ATP] as [K(+)] is increased. Negative cooperativity in the double-ringed system is also due to an increase in the affinity of the trans ring for the product ADP as [K(+)] is increased. Consequently, (i) rates of ATP hydrolysis are inversely proportional to [K(+)] and (ii) the residence time of GroES bound to the cis ring is prolonged and the hemicycle time extended. Substrate protein suppresses negative cooperativity by decreasing the affinity of the trans ring for ADP, reducing the hemicycle time to a constant minimum. The trans ring thus serves as a variable timer. ATP added to the asymmetric GroEL-GroES resting-state complex lacking trans ring ADP is hydrolyzed in the newly formed cis ring with a presteady-state burst of approximately 6 mol of Pi per mole of 14-mer. No burst is observed when the trans ring contains ADP. The amplitude and kinetics of ATP hydrolysis in the cis ring are independent of the presence or absence of encapsulated substrate protein and independent of K(+) at concentrations where there are profound effects on the linear steady-state rate. The hydrolysis of ATP by the cis ring constitutes a second, nonvariable timer of the chaperonin cycle.
Collapse
|
10
|
Papo N, Kipnis Y, Haran G, Horovitz A. Concerted release of substrate domains from GroEL by ATP is demonstrated with FRET. J Mol Biol 2008; 380:717-25. [PMID: 18556021 DOI: 10.1016/j.jmb.2008.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/02/2008] [Accepted: 05/09/2008] [Indexed: 10/22/2022]
Abstract
The chaperonin GroEL assists protein folding by undergoing ATP-induced conformational changes that are concerted within each of its two back-to-back stacked rings. Here we examined whether concerted allosteric switching gives rise to all-or-none release and folding of domains in a chimeric fluorescent protein substrate, CyPet-YPet. Using this substrate, it was possible to determine the folding yield of each domain from its intrinsic fluorescence and that of the entire chimera by measuring Förster resonance energy transfer between the two domains. Hence, it was possible to determine whether release of one domain is accompanied by release of the other domain (concerted mechanism), or whether their release is not coupled. Our results show that the chimera's release tends to be concerted when folding is assisted by a wild-type GroEL variant, but not when assisted by the F44W/D155A mutant that undergoes a sequential allosteric switch. A connection between the allosteric mechanism of this molecular machine and its biological function in assisting folding is thus established.
Collapse
Affiliation(s)
- Niv Papo
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
11
|
Chaperone function in organic co-solvents: experimental characterization and modeling of a hyperthermophilic chaperone subunit from Methanocaldococcus jannaschii. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:368-78. [PMID: 18154740 DOI: 10.1016/j.bbapap.2007.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 10/25/2007] [Accepted: 11/16/2007] [Indexed: 11/21/2022]
Abstract
Molecular chaperones play a central role in maintaining protein structure within a cell. Previously, we determined that the gene encoding a molecular chaperone, a thermosome, from the hyperthermophilic archaeon Methanocaldococcus jannaschii is upregulated upon lethal heat shock. We have recombinantly expressed this thermosome (rTHS) and show here that it is both stable and fully functional in aqueous solutions containing water-miscible organic co-solvents. Based on circular dichroism the secondary structure of rTHS was not affected by one-hour exposures to a variety of co-solvents including 30% v/v acetonitrile (ACN) and 50% methanol (MeOH). By contrast, the secondary structure of a mesophilic homologue, GroEL/GroES (GroE), was substantially disrupted. rTHS reduced the aggregation of ovalbumin and citrate synthase in 30% ACN, assisted refolding of citrate synthase upon solvent-inactivation, and stabilized citrate synthase and glutamate dehydrogenase in the direct presence of co-solvents. Apparent total turnover numbers of these enzymes in denaturing solutions increased by up to 2.5-fold in the presence of rTHS. Mechanistic models are proposed to help ascertain specific conditions that could enhance or limit organic solvent-induced chaperone activity. These models suggest that thermodynamic stability and the reversibility of enzyme unfolding play key roles in the effectiveness of enzyme recovery by rTHS.
Collapse
|
12
|
Hall RJ, Siridechadilok B, Nogales E. Cross-correlation of common lines: a novel approach for single-particle reconstruction of a structure containing a flexible domain. J Struct Biol 2007; 159:474-82. [PMID: 17646111 PMCID: PMC2265790 DOI: 10.1016/j.jsb.2007.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 05/25/2007] [Accepted: 05/29/2007] [Indexed: 02/05/2023]
Abstract
We describe a novel approach to sorting class averages of a structure in multiple conformational states in order to generate 3D reconstructions that account for conformational variability present in the sample. The method assumes that the relative Euler angles between class averages are known, then uses a common lines approach to match any given class against a set of distinct conformations from a selected view of the structure. We show the effectiveness of the method both on model data and on an experimental dataset for which the conformational variability is limited to a defined region within the structure. During our studies of hepatitis C virus (HCV) internal ribosome entry site (IRES) interaction with the human translation initiation factor eIF3, we observed that the IRES RNA included a flexible region holding multiple conformations. While current classification methods were used to produce two-dimensional averages of the complex showing these different conformations, no method existed for relating these averages in three dimensions. Our approach overcame these limitations, giving us structural insight that was previously not possible.
Collapse
Affiliation(s)
- Richard J Hall
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
13
|
Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J. Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 2007; 14:432-40. [PMID: 17460696 PMCID: PMC3339572 DOI: 10.1038/nsmb1236] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 03/20/2007] [Indexed: 11/09/2022]
Abstract
Chaperonins are allosteric double-ring ATPases that mediate cellular protein folding. ATP binding and hydrolysis control opening and closing of the central chaperonin chamber, which transiently provides a protected environment for protein folding. During evolution, two strategies to close the chaperonin chamber have emerged. Archaeal and eukaryotic group II chaperonins contain a built-in lid, whereas bacterial chaperonins use a ring-shaped cofactor as a detachable lid. Here we show that the built-in lid is an allosteric regulator of group II chaperonins, which helps synchronize the subunits within one ring and, to our surprise, also influences inter-ring communication. The lid is dispensable for substrate binding and ATP hydrolysis, but is required for productive substrate folding. These regulatory functions of the lid may serve to allow the symmetrical chaperonins to function as 'two-stroke' motors and may also provide a timer for substrate encapsulation within the closed chamber.
Collapse
Affiliation(s)
- Stefanie Reissmann
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
14
|
Kipnis Y, Papo N, Haran G, Horovitz A. Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner. Proc Natl Acad Sci U S A 2007; 104:3119-24. [PMID: 17360617 PMCID: PMC1805612 DOI: 10.1073/pnas.0700070104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The double-ring chaperonin GroEL mediates protein folding, in conjunction with its helper protein GroES, by undergoing ATP-induced conformational changes that are concerted within each heptameric ring. Here we have examined whether the concerted nature of these transitions is responsible for protein substrate release in an all-or-none manner. Two chimeric substrates were designed, each with two different reporter activities that were recovered after denaturation in GroES-dependent and independent fashions, respectively. The refolding of the chimeras was monitored in the presence of GroEL variants that undergo ATP-induced intraring conformational changes that are either sequential (F44W/D155A) or concerted (F44W). Our results show that release of a protein substrate from GroEL in a domain-by-domain fashion is favored when the intraring allosteric transitions of GroEL are sequential and not concerted.
Collapse
Affiliation(s)
| | - Niv Papo
- Departments of Structural Biology and
| | - Gilad Haran
- Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amnon Horovitz
- Departments of Structural Biology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Danziger O, Shimon L, Horovitz A. Glu257 in GroEL is a sensor involved in coupling polypeptide substrate binding to stimulation of ATP hydrolysis. Protein Sci 2006; 15:1270-6. [PMID: 16672234 PMCID: PMC2242535 DOI: 10.1110/ps.062100606] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ATPase activity of many types of molecular chaperones is stimulated by polypeptide substrate binding via molecular mechanisms that are, for the most part, unknown. Here, we report that such stimulation of the ATPase activity of GroEL is abolished when its conserved apical domain residue Glu257 is replaced by alanine. This mutation is also found to convert the ATPase profile of GroEL, a group I chaperonin, into one that is characteristic of group II chaperonins. Steady-state and transient kinetic analysis indicate that both effects are due, at least in part, to a reduction of the affinity of GroEL for ADP. This finding indicates that nonfolded proteins stimulate ATP hydrolysis by accelerating the off-rate of the ADP formed, thereby allowing more rapid cycles of ATP binding and hydrolysis.
Collapse
Affiliation(s)
- Oded Danziger
- Department of Structural Biology, Wietzmann Institute of Science, Rehovot 76100, Isreal
| | | | | |
Collapse
|
16
|
Kuwajima K, Inobe T, Arai M. The allosteric transition of the chaperonin groel fromescherichia coli as studied by solution X-ray scattering. Macromol Res 2006. [DOI: 10.1007/bf03218504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Chiu W, Baker ML, Almo SC. Structural biology of cellular machines. Trends Cell Biol 2006; 16:144-50. [PMID: 16459078 DOI: 10.1016/j.tcb.2006.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 12/06/2005] [Accepted: 01/19/2006] [Indexed: 01/29/2023]
Abstract
Multi-component macromolecular machines contribute to all essential biological processes, from cell motility and signal transduction to information storage and processing. Structural analysis of assemblies at atomic resolution is emerging as the field of structural cell biology. Several recent studies, including those focused on the ribosome, the acrosomal bundle and bacterial flagella, have demonstrated the ability of a hybrid approach that combines imaging, crystallography and computational tools to generate testable atomic models of fundamental biological machines. A complete understanding of cellular and systems biology will require the detailed structural understanding of hundreds of biological machines. The realization of this goal demands a concerted effort to develop and apply new strategies for the systematic identification, isolation, structural characterization and mechanistic analysis of multi-component assemblies at all resolution ranges. The establishment of a database describing the structural and dynamic properties of protein assemblies will provide novel opportunities to define the molecular and atomic mechanisms controlling overall cell physiology.
Collapse
Affiliation(s)
- Wah Chiu
- National Center for Macromolecular Imaging and Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
18
|
Horovitz A, Willison KR. Allosteric regulation of chaperonins. Curr Opin Struct Biol 2005; 15:646-51. [PMID: 16249079 DOI: 10.1016/j.sbi.2005.10.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 07/28/2005] [Accepted: 10/14/2005] [Indexed: 12/31/2022]
Abstract
Chaperonins are molecular machines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space by complex allosteric regulation. Recently, progress has been made in describing the various functional (allosteric) states of these machines, the pathways by which they interconvert, and the coupling between allosteric transitions and protein folding reactions. However, various mechanistic issues remain to be resolved.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
19
|
Swain JF, Gierasch LM. First glimpses of a chaperonin-bound folding intermediate. Proc Natl Acad Sci U S A 2005; 102:13715-6. [PMID: 16172384 PMCID: PMC1236572 DOI: 10.1073/pnas.0506510102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Joanna F Swain
- Department of Biochemistry and Molecular Biology and Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
20
|
Falke S, Tama F, Brooks CL, Gogol EP, Fisher MT. The 13Å Structure of a Chaperonin GroEL–Protein Substrate Complex by Cryo-electron Microscopy. J Mol Biol 2005; 348:219-30. [PMID: 15808865 DOI: 10.1016/j.jmb.2005.02.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 01/25/2005] [Accepted: 02/03/2005] [Indexed: 10/25/2022]
Abstract
The 13 angstroms resolution structures of GroEL bound to a single monomer of the protein substrate glutamine synthetase (GS(m)), as well as that of unliganded GroEL have been determined from a heterogeneous image population using cryo-electron microscopy (cryo-EM) coupled with single-particle image classification and reconstruction techniques. We combined structural data from cryo-EM maps and dynamic modeling, taking advantage of the known X-ray crystallographic structure and normal mode flexible fitting (NMFF) analysis, to describe the changes that occur in GroEL structure induced by GS(m) binding. The NMFF analysis reveals that the molecular movements induced by GS(m) binding propagate throughout the GroEL structure. The modeled molecular motions show that some domains undergo en bloc movements, while others show more complex independent internal movements. Interestingly, the substrate-bound apical domains of both the cis (GS(m)-bound ring) and trans (the opposite substrate-free ring) show counterclockwise rotations, in the same direction (though not as dramatic) as those documented for the ATP-GroEL-induced structure changes. The structural changes from the allosteric substrate protein-induced negative cooperativity between the GroEL rings involves upward concerted movements of both cis and trans equatorial domains toward the GS(m)-bound ring, while the inter-ring distances between the heptamer contact residues are maintained. Furthermore, the NMFF analysis identifies the secondary structural elements that are involved in the observed approximately 5 angstroms reduction in the diameter of the cavity opening in the unbound trans ring. Understanding the molecular basis of these substrate protein-induced structural changes across the heptamer rings provides insight into the origins of the allosteric negative cooperative effects that are transmitted over long distances (approximately 140 angstroms).
Collapse
Affiliation(s)
- Scott Falke
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
21
|
Karplus M, Gao YQ, Ma J, van der Vaart A, Yang W. Protein structural transitions and their functional role. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2005; 363:331-356. [PMID: 15664887 DOI: 10.1098/rsta.2004.1496] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Living cells are a collection of molecular machines which carry out many of the functions essential for the cell's existence, differentiation and reproduction. Most, though not all, of these machines are made up of proteins. Because of their complexity, an understanding of how they work requires a synergistic combination of experimental and theoretical studies. In this paper we outline our studies of two such protein machines. One is GroEL, the chaperone from Escherichia coli, which aids in protein folding; the other is F(1)-ATPase, a motor protein which synthesizes and hydrolyses ATP.
Collapse
Affiliation(s)
- Martin Karplus
- Laboratoire de Chimie Biophysique, ISIS, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
22
|
Ludtke SJ, Chen DH, Song JL, Chuang DT, Chiu W. Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy. Structure 2005; 12:1129-36. [PMID: 15242589 DOI: 10.1016/j.str.2004.05.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We present a reconstruction of native GroEL by electron cryomicroscopy (cryo-EM) and single particle analysis at 6 A resolution. alpha helices are clearly visible and beta sheet density is also visible at this resolution. While the overall conformation of this structure is quite consistent with the published X-ray data, a measurable shift in the positions of three alpha helices in the intermediate domain is observed, not consistent with any of the 7 monomeric structures in the Protein Data Bank model (1OEL). In addition, there is evidence for slight rearrangement or flexibility in parts of the apical domain. The 6 A resolution cryo-EM GroEL structure clearly demonstrates the veracity and expanding scope of cryo-EM and the single particle reconstruction technique for macromolecular machines.
Collapse
Affiliation(s)
- Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | | | | | | | | |
Collapse
|
23
|
Rivenzon-Segal D, Wolf SG, Shimon L, Willison KR, Horovitz A. Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nat Struct Mol Biol 2005; 12:233-7. [PMID: 15696173 DOI: 10.1038/nsmb901] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 01/20/2005] [Indexed: 11/08/2022]
Abstract
The eukaryotic cytoplasmic chaperonin containing TCP-1 (CCT) is a hetero-oligomeric complex that assists the folding of actins, tubulins and other proteins in an ATP-dependent manner. To understand the allosteric transitions that occur during the functional cycle of CCT, we imaged the chaperonin complex in the presence of different ATP concentrations. Labeling by monoclonal antibodies that bind specifically to the CCTalpha and CCTdelta subunits enabled alignment of all the CCT subunits of a given type in different particles. The analysis shows that the apo state of CCT has considerable apparent conformational heterogeneity that decreases with increasing ATP concentration. In contrast with the concerted allosteric switch of GroEL, ATP-induced conformational changes in CCT are found to spread around the ring in a sequential fashion that may facilitate domain-by-domain substrate folding. The approach described here can be used to unravel the allosteric mechanisms of other ring-shaped molecular machines.
Collapse
Affiliation(s)
- Dalia Rivenzon-Segal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
24
|
Abstract
A molecular dynamics simulation of the active unfolding of denatured rhodanese by the chaperone GroEL is presented. The compact denatured protein is bound initially to the cis cavity and forms stable contacts with several of the subunits. As the cis ring apical domains of GroEL undergo the transition from the closed to the more open (ATP-bound) state, they exert a force on rhodanese that leads to the increased unfolding of certain loops. The contacts between GroEL and rhodanese are analyzed and their variation during the GroEL transition is shown. The major contacts, which give rise to the stretching force, are found to be similar to those observed in crystal structures of peptides bound to the apical domains. The results of the simulation show that multidomain interactions play an essential role, in accord with experiments. Implications of the results for mutation experiments and for the action of GroEL are discussed.
Collapse
Affiliation(s)
- Arjan van der Vaart
- Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, 67000 Strasbourg, France
| | | | | |
Collapse
|
25
|
Inobe T, Kuwajima K. Phi value analysis of an allosteric transition of GroEL based on a single-pathway model. J Mol Biol 2004; 339:199-205. [PMID: 15123431 DOI: 10.1016/j.jmb.2004.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 11/29/2022]
Abstract
There are currently two contradictory models for the kinetics of the ATP-induced GroEL allosteric transition occurring around 20 microM ATP. One model, proposed by Horovitz et al. demonstrates the existence of two parallel pathways for the allosteric transition and an abrupt ATP-dependent switch from one pathway to the other. The other model, which was proposed by the present authors, shows no need to assume the parallel pathways, and a combination of the transition-state theory and the Monod-Wyman-Changeux model of allostery can explain the kinetics as well as the equilibrium of the transition. The discrepancy appears to be due to whether we regard the transition as reversible or irreversible. Thus, here we have investigated the reversibility of the allosteric transition between 0 microM and 70 microM ATP by the use of a stopped-flow double-jump technique, which has allowed us to monitor the kinetics of the reverse reaction from the relaxed state at a high ATP concentration to the tense state at a low ATP concentration. The tryptophan fluorescence of a tryptophan-inserted variant of GroEL was used to follow the kinetics. As a result, the allosteric transition was shown to be a reversible process, supporting the validity of our model. We also show that the structural environment around the ATP-binding site of GroEL in the transition state is very similar to that in the relaxed state (Phi=0.9) by using a Phi value analysis in the kinetic Monod-Wyman-Changeux model, which is analogous to the mutational Phi value analysis in protein folding.
Collapse
Affiliation(s)
- Tomonao Inobe
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
26
|
Amir A, Horovitz A. Kinetic analysis of ATP-dependent inter-ring communication in GroEL. J Mol Biol 2004; 338:979-88. [PMID: 15111061 DOI: 10.1016/j.jmb.2004.02.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/23/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
Different concentrations of ATP were mixed rapidly with single-ring or double-ring forms of GroEL containing the Phe44-->Trp mutation and the time-resolved changes in fluorescence emission, upon excitation at 295 nm, were followed. Two kinetic phases that were previously found for double-ring GroEL are also observed in the case of the single-ring version: (i) a fast phase with a relatively large amplitude that is associated with the T-->R allosteric transition; (ii) and a slow phase with a smaller amplitude that is associated with ATP hydrolysis. In the case of weak intra-ring positive cooperativity, the rate constant corresponding to the T-->R allosteric switch of single-ring GroEL displays a bi-sigmoidal dependence on ATP concentration that may reflect parallel pathways of the allosteric transition. The slow phase is absent when double-ring or single-ring forms of GroEL are mixed with ADP or ATP without K(+), and it has a rate constant that is independent of ATP concentration. A third fast phase that is still unassigned is observed for both single-ring and double-ring GroEL when a large amount of data is collected. Finally, a fourth phase is observed in the case of double-ring GroEL that is found to be absent in the case of single-ring GroEL. This phase is here assigned to inter-ring communication by (i) determining its dependence on ATP concentration and (ii) based on its absence from single-ring GroEL and the Arg13-->Gly, Ala126-->Val GroEL mutant, which is defective in inter-ring negative cooperativity. The value of the rate constant corresponding to this phase is found to increase with increasing intra-ring positive cooperativity, with respect to ATP. This is the first report of the rate of ATP-mediated inter-ring communication in GroEL, in the presence of ATP alone, which is crucial for the cycling of this molecular machine between different functional states.
Collapse
Affiliation(s)
- Amnon Amir
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
27
|
Wong P, Houry WA. Chaperone networks in bacteria: analysis of protein homeostasis in minimal cells. J Struct Biol 2004; 146:79-89. [PMID: 15037239 DOI: 10.1016/j.jsb.2003.11.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 10/30/2003] [Indexed: 12/01/2022]
Abstract
The prevention of aberrant behavior of proteins is fundamental to cellular life. Protein homeostatic processes are present in cells to stabilize protein conformations, refold misfolded proteins, and degrade proteins that might be detrimental to the cell. Molecular chaperones and proteases perform a major role in these processes. In bacteria, the main cytoplasmic components involved in protein homeostasis include the chaperones trigger factor, DnaK/DnaJ/GrpE, GroEL/GroES, HtpG, as well as ClpB and the proteases ClpXP, ClpAP, HslUV, Lon, and FtsH. Based on recent genome sequencing efforts, it was surprising to find that the Mycoplasma, a genus proposed to include a minimal form of cellular life, do not contain certain major members of the protein homeostatic network, including GroEL/GroES. We propose that, in mycoplasmas, there has been a fundamental shift towards favoring processes that promote protein degradation rather than protein folding. The arguments are based on two different premises: (1) the regulation of stress response in Mycoplasma and (2) the unique characteristics of the Mycoplasma proteome.
Collapse
Affiliation(s)
- Philip Wong
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ont., Canada M5S 1A8
| | | |
Collapse
|
28
|
White HE, Saibil HR, Ignatiou A, Orlova EV. Recognition and separation of single particles with size variation by statistical analysis of their images. J Mol Biol 2004; 336:453-60. [PMID: 14757057 DOI: 10.1016/j.jmb.2003.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macromolecules may occupy conformations with structural differences that cannot be resolved biochemically. The separation of mixed molecular populations is a pressing problem in single-particle analysis. Until recently, the task of distinguishing small structural variations was intractable, but developments in cryo-electron microscopy hardware and software now make it possible to address this problem. We have developed a general strategy for recognizing and separating structures of variable size from cryo-electron micrographs of single particles. The method uses a combination of statistical analysis and projection matching to multiple models. Identification of size variations by multivariate statistical analysis was used to do an initial separation of the data and generate starting models by angular reconstitution. Refinement was performed using alternate projection matching to models and angular reconstitution of the separated subsets. The approach has been successful at intermediate resolution, taking it within range of resolving secondary structure elements of proteins. Analysis of simulated and real data sets is used to illustrate the problems encountered and possible solutions. The strategy developed was used to resolve the structures of two forms of a small heat shock protein (Hsp26) that vary slightly in diameter and subunit packing.
Collapse
Affiliation(s)
- Helen E White
- School of Crystallography, Birkbeck College, Malet Street, WC1E 7HX, London, UK
| | | | | | | |
Collapse
|
29
|
Peters D, Peters J. The ribbon of hydrogen bonds in globular proteins. IV. The example of the papain family. Biopolymers 2004; 73:178-91. [PMID: 14755576 DOI: 10.1002/bip.10523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A study of the role of the hydrogen-bonding side chains in the ribbon of hydrogen bonds in globular proteins, using the papain family as an example, suggests that these side chains may be divided into three categories depending on their position in the molecule. In the first category, they form part of the local ribbon, in the second they form part of the ribbon at a site remote along the main chain, and in the third they play no role in the formation of the ribbon. The second case is particularly interesting because it provides a natural mechanism for the formation of the tertiary structure of the globular proteins. The results suggest that the robustness of the globular proteins towards mutations arises from the fact that many mutations that involve hydrogen-bonding side chains either leave the hydrogen bonding of the ribbon essentially unchanged or their hydrogen bonding plays no part in the formation of the ribbon in the first place. The results show that it is possible to obtain the ribbon of hydrogen bonds for a family of proteins whose data set's are of intermediate quality by studying the ribbons of several members of such a family and then taking an average over the different partial ribbons to create a standard ribbon of hydrogen bonds for the family as a whole. This method is used here to derive the standard ribbon for the papain family with papain itself, actinidin, and human liver cathepsin B as the representatives of the family. All three members of the family fit the standard ribbon with an accuracy of 85-91%. This result opens up the use of this technique for the study of a large number of globular proteins whose recorded data sets are of intermediate quality.
Collapse
Affiliation(s)
- David Peters
- Department of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK.
| | | |
Collapse
|
30
|
Simons CT, Staes A, Rommelaere H, Ampe C, Lewis SA, Cowan NJ. Selective Contribution of Eukaryotic Prefoldin Subunits to Actin and Tubulin Binding. J Biol Chem 2004; 279:4196-203. [PMID: 14634002 DOI: 10.1074/jbc.m306053200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic prefoldin (PFD) is a heterohexameric chaperone with a jellyfish-like structure whose function is to deliver nonnative target proteins, principally actins and tubulins, to the eukaryotic cytosolic chaperonin for facilitated folding. Here we demonstrate that functional PFD can spontaneously assemble from its six constituent individual subunits (PFD1-PFD6), each expressed as a recombinant protein. Using engineered forms of PFD assembled in vitro, we show that the tips of the PFD tentacles are required to form binary complexes with authentic target proteins. We show that PFD uses the distal ends of different but overlapping sets of subunits to form stable binary complexes with different target proteins, namely actin and alpha- and beta-tubulin. We also present data that suggest a model for the order of these six subunits within the hexamer. Our data are consistent with the hypothesis that PFD, like the eukaryotic cytosolic chaperonin, has co-evolved specifically to facilitate the folding of its target proteins.
Collapse
Affiliation(s)
- C Torrey Simons
- Department of Biochemistry, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
31
|
Danziger O, Rivenzon-Segal D, Wolf SG, Horovitz A. Conversion of the allosteric transition of GroEL from concerted to sequential by the single mutation Asp-155 -> Ala. Proc Natl Acad Sci U S A 2003; 100:13797-802. [PMID: 14615587 PMCID: PMC283501 DOI: 10.1073/pnas.2333925100] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reaction cycle of the double-ring chaperonin GroEL is driven by ATP binding that takes place with positive cooperativity within each seven-membered ring and negative cooperativity between rings. The positive cooperativity within rings is due to ATP binding-induced conformational changes that are fully concerted. Herein, it is shown that the mutation Asp-155 --> Ala leads to an ATP-induced break in intra-ring and inter-ring symmetry. Electron microscopy analysis of single-ring GroEL particles containing the Asp-155 --> Ala mutation shows that the break in intra-ring symmetry is due to stabilization of allosteric intermediates such as one in which three subunits have switched their conformation while the other four have not. Our results show that eliminating an intra-subunit interaction between Asp-155 and Arg-395 results in conversion of the allosteric switch of GroEL from concerted to sequential, thus demonstrating that its allosteric behavior arises from coupled tertiary conformational changes.
Collapse
Affiliation(s)
- Oded Danziger
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
32
|
Inobe T, Kikushima K, Makio T, Arai M, Kuwajima K. The allosteric transition of GroEL induced by metal fluoride-ADP complexes. J Mol Biol 2003; 329:121-34. [PMID: 12742022 DOI: 10.1016/s0022-2836(03)00409-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To understand the mechanism of a functionally important ATP-induced allosteric transition of GroEL, we have studied the effect of a series of metal fluoride-ADP complexes and vanadate-ADP on GroEL by kinetic fluorescence measurement of pyrene-labeled GroEL and by small-angle X-ray scattering measurement of wild-type GroEL. The metal fluorides and vanadate, complexed with ADP, are known to mimic the gamma-phosphate group of ATP, but they differ in geometry and size; it is expected that these compounds will be useful for investigating the strikingly high specificity of GroEL for ATP that enables the induction of the allosteric transition. The kinetic fluorescence measurement revealed that aluminium, beryllium, and gallium ions, when complexed with the fluoride ion and ADP, induced a biphasic fluorescence change of pyrenyl GroEL, while scandium and vanadate ions did not induce any kinetically observed change in fluorescence. The burst phase and the first phase of the fluorescence kinetics were reversible, while the second phase and subsequent changes were irreversible. The dependence of the burst-phase and the first-phase fluorescence changes on the ADP concentration indicated that the burst phase represents non-cooperative nucleotide binding to GroEL, and that the first phase represents the allosteric transition of GroEL. Both the amplitude and the rate constant of the first phase of the fluorescence kinetics were well understood in terms of a kinetic allosteric model, which is a combination of transition state theory and the Monod-Wyman-Changeux allosteric model. From the kinetic allosteric model analysis, the relative free energy of the transition state in the metal fluoride-ADP-induced allosteric transition of GroEL was found to be larger than the corresponding free energy of the ATP-induced allosteric transition by more than 5.5kcal/mol. However, the X-ray scattering measurements indicated that the allosteric state induced by these metal fluoride-ADP complexes is structurally equivalent to the allosteric state induced by ATP. These results suggested that both the size and coordination geometry of gamma-phosphate (and its analogs) are related to the allosteric transition of GroEL. It was therefore concluded that the tetrahedral geometry of gamma-phosphate (or its analogs) and the inter-atomic distance ( approximately 1.6A) between phosphorus (vanadium, or metal atom) and oxygen (or fluorine) are both important for inducing the allosteric transition of GroEL, leading to the high selectivity of GroEL for ATP about ligand adenine nucleotides, which function as the preferred allosteric ligand.
Collapse
Affiliation(s)
- Tomonao Inobe
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | |
Collapse
|
33
|
Inobe T, Arai M, Nakao M, Ito K, Kamagata K, Makio T, Amemiya Y, Kihara H, Kuwajima K. Equilibrium and kinetics of the allosteric transition of GroEL studied by solution X-ray scattering and fluorescence spectroscopy. J Mol Biol 2003; 327:183-91. [PMID: 12614617 DOI: 10.1016/s0022-2836(03)00087-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have studied the ATP-induced allosteric structural transition of GroEL using small angle X-ray scattering and fluorescence spectroscopy in combination with a stopped-flow technique. With X-ray scattering one can clearly distinguish the three allosteric states of GroEL, and the kinetics of the transition of GroEL induced by 85 microM ATP have been observed directly by stopped-flow X-ray scattering for the first time. The rate constant has been found to be 3-5s(-1) at 5 degrees C, indicating that this process corresponds to the second phase of the ATP-induced kinetics of tryptophan-inserted GroEL measured by stopped-flow fluorescence. Based on the ATP concentration dependence of the fluorescence kinetics, we conclude that the first phase represents bimolecular non-cooperative binding of ATP to GroEL with a bimolecular rate constant of 5.8 x 10(5)M(-1)s(-1) at 25 degrees C. Considering the electrostatic repulsion between negatively charged GroEL (-18 of the net charge per monomer at pH 7.5) and ATP, the rate constant is consistent with a diffusion-controlled bimolecular process. The ATP-induced fluorescence kinetics (the first and second phases) at various ATP concentrations (< 400 microM) occur before ATP hydrolysis by GroEL takes place and are well explained by a kinetic allosteric model, which is a combination of the conventional transition state theory and the Monod-Wyman-Changeux model, and we have successfully evaluated the equilibrium and kinetic parameters of the allosteric transition, including the binding constant of ATP in the transition state of GroEL.
Collapse
Affiliation(s)
- Tomonao Inobe
- Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Helen R Saibil
- School of Crystallography, Birkbeck College London, Malet Street, London, UK, WC1E 7HX
| | | |
Collapse
|