1
|
Jawale D, Khandibharad S, Singh S. Innate Immune Response and Epigenetic Regulation: A Closely Intertwined Tale in Inflammation. Adv Biol (Weinh) 2025; 9:e2400278. [PMID: 39267219 DOI: 10.1002/adbi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Maintenance of delicate homeostasis is very important in various diseases because it ensures appropriate immune surveillance against pathogens and prevents excessive inflammation. In a disturbed homeostatic condition, hyperactivation of immune cells takes place and interplay between these cells triggers a plethora of signaling pathways, releasing various pro-inflammatory cytokines such as Tumor necrosis factor alpha (TNFα), Interferon-gamma (IFNƴ), Interleukin-6 (IL-6), and Interleukin-1 beta (IL-1β), which marks cytokine storm formation. To be precise, dysregulated balance can impede or increase susceptibility to various pathogens. Pathogens have the ability to hijack the host immune system by interfering with the host's chromatin architecture for their survival and replication in the host cell. Cytokines, particularly IL-6, Interleukin-17 (IL-17), and Interleukin-23 (IL-23), play a key role in orchestrating innate immune responses and shaping adaptive immunity. Understanding the interplay between immune response and the role of epigenetic modification to maintain immune homeostasis and the structural aspects of IL-6, IL-17, and IL-23 can be illuminating for a novel therapeutic regimen to treat various infectious diseases. In this review, the light is shed on how the orchestration of epigenetic regulation facilitates immune homeostasis.
Collapse
Affiliation(s)
- Diksha Jawale
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shweta Khandibharad
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
2
|
Ma W, Yan H, Ma H, Xu Z, Dai W, Wu Y, Zhang H, Li Y. Roles of leukemia inhibitory factor receptor in cancer. Int J Cancer 2025; 156:262-273. [PMID: 39279155 DOI: 10.1002/ijc.35157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Leukemia inhibitory factor receptor (LIFR), in complex with glycoprotein 130 (gp130) as the receptor for leukemia inhibitory factor (LIF), can bind to a variety of cytokines and subsequently activate a variety of signaling pathways, including Janus kinase/signal transducer and activator of transcription 3. LIF, the most multifunctional cytokines of the interleukin-6 family acts as both a growth factor and a growth inhibitor in different types of tumors. LIF/LIFR signaling regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, invasion. However, due to the activation of different signaling pathways, opposite regulatory effects are observed in certain tumor cells. Therefore, the role of LIFR in human cancers varies across different tumor and tissue, despite their recognized value in tumor treatment and prognosis observation is affirmed. Given its aberrant expression in numerous tumor cells and crucial regulatory function in tumorigenesis and progression, LIFR is considered as a promising targeted therapeutic agent. This review provides an overview of LIFR's initiating signaling pathway function as a cytokine receptor and summarize the current literature on the role of LIFR in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Wei Ma
- School of Stomatology, China Medical University, Shenyang, China
| | - Haixu Yan
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Haoyuan Ma
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Zengyan Xu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Wei Dai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yudan Wu
- School of Nursing, China Medical University, Shenyang, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
4
|
Ma X, Wang WX. Unveiling osmoregulation and immunological adaptations in Eleutheronema tetradactylum gills through high-throughput single-cell transcriptome sequencing. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109878. [PMID: 39245186 DOI: 10.1016/j.fsi.2024.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The fourfinger threadfin fish (Eleutheronema tetradactylum) is an economically significant species renowned for its ability to adapt to varying salinity environments, with gills serving as their primary organs for osmoregulation and immune defense. Previous studies focused on tissue and morphological levels, whereas ignored the cellular heterogeneity and the crucial gene information related to core cell subsets within E. tetradactylum gills. In this study, we utilized high-throughput single-cell RNA sequencing (scRNA-seq) to analyze the gills of E. tetradactylum, characterizing 16 distinct cell types and identifying unique gene markers and enriched functions associated within each cell type. Additionally, we subdivided ionocyte cells into four distinct subpopulations for the first time in E. tetradactylum gills. By employing weighted gene co-expression network analysis (WGCNA), we further investigated the cellular heterogeneity and specific response mechanisms to salinity fluctuant. Our findings revealed the intricate osmoregulation and immune functions of gill cells, highlighting their crucial roles in maintaining homeostasis and adapting to fluctuating salinity levels. This comprehensive cell-type atlas provides valuable insights into the species adaptive strategies, contributing to the conservation and management of this commercially significant fish as well as other euryhaline species.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
5
|
Xu J, Gao H, Azhar MS, Xu H, Chen S, Li M, Ni X, Yan T, Zhou H, Long Q, Yi W. Interleukin signaling in the regulation of natural killer cells biology in breast cancer. Front Immunol 2024; 15:1449441. [PMID: 39380989 PMCID: PMC11459090 DOI: 10.3389/fimmu.2024.1449441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
In the field of breast cancer treatment, the immunotherapy involving natural killer (NK) cells is increasingly highlighting its distinct potential and significance. Members of the interleukin (IL) family play pivotal regulatory roles in the growth, differentiation, survival, and apoptosis of NK cells, and are central to their anti-tumor activity. These cytokines enhance the ability of NK cells to recognize and eliminate tumor cells by binding to specific receptors and activating downstream signaling pathways. Furthermore, interleukins do not function in isolation; the synergistic or antagonistic interactions between different interleukins can drive NK cells toward various functional pathways, ultimately leading to diverse outcomes for breast cancer patients. This paper reviews the intricate relationship between NK cells and interleukins, particularly within the breast cancer tumor microenvironment. Additionally, we summarize the latest clinical studies and advancements in NK cell therapy for breast cancer, along with the potential applications of interleukin signaling in these therapies. In conclusion, this article underscores the critical role of NK cells and interleukin signaling in breast cancer treatment, providing valuable insights and a significant reference for future research and clinical practice.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Muhammad Salman Azhar
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haifan Xu
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Siyuan Chen
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Mingcan Li
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinxi Ni
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Yan
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| |
Collapse
|
6
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
7
|
Wang W, Liu Y, He Z, Li L, Liu S, Jiang M, Zhao B, Deng M, Wang W, Mi X, Sun Z, Ge X. Breakthrough of solid tumor treatment: CAR-NK immunotherapy. Cell Death Discov 2024; 10:40. [PMID: 38245520 PMCID: PMC10799930 DOI: 10.1038/s41420-024-01815-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
As the latest and most anticipated method of tumor immunotherapy, CAR-NK therapy has received increasing attention in recent years, and its safety and high efficiency have irreplaceable advantages over CAR-T. Current research focuses on the application of CAR-NK in hematological tumors, while there are fewer studies on solid tumor. This article reviews the process of constructing CAR-NK, the effects of hypoxia and metabolic factors, NK cell surface receptors, cytokines, and exosomes on the efficacy of CAR-NK in solid tumor, and the role of CAR-NK in various solid tumor. The mechanism of action and the research status of the potential of CAR-NK in the treatment of solid tumor in clinical practice, and put forward the advantages, limitations and future problems of CAR-NK in the treatment of solid tumor.
Collapse
Affiliation(s)
- Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhen He
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lifeng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingqiang Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Deng
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wendong Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuefang Mi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Karmakar S, Mishra A, Pal P, Lal G. Effector and cytolytic function of natural killer cells in anticancer immunity. J Leukoc Biol 2024; 115:235-252. [PMID: 37818891 DOI: 10.1093/jleuko/qiad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Adaptive immune cells play an important role in mounting antigen-specific antitumor immunity. The contribution of innate immune cells such as monocytes, macrophages, natural killer (NK) cells, dendritic cells, and gamma-delta T cells is well studied in cancer immunology. NK cells are innate lymphoid cells that show effector and regulatory function in a contact-dependent and contact-independent manner. The cytotoxic function of NK cells plays an important role in killing the infected and transformed host cells and controlling infection and tumor growth. However, several studies have also ascribed the role of NK cells in inducing pathophysiology in autoimmune diseases, promoting immune tolerance in the uterus, and antitumor function in the tumor microenvironment. We discuss the fundamentals of NK cell biology, its distribution in different organs, cellular and molecular interactions, and its cytotoxic and noncytotoxic functions in cancer biology. We also highlight the use of NK cell-based adoptive cellular therapy in cancer.
Collapse
Affiliation(s)
- Surojit Karmakar
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Amrita Mishra
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Pradipta Pal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| |
Collapse
|
9
|
Mori C, Nagatoishi S, Matsunaga R, Kuroda D, Nakakido M, Tsumoto K. Biophysical insight into protein-protein interactions in the Interleukin-11/Interleukin-11Rα/glycoprotein 130 signaling complex. Biochem Biophys Res Commun 2023; 682:174-179. [PMID: 37820452 DOI: 10.1016/j.bbrc.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Interleukin-11 (IL-11) is a member of the interleukin-6 (IL-6) family of cytokines. IL-11 is a regulator of multiple events in hematopoiesis, and IL-11-mediated signaling is implicated in inflammatory disease, cancer, and fibrosis. All IL-6 family cytokines signal through the signal-transducing receptor, glycoprotein 130 (gp130), but these cytokines have distinct as well as overlapping biological functions. To understand IL-11 signaling at the molecular level, we performed a comprehensive interaction analysis of the IL-11 signaling complex, comparing it with the IL-6 complex, one of the best-characterized cytokine complexes. Our thermodynamic analysis revealed a clear difference between IL-11 and IL-6. Surface plasmon resonance analysis showed that the interaction between IL-11 and IL-11 receptor α (IL-11Rα) is entropy driven, whereas that between IL-6 and IL-6 receptor α (IL-6Rα) is enthalpy driven. Our analysis using isothermal titration calorimetry revealed that the binding of gp130 to the IL-11/IL-11Rα complex results in entropy loss, but that the interaction of gp130 with the IL-6/IL-6Rα complex results in entropy gain. Our hydrogen-deuterium exchange mass spectrometry experiments suggested that the D2 domain of gp130 was not involved in IL-6-like interactions in the IL-11/IL-11Rα complex. It has been reported that IL-6 interaction with gp130 in the signaling complex was characterized through the hydrophobic interface located in its D2 domain of gp130. Our findings suggest that unique interactions of the IL-11 signaling complex with gp130 are responsible for the distinct biological activities of IL-11 compared to IL-6.
Collapse
Affiliation(s)
- Chinatsu Mori
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoru Nagatoishi
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Matsunaga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Makoto Nakakido
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
10
|
Emerging principles of cytokine pharmacology and therapeutics. Nat Rev Drug Discov 2023; 22:21-37. [PMID: 36131080 DOI: 10.1038/s41573-022-00557-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
Cytokines are secreted signalling proteins that play essential roles in the initiation, maintenance and resolution of immune responses. Although the unique ability of cytokines to control immune function has garnered clinical interest in the context of cancer, autoimmunity and infectious disease, the use of cytokine-based therapeutics has been limited. This is due, in part, to the ability of cytokines to act on many cell types and impact diverse biological functions, resulting in dose-limiting toxicity or lack of efficacy. Recent studies combining structural biology, protein engineering and receptor pharmacology have unlocked new insights into the mechanisms of cytokine receptor activation, demonstrating that many aspects of cytokine function are highly tunable. Here, we discuss the pharmacological principles underlying these efforts to overcome cytokine pleiotropy and enhance the therapeutic potential of this important class of signalling molecules.
Collapse
|
11
|
Bourayou E, Golub R. Inflammatory-driven NK cell maturation and its impact on pathology. Front Immunol 2022; 13:1061959. [PMID: 36569860 PMCID: PMC9780665 DOI: 10.3389/fimmu.2022.1061959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
NK cells are innate lymphocytes involved in a large variety of contexts and are crucial in the immunity to intracellular pathogens as well as cancer due to their ability to kill infected or malignant cells. Thus, they harbor a strong potential for clinical and therapeutic use. NK cells do not require antigen exposure to get activated; their functional response is rather based on a balance between inhibitory/activating signals and on the diversity of germline-encoded receptors they express. In order to reach optimal functional status, NK cells go through a step-wise development in the bone marrow before their egress, and dissemination into peripheral organs via the circulation. In this review, we summarize bone marrow NK cell developmental stages and list key factors involved in their differentiation before presenting newly discovered and emerging factors that regulate NK cell central and peripheral maturation. Lastly, we focus on the impact inflammatory contexts themselves can have on NK cell development and functional maturation.
Collapse
Affiliation(s)
- Elsa Bourayou
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| | - Rachel Golub
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| |
Collapse
|
12
|
Millrine D, Jenkins RH, Hughes STO, Jones SA. Making sense of IL-6 signalling cues in pathophysiology. FEBS Lett 2022; 596:567-588. [PMID: 34618359 PMCID: PMC9673051 DOI: 10.1002/1873-3468.14201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Unravelling the molecular mechanisms that account for functional pleiotropy is a major challenge for researchers in cytokine biology. Cytokine-receptor cross-reactivity and shared signalling pathways are considered primary drivers of cytokine pleiotropy. However, reports epitomized by studies of Jak-STAT cytokine signalling identify interesting biochemical and epigenetic determinants of transcription factor regulation that affect the delivery of signal-dependent cytokine responses. Here, a regulatory interplay between STAT transcription factors and their convergence to specific genomic enhancers support the fine-tuning of cytokine responses controlling host immunity, functional identity, and tissue homeostasis and repair. In this review, we provide an overview of the signalling networks that shape the way cells sense and interpret cytokine cues. With an emphasis on the biology of interleukin-6, we highlight the importance of these mechanisms to both physiological processes and pathophysiological outcomes.
Collapse
Affiliation(s)
- David Millrine
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
- Present address:
Medical Research Council Protein Phosphorylation and Ubiquitylation UnitSir James Black CentreSchool of Life SciencesUniversity of Dundee3rd FloorDundeeUK
| | - Robert H. Jenkins
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| | - Stuart T. O. Hughes
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| | - Simon A. Jones
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| |
Collapse
|
13
|
Felcher CM, Bogni ES, Kordon EC. IL-6 Cytokine Family: A Putative Target for Breast Cancer Prevention and Treatment. Int J Mol Sci 2022; 23:ijms23031809. [PMID: 35163731 PMCID: PMC8836921 DOI: 10.3390/ijms23031809] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
The IL-6 cytokine family is a group of signaling molecules with wide expression and function across vertebrates. Each member of the family signals by binding to its specific receptor and at least one molecule of gp130, which is the common transmembrane receptor subunit for the whole group. Signal transduction upon stimulation of the receptor complex results in the activation of multiple downstream cascades, among which, in mammary cells, the JAK-STAT3 pathway plays a central role. In this review, we summarize the role of the IL-6 cytokine family—specifically IL-6 itself, LIF, OSM, and IL-11—as relevant players during breast cancer progression. We have compiled evidence indicating that this group of soluble factors may be used for early and more precise breast cancer diagnosis and to design targeted therapy to treat or even prevent metastasis development, particularly to the bone. Expression profiles and possible therapeutic use of their specific receptors in the different breast cancer subtypes are also described. In addition, participation of these cytokines in pathologies of the breast linked to lactation and involution of the gland, as post-partum breast cancer and mastitis, is discussed.
Collapse
Affiliation(s)
- Carla M. Felcher
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
| | - Emilia S. Bogni
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
| | - Edith C. Kordon
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina
- Correspondence:
| |
Collapse
|
14
|
Jenkins RH, Hughes STO, Figueras AC, Jones SA. Unravelling the broader complexity of IL-6 involvement in health and disease. Cytokine 2021; 148:155684. [PMID: 34411990 DOI: 10.1016/j.cyto.2021.155684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
The classification of interleukin-6 (IL-6) as a pro-inflammatory cytokine undervalues the biological impact of this cytokine in health and disease. With broad activities affecting the immune system, tissue homeostasis and metabolic processes, IL-6 displays complex biology. The significance of these involvements has become increasingly important in clinical settings where IL-6 is identified as a prominent target for therapy. Here, clinical experience with IL-6 antagonists emphasises the need to understand the context-dependent properties of IL-6 within an inflammatory environment and the anticipated or unexpected consequences of IL-6 blockade. In this review, we will describe the immunobiology of IL-6 and explore the gamut of IL-6 bioactivity affecting the clinical response to biological drugs targeting this cytokine pathway.
Collapse
Affiliation(s)
- Robert H Jenkins
- Division of Infection & Immunity, The School of Medicine, Cardiff University, Cardiff, Wales, UK; Systems Immunity Research Institute, The School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Stuart T O Hughes
- Division of Infection & Immunity, The School of Medicine, Cardiff University, Cardiff, Wales, UK; Systems Immunity Research Institute, The School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Ana Cardus Figueras
- Division of Infection & Immunity, The School of Medicine, Cardiff University, Cardiff, Wales, UK; Systems Immunity Research Institute, The School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Simon A Jones
- Division of Infection & Immunity, The School of Medicine, Cardiff University, Cardiff, Wales, UK; Systems Immunity Research Institute, The School of Medicine, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
15
|
Yang JY, Lu B, Feng Q, Alfaro JS, Chen PH, Loscalzo J, Wei WB, Zhang YY, Lu SJ, Wang S. Retinal Protection by Sustained Nanoparticle Delivery of Oncostatin M and Ciliary Neurotrophic Factor Into Rodent Models of Retinal Degeneration. Transl Vis Sci Technol 2021; 10:6. [PMID: 34347033 PMCID: PMC8340648 DOI: 10.1167/tvst.10.9.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinitis pigmentosa (RP) is caused by mutations in more than 60 genes. Mutation-independent approaches to its treatment by exogeneous administration of neurotrophic factors that will preserve existing retinal anatomy and visual function are a rational strategy. Ciliary neurotrophic factor (CNTF) and oncostatin M (OSM) are two potent survival factors for neurons. However, growth factors degrade rapidly if administered directly. A sustained delivery of growth factors is required for translating their potential therapeutic benefit into patients. Methods Stable and biocompatible nanoparticles (NP) that incorporated with CNTF and OSM (CNTF- and OSM-NP) were formulated. Both NP-trophic factors were tested in vitro using photoreceptor progenitor cells (PPC) and retinal ganglion progenitor cells (RGPC) derived from induced pluripotent stem cells and in vivo using an optic nerve crush model for glaucoma and the Royal College of Surgeons rat, model of RP (n = 8/treatment) by intravitreal delivery. Efficacy was evaluated by electroretinography and optokinetic response. Retinal histology and a whole mount analysis were performed at the end of experiments. Results Significant prosurvival and pro-proliferation effects of both complexes were observed in both photoreceptor progenitor cells and RGPC in vitro. Importantly, significant RGC survival and preservation of vision and photoreceptors in both complex-treated animals were observed compared with control groups. Conclusions These results demonstrate that NP-trophic factors are neuroprotective both in vitro and in vivo. A single intravitreal delivery of both NP-trophic factors offered neuroprotection in animal models of retinal degeneration. Translational Relevance Sustained nanoparticle delivery of neurotrophic factors may offer beneficial effects in slowing down progressive retinal degenerative conditions, including retinitis pigmentosa, age-related macular degeneration, and glaucoma.
Collapse
Affiliation(s)
- Jing-Yan Yang
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Beijing Tongren Hospital, Capital Medical University, Beijing, P.R. China
| | - Bin Lu
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Qiang Feng
- NanoNeuron Therapeutics and HebeCell Corp., Natick, MA, USA
| | - Jorge S Alfaro
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Po-Hsuen Chen
- NanoNeuron Therapeutics and HebeCell Corp., Natick, MA, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wen-Bin Wei
- Beijing Tongren Hospital, Capital Medical University, Beijing, P.R. China
| | - Ying-Yi Zhang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shi-Jiang Lu
- NanoNeuron Therapeutics and HebeCell Corp., Natick, MA, USA
| | - Shaomei Wang
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
16
|
Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a 'Third Signal' in NK Cells. Cells 2021; 10:cells10081955. [PMID: 34440725 PMCID: PMC8393955 DOI: 10.3390/cells10081955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Innate and adaptive immune systems are evolutionarily divergent. Primary signaling in T and B cells depends on somatically rearranged clonotypic receptors. In contrast, NK cells use germline-encoded non-clonotypic receptors such as NCRs, NKG2D, and Ly49H. Proliferation and effector functions of T and B cells are dictated by unique peptide epitopes presented on MHC or soluble humoral antigens. However, in NK cells, the primary signals are mediated by self or viral proteins. Secondary signaling mediated by various cytokines is involved in metabolic reprogramming, proliferation, terminal maturation, or memory formation in both innate and adaptive lymphocytes. The family of common gamma (γc) cytokine receptors, including IL-2Rα/β/γ, IL-7Rα/γ, IL-15Rα/β/γ, and IL-21Rα/γ are the prime examples of these secondary signals. A distinct set of cytokine receptors mediate a ‘third’ set of signaling. These include IL-12Rβ1/β2, IL-18Rα/β, IL-23R, IL-27R (WSX-1/gp130), IL-35R (IL-12Rβ2/gp130), and IL-39R (IL-23Rα/gp130) that can prime, activate, and mediate effector functions in lymphocytes. The existence of the ‘third’ signal is known in both innate and adaptive lymphocytes. However, the necessity, context, and functional relevance of this ‘third signal’ in NK cells are elusive. Here, we define the current paradigm of the ‘third’ signal in NK cells and enumerate its clinical implications.
Collapse
Affiliation(s)
- Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| |
Collapse
|
17
|
Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther 2021; 221:107754. [PMID: 33259884 PMCID: PMC8084904 DOI: 10.1016/j.pharmthera.2020.107754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Leukemia inhibitory factor (LIF) is a multi-functional cytokine of the interleukin-6 (IL-6) superfamily. Initially identified as a factor that inhibits the proliferation of murine myeloid leukemia cells, LIF displays a wide variety of important functions in a cell-, tissue- and context-dependent manner in many physiological and pathological processes, including regulating cell proliferation, pluripotent stem cell self-renewal, tissue/organ development and regeneration, neurogenesis and neural regeneration, maternal reproduction, inflammation, infection, immune response, and metabolism. Emerging evidence has shown that LIF plays an important but complex role in human cancers; while LIF displays a tumor suppressive function in some types of cancers, including leukemia, LIF is overexpressed and exerts an oncogenic function in many more types of cancers. Further, targeting LIF has been actively investigated as a novel strategy for cancer therapy. This review summarizes the recent advances in the studies on LIF in human cancers and its potential application in cancer therapy. A better understanding of the role of LIF in different types of cancers and its underlying mechanisms will help to develop more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
18
|
Hunter SA, McIntosh BJ, Shi Y, Sperberg RAP, Funatogawa C, Labanieh L, Soon E, Wastyk HC, Mehta N, Carter C, Hunter T, Cochran JR. An engineered ligand trap inhibits leukemia inhibitory factor as pancreatic cancer treatment strategy. Commun Biol 2021; 4:452. [PMID: 33846527 PMCID: PMC8041770 DOI: 10.1038/s42003-021-01928-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
Leukemia inhibitory factor (LIF), a cytokine secreted by stromal myofibroblasts and tumor cells, has recently been highlighted to promote tumor progression in pancreatic and other cancers through KRAS-driven cell signaling. We engineered a high affinity soluble human LIF receptor (LIFR) decoy that sequesters human LIF and inhibits its signaling as a therapeutic strategy. This engineered 'ligand trap', fused to an antibody Fc-domain, has ~50-fold increased affinity (~20 pM) and improved LIF inhibition compared to wild-type LIFR-Fc, potently blocks LIF-mediated effects in pancreatic cancer cells, and slows the growth of pancreatic cancer xenograft tumors. These results, and the lack of apparent toxicity observed in animal models, further highlights ligand traps as a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Sean A Hunter
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Brianna J McIntosh
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Erin Soon
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah C Wastyk
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Nishant Mehta
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Catherine Carter
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jennifer R Cochran
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Yang C, Malarkannan S. Transcriptional Regulation of NK Cell Development by mTOR Complexes. Front Cell Dev Biol 2020; 8:566090. [PMID: 33240877 PMCID: PMC7683515 DOI: 10.3389/fcell.2020.566090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
The mechanistic target of Rapamycin (mTOR) is essential for multiple cellular processes. The unique roles of mTOR complex 1 (mTORC1) or mTOR2 in regulating immune functions are emerging. NK cells are the major lymphocyte subset of innate immunity, and their development and effector functions require metabolic reprogramming. Recent studies demonstrate that in NK cells, conditionally disrupting the formation of mTORC1 or mTOR complex 2 (mTORC2) alters their development significantly. Transcriptomic profiling of NK cells at the single-cell level demonstrates that mTORC1 was critical for the early developmental progression, while mTORC2 regulated the terminal maturation. In this review, we summarize the essential roles of mTOR complexes in NK development and functions.
Collapse
Affiliation(s)
- Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
20
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
21
|
Transcriptional Regulation of Natural Killer Cell Development and Functions. Cancers (Basel) 2020; 12:cancers12061591. [PMID: 32560225 PMCID: PMC7352776 DOI: 10.3390/cancers12061591] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are the major lymphocyte subset of the innate immune system. Their ability to mediate anti-tumor cytotoxicity and produce cytokines is well-established. However, the molecular mechanisms associated with the development of human or murine NK cells are not fully understood. Knowledge is being gained about the environmental cues, the receptors that sense the cues, signaling pathways, and the transcriptional programs responsible for the development of NK cells. Specifically, a complex network of transcription factors (TFs) following microenvironmental stimuli coordinate the development and maturation of NK cells. Multiple TFs are involved in the development of NK cells in a stage-specific manner. In this review, we summarize the recent advances in the understandings of TFs involved in the regulation of NK cell development, maturation, and effector function, in the aspects of their mechanisms, potential targets, and functions.
Collapse
|
22
|
Metcalfe RD, Aizel K, Zlatic CO, Nguyen PM, Morton CJ, Lio DSS, Cheng HC, Dobson RCJ, Parker MW, Gooley PR, Putoczki TL, Griffin MDW. The structure of the extracellular domains of human interleukin 11α receptor reveals mechanisms of cytokine engagement. J Biol Chem 2020; 295:8285-8301. [PMID: 32332100 DOI: 10.1074/jbc.ra119.012351] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Interleukin (IL) 11 activates multiple intracellular signaling pathways by forming a complex with its cell surface α-receptor, IL-11Rα, and the β-subunit receptor, gp130. Dysregulated IL-11 signaling has been implicated in several diseases, including some cancers and fibrosis. Mutations in IL-11Rα that reduce signaling are also associated with hereditary cranial malformations. Here we present the first crystal structure of the extracellular domains of human IL-11Rα and a structure of human IL-11 that reveals previously unresolved detail. Disease-associated mutations in IL-11Rα are generally distal to putative ligand-binding sites. Molecular dynamics simulations showed that specific mutations destabilize IL-11Rα and may have indirect effects on the cytokine-binding region. We show that IL-11 and IL-11Rα form a 1:1 complex with nanomolar affinity and present a model of the complex. Our results suggest that the thermodynamic and structural mechanisms of complex formation between IL-11 and IL-11Rα differ substantially from those previously reported for similar cytokines. This work reveals key determinants of the engagement of IL-11 by IL-11Rα that may be exploited in the development of strategies to modulate formation of the IL-11-IL-11Rα complex.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Kaheina Aizel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Paul M Nguyen
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Daisy Sio-Seng Lio
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Tracy L Putoczki
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology and Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| |
Collapse
|
23
|
Omokehinde T, Johnson RW. GP130 Cytokines in Breast Cancer and Bone. Cancers (Basel) 2020; 12:cancers12020326. [PMID: 32023849 PMCID: PMC7072680 DOI: 10.3390/cancers12020326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment.
Collapse
Affiliation(s)
- Tolu Omokehinde
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-875-8965
| |
Collapse
|
24
|
Di Vito C, Mikulak J, Mavilio D. On the Way to Become a Natural Killer Cell. Front Immunol 2019; 10:1812. [PMID: 31428098 PMCID: PMC6688484 DOI: 10.3389/fimmu.2019.01812] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes playing pivotal roles in host defense and immune-surveillance. The homeostatic modulation of germ-line encoded/non-rearranged activating and inhibitory NK cell receptors (NKRs) determines the capability of these innate lymphocytes to either spare "self" cells or to kill viral-infected, tumor-transformed and heterologous cell targets. However, despite being discovered more than 40 years ago, several aspects of NK cell biology remain unknown or are still being debated. In particular, our knowledge of human NK cell ontogenesis and differentiation is still in its infancy as the majority of our experimental evidence on this topic mainly comes from findings obtained in vitro or with animal models in vivo. Although both the generation and the maintenance of human NK cells are sustained by hematopoietic stem cells (HSCs), the precise site(s) of NK cell development are still poorly defined. Indeed, HSCs and hematopoietic precursors are localized in different anatomical compartments that also change their ontogenic commitments before and after birth as well as in aging. Currently, the main site of NK cell generation and maturation in adulthood is considered the bone marrow, where their interactions with stromal cells, cytokines, growth factors, and other soluble molecules support and drive maturation. Different sequential stages of NK cell development have been identified on the basis of the differential expression of specific markers and NKRs as well as on the acquisition of specific effector-functions. All these phenotypic and functional features are key in inducing and regulating homing, activation and tissue-residency of NK cells in different human anatomic sites, where different homeostatic mechanisms ensure a perfect balance between immune tolerance and immune-surveillance. The present review summarizes our current knowledge on human NK cell ontogenesis and on the related pathways orchestrating a proper maturation, functions, and distributions.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
25
|
Tawara K, Scott H, Emathinger J, Wolf C, LaJoie D, Hedeen D, Bond L, Montgomery P, Jorcyk C. HIGH expression of OSM and IL-6 are associated with decreased breast cancer survival: synergistic induction of IL-6 secretion by OSM and IL-1β. Oncotarget 2019; 10:2068-2085. [PMID: 31007849 PMCID: PMC6459341 DOI: 10.18632/oncotarget.26699] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation has been recognized as a risk factor for the development and maintenance of malignant disease. Cytokines such as interleukin-6 (IL-6), oncostatin M (OSM), and interleukin-1 beta (IL-1β) promote the development of both acute and chronic inflammation while promoting in vitro metrics of breast cancer metastasis. However, anti-IL-6 and anti-IL-1β therapeutics have not yielded significant results against solid tumors in clinical trials. Here we show that these three cytokines are interrelated in expression. Using the Curtis TCGA™ dataset, we have determined that there is a correlation between expression levels of OSM, IL-6, and IL-1β and reduced breast cancer patient survival (r = 0.6, p = 2.2 x 10−23). Importantly, we confirm that OSM induces at least a 4-fold increase in IL-6 production from estrogen receptor-negative (ER−) breast cancer cells in a manner that is dependent on STAT3 signaling. Furthermore, OSM induces STAT3 phosphorylation and IL-1β promotes p65 phosphorylation to synergistically induce IL-6 secretion in ER− MDA-MB-231 and to a lesser extent in ER+ MCF7 human breast cancer cells. Induction may be reduced in the ER+ MCF7 cells due to a previously known suppressive interaction between ER and STAT3. Interestingly, we show in MCF7 cells that ER’s interaction with STAT3 is reduced by 50% through both OSM and IL-1β treatment, suggesting a role for ER in mitigating STAT3-mediated inflammatory cascades. Here, we provide a rationale for a breast cancer treatment regime that simultaneously suppresses multiple targets, as these cytokines possess many overlapping functions that increase metastasis and worsen patient survival.
Collapse
Affiliation(s)
- Ken Tawara
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA
| | - Hannah Scott
- Boise State University, Department of Biological Sciences, Boise, ID, USA
| | | | - Cody Wolf
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA.,Boise State University, Department of Biological Sciences, Boise, ID, USA
| | - Dollie LaJoie
- Boise State University, Department of Biological Sciences, Boise, ID, USA.,University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Danielle Hedeen
- Boise State University, Department of Biological Sciences, Boise, ID, USA.,University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Laura Bond
- Boise State University, Biomolecular Research Center, Boise, ID, USA
| | | | - Cheryl Jorcyk
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA.,Boise State University, Department of Biological Sciences, Boise, ID, USA
| |
Collapse
|
26
|
Tawara K, Scott H, Emathinger J, Ide A, Fox R, Greiner D, LaJoie D, Hedeen D, Nandakumar M, Oler AJ, Holzer R, Jorcyk C. Co-Expression of VEGF and IL-6 Family Cytokines is Associated with Decreased Survival in HER2 Negative Breast Cancer Patients: Subtype-Specific IL-6 Family Cytokine-Mediated VEGF Secretion. Transl Oncol 2018; 12:245-255. [PMID: 30439625 PMCID: PMC6234768 DOI: 10.1016/j.tranon.2018.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer cell-response to inflammatory cytokines such as interleukin-6 (IL-6) and oncostatin M (OSM) may affect the course of clinical disease in a cancer subtype-dependent manner. Furthermore, vascular endothelial growth factor A (VEGF) secretion induced by IL-6 and OSM may also be subtype-dependent. Utilizing datasets from Oncomine, we show that poor survival of invasive ductal carcinoma (IDC) breast cancer patients is correlated with both high VEGF expression and high cytokine or cytokine receptor expression in tumors. Importantly, epidermal growth factor receptor-negative (HER2-), but not HER2-positive (HER2+), patient survival is significantly lower with high tumor co-expression of VEGF and OSM, OSMRβ, IL-6, or IL-6Rα compared to low co-expression. Furthermore, assessment of HER2- breast cancer cells in vitro identified unique signaling differences regulating cytokine-induced VEGF secretion. The levels of VEGF secretion were analyzed by ELISA with siRNAs for hypoxia inducible factor 1 α (HIF1α) and signal transducer and activator of transcription 3 (STAT3). Specifically, we found that estrogen receptor-negative (ER-) MDA-MB-231 cells respond only to OSM through STAT3 signaling, while ER+ T47D cells respond to both OSM and IL-6, though to IL-6 to a lesser extent. Additionally, in the ER+ T47D cells, OSM signals through both STAT3 and HIF1α. These results highlight that the survival of breast cancer patients with high co-expression of VEGF and IL-6 family cytokines is dependent on breast cancer subtype. Thus, the heterogeneity of human breast cancer in relation to IL-6 family cytokines and VEGF may have important implications in clinical treatment options, disease progression, and ultimately patient prognosis.
Collapse
Affiliation(s)
- Ken Tawara
- Boise State University, Biomolecular Sciences Program, 1910 University Drive, MS1515, Boise, ID, 83725, USA
| | - Hannah Scott
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Jacqueline Emathinger
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Alex Ide
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Ryan Fox
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Daniel Greiner
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Dollie LaJoie
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA; University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Danielle Hedeen
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA; University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Madhuri Nandakumar
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Andrew J Oler
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA; Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID/NIH, Bethesda, MD, USA
| | - Ryan Holzer
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA; Rosetta Institute of Biomedical Research, San Jose, CA, USA
| | - Cheryl Jorcyk
- Boise State University, Biomolecular Sciences Program, 1910 University Drive, MS1515, Boise, ID, 83725, USA; Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA.
| |
Collapse
|
27
|
Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol 2018; 9:1869. [PMID: 30150991 PMCID: PMC6099181 DOI: 10.3389/fimmu.2018.01869] [Citation(s) in RCA: 737] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are the predominant innate lymphocyte subsets that mediate anti-tumor and anti-viral responses, and therefore possess promising clinical utilization. NK cells do not express polymorphic clonotypic receptors and utilize inhibitory receptors (killer immunoglobulin-like receptor and Ly49) to develop, mature, and recognize “self” from “non-self.” The essential roles of common gamma cytokines such as interleukin (IL)-2, IL-7, and IL-15 in the commitment and development of NK cells are well established. However, the critical functions of pro-inflammatory cytokines IL-12, IL-18, IL-27, and IL-35 in the transcriptional-priming of NK cells are only starting to emerge. Recent studies have highlighted multiple shared characteristics between NK cells the adaptive immune lymphocytes. NK cells utilize unique signaling pathways that offer exclusive ways to genetically manipulate to improve their effector functions. Here, we summarize the recent advances made in the understanding of how NK cells develop, mature, and their potential translational use in the clinic.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Excellence in Prostate Cancer, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
28
|
Ferrao RD, Wallweber HJ, Lupardus PJ. Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation. eLife 2018; 7:38089. [PMID: 30044226 PMCID: PMC6078494 DOI: 10.7554/elife.38089] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Cytokines and interferons initiate intracellular signaling via receptor dimerization and activation of Janus kinases (JAKs). How JAKs structurally respond to changes in receptor conformation induced by ligand binding is not known. Here, we present two crystal structures of the human JAK2 FERM and SH2 domains bound to Leptin receptor (LEPR) and Erythropoietin receptor (EPOR), which identify a novel dimeric conformation for JAK2. This 2:2 JAK2/receptor dimer, observed in both structures, identifies a previously uncharacterized receptor interaction essential to dimer formation that is mediated by a membrane-proximal peptide motif called the ‘switch’ region. Mutation of the receptor switch region disrupts STAT phosphorylation but does not affect JAK2 binding, indicating that receptor-mediated formation of the JAK2 FERM dimer is required for kinase activation. These data uncover the structural and molecular basis for how a cytokine-bound active receptor dimer brings together two JAK2 molecules to stimulate JAK2 kinase activity.
Collapse
Affiliation(s)
- Ryan D Ferrao
- Department of Structural Biology, Genentech, Inc., South San Francisco, United States
| | - Heidi Ja Wallweber
- Department of Structural Biology, Genentech, Inc., South San Francisco, United States
| | - Patrick J Lupardus
- Department of Structural Biology, Genentech, Inc., South San Francisco, United States
| |
Collapse
|
29
|
Lokau J, Garbers C. The length of the interleukin-11 receptor stalk determines its capacity for classic signaling. J Biol Chem 2018; 293:6398-6409. [PMID: 29523682 PMCID: PMC5925790 DOI: 10.1074/jbc.ra118.001879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/14/2018] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL)-11 is a multifunctional cytokine that was traditionally recognized for its hematopoietic and anti-inflammatory functions, but has recently been shown also to be involved in tumorigenesis. IL-11 signaling is initiated by binding of the cytokine to the IL-11 receptor (IL-11R), which is not directly involved in signaling but required for IL-11 binding to the signal-transducing receptor glycoprotein (gp) 130. In classic signaling, IL-11 binds to the membrane-bound IL-11R to initiate signal transduction. Additionally, IL-11 signaling can be initiated via soluble IL-11R, known as trans-signaling, and this pathway only requires the three extracellular domains of the IL-11R, but not stalk, transmembrane, or intracellular region. Here, we analyzed the role of the IL-11R stalk region, a 55 amino acid stretch connecting the extracellular domains with the transmembrane helix, in classic IL-11 signaling with the help of cytokine-dependent cell lines. We showed that the stalk region is crucial for IL-11 signaling via the membrane-bound IL-11R. Using different deletion variants, we found that a minimal length of 23 amino acid residues is required for efficient signal transduction. We further found that classic IL-11 signaling depended solely on the length, but not the sequence, of the IL-11R stalk region, suggesting that the stalk functions as a spacer in the signaling complex. We previously described the IL-11R stalk region as determinant of proteolysis and regulator of IL-11 trans-signaling. The results presented here reveal an additional function in classic IL-11 signaling, highlighting the importance of the IL-11R stalk in IL-11 signaling.
Collapse
Affiliation(s)
- Juliane Lokau
- From the Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Christoph Garbers
- From the Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
30
|
Abstract
Leukemia inhibitory factor (LIF) is the most pleiotropic member of the interleukin-6 family of cytokines. It utilises a receptor that consists of the LIF receptor β and gp130 and this receptor complex is also used by ciliary neurotrophic growth factor (CNTF), oncostatin M, cardiotrophin1 (CT1) and cardiotrophin-like cytokine (CLC). Despite common signal transduction mechanisms (JAK/STAT, MAPK and PI3K) LIF can have paradoxically opposite effects in different cell types including stimulating or inhibiting each of cell proliferation, differentiation and survival. While LIF can act on a wide range of cell types, LIF knockout mice have revealed that many of these actions are not apparent during ordinary development and that they may be the result of induced LIF expression during tissue damage or injury. Nevertheless LIF does appear to have non-redundant actions in maternal receptivity to blastocyst implantation, placental formation and in the development of the nervous system. LIF has also found practical use in the maintenance of self-renewal and totipotency of embryonic stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia
| |
Collapse
|
31
|
Spangler JB, Moraga I, Mendoza JL, Garcia KC. Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol 2014; 33:139-67. [PMID: 25493332 DOI: 10.1146/annurev-immunol-032713-120211] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.
Collapse
Affiliation(s)
- Jamie B Spangler
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305; , , ,
| | | | | | | |
Collapse
|
32
|
Xia X, Wen R, Chou TH, Li Y, Wang Z, Porciatti V. Protection of pattern electroretinogram and retinal ganglion cells by oncostatin M after optic nerve injury. PLoS One 2014; 9:e108524. [PMID: 25243471 PMCID: PMC4171539 DOI: 10.1371/journal.pone.0108524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/01/2014] [Indexed: 12/25/2022] Open
Abstract
Injury to retinal ganglion cell (RGC) axons leads to selective loss of RGCs and vision. Previous studies have shown that exogenous neurotrophic factors promote RGC survival. We investigated the neuroprotective effects of oncostatin M (OSM), a member of the IL-6 family of cytokines, on pattern electroretinogram (PERG) and RGC survival after optic nerve crush (ON-crush) in the mouse. BALB/C mice received ON-crush in the left eyes for either 4-second or 1-second duration (4-s or 1-s). Fluoro-gold retrograde labeling was used to identify RGCs. RGC function was assessed by PERG measurement. OSM or CNTF protein was injected intravitreally immediately after ON-crush. OSM responsive cells were identified by localization of increased STAT3 phosphorylation. Significant higher RGC survival (46% of untreated control) was seen in OSM-treated eyes when assessed 2 weeks after 4-s ON-crush as compared to that (14% of untreated control) of the PBS-treated eyes (P<0.001). In addition, PERG amplitude was significantly higher in eyes treated with OSM or CNTF 1 week after 1-s ON-crush (36% of baseline) as compared with the amplitude of PBS-treated eyes (19% of the baseline, P = 0.003). An increase in STAT3 phosphorylation was localized in Müller layer after OSM treatment, suggesting that Müller cells mediate the effect of OSM. Our results demonstrate that one single injection of either OSM or CNTF after ON-crush improves RGC survival together with their electrophysiological activity. These data provide proof-of-concept for using neurotrophic factors OSM and CNTF for RGC degenerative diseases, including glaucoma and acute optic nerve trauma.
Collapse
Affiliation(s)
- Xin Xia
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- Department of Ophthalmology, Shanghai First People’s Hospital, Jiaotong University, Shanghai, China
- Shanghai Key Laboratory for Ocular Fundus Diseases, Shanghai, China
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Yiwen Li
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Zhengying Wang
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
33
|
Wonnerth A, Katsaros KM, Krychtiuk KA, Speidl WS, Kaun C, Thaler K, Huber K, Wojta J, Maurer G, Seljeflot I, Arnesen H, Weiss TW. Glycoprotein 130 polymorphism predicts soluble glycoprotein 130 levels. Metabolism 2014; 63:647-53. [PMID: 24629561 DOI: 10.1016/j.metabol.2014.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 01/29/2014] [Accepted: 02/09/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Interleukin-6 (IL-6) is a key cytokine in inflammatory diseases. It exerts its biological function via binding to a homodimer of its signal transducer glycoprotein 130 (gp130). Soluble gp130 (sgp130) is the natural inhibitor of IL-6 trans-signalling. The aim of this study was to test a possible influence of the gp130 genotype on sgp130 serum levels. MATERIAL AND METHODS In two separate populations, subjects were genotyped for the gp130 polymorphism G148C. Sgp130, IL-6 and soluble interleukin-6 receptor (sIL-6R) levels were measured. The OSLO population consisted of 546 male subjects at high risk for CAD. The VIENNA population consisted of 299 male subjects with angiographically proven CAD. RESULTS In the OSLO population, 124 (22.7%) subjects were hetero- or homozygote for the rare C allele. Individuals carrying the polymorphism had significantly higher levels of sgp130. In a multivariate linear regression model this association remained significant (adjusted p=0.001). In the VIENNA population, 48 (16.1%) subjects were hetero- or homozygote for the rare C allele. Consistent with the former study, sgp130 levels were significantly higher in carriers of the polymorphism compared to wildtype carriers (adjusted p=0.038). In the VIENNA population, sgp130 levels were significantly higher in diabetic patients. In the OSLO population, sgp130 was higher in patients with increased body mass index and in smokers (p<0.05). CONCLUSIONS Sgp130 serum levels are significantly higher in subjects carrying the gp130 polymorphism G148C compared to wildtype carriers. This finding proposes a possible genetical influence on sgp130 levels which may alter individual coping mechanisms in inflammatory diseases.
Collapse
Affiliation(s)
- Anna Wonnerth
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Katharina M Katsaros
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research
| | | | - Walter S Speidl
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research
| | - Kylie Thaler
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Cluster for Cardiovascular Research; Department of Cardiology and Emergency Medicine, Wilhelminenspital, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research
| | - Gerald Maurer
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Ingebjorg Seljeflot
- Centre of Clinical Heart Research, Oslo University Hospital, Ulleval, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Harald Arnesen
- Centre of Clinical Heart Research, Oslo University Hospital, Ulleval, Norway
| | - Thomas W Weiss
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Department of Cardiology and Emergency Medicine, Wilhelminenspital, Vienna, Austria
| |
Collapse
|
34
|
|
35
|
Abstract
Activation of the IL-6 (interleukin 6) receptor subunit gp130 (glycoprotein 130) has been linked to the formation of complexes with IL-6 and the IL-6 receptor, as well as to gp130 dimerization. However, it has been shown that gp130 is present as a pre-formed dimer, indicating that its activation is not solely dependent on dimerization. Therefore the detailed mechanism of gp130 activation still remains to be deciphered. Recently, deletion mutations of gp130 have been found in inflammatory hepatocellular adenoma. The mutations clustered around one IL-6-binding epitope of gp130 and resulted in a ligand-independent constitutively active gp130. We therefore hypothesized that conformational changes of this particular IL-6-binding epitope precedes gp130 activation. Using a rational structure-based approach we identified for the first time amino acids critical for gp130 activation. We can show that gp130 D2–D3 interdomain connectivity by hydrophobic residues stabilizes inactive gp130 conformation. Conformational destabilization of the EF loop present in domain D2 and disruption of D2–D3 hydrophobic interactions resulted in ligand-independent gp130 activation. Furthermore we show that the N-terminal amino acid residues of domain D1 participate in the activation of the gp130 deletion mutants. Taken together we present novel insights into the molecular basis of the activation of a cytokine receptor signalling subunit.
Collapse
|
36
|
Daburon S, Devaud C, Costet P, Morello A, Garrigue-Antar L, Maillasson M, Hargous N, Lapaillerie D, Bonneu M, Dechanet-Merville J, Legembre P, Capone M, Moreau JF, Taupin JL. Functional characterization of a chimeric soluble Fas ligand polymer with in vivo anti-tumor activity. PLoS One 2013; 8:e54000. [PMID: 23326557 PMCID: PMC3541234 DOI: 10.1371/journal.pone.0054000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/07/2012] [Indexed: 12/21/2022] Open
Abstract
Binding of ligand FasL to its receptor Fas triggers apoptosis via the caspase cascade. FasL itself is homotrimeric, and a productive apoptotic signal requires that FasL be oligomerized beyond the homotrimeric state. We generated a series of FasL chimeras by fusing FasL to domains of the Leukemia Inhibitory Factor receptor gp190 which confer homotypic oligomerization, and analyzed the capacity of these soluble chimeras to trigger cell death. We observed that the most efficient FasL chimera, called pFasL, was also the most polymeric, as it reached the size of a dodecamer. Using a cellular model, we investigated the structure-function relationships of the FasL/Fas interactions for our chimeras, and we demonstrated that the Fas-mediated apoptotic signal did not solely rely on ligand-mediated receptor aggregation, but also required a conformational adaptation of the Fas receptor. When injected into mice, pFasL did not trigger liver injury at a dose which displayed anti-tumor activity in a model of human tumor transplanted to immunodeficient animals, suggesting a potential therapeutic use. Therefore, the optimization of the FasL conformation has to be considered for the development of efficient FasL-derived anti-cancer drugs targeting Fas.
Collapse
Affiliation(s)
- Sophie Daburon
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | - Christel Devaud
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | - Pierre Costet
- Animalerie spécialisée, Université de Bordeaux 2, Bordeaux, France
| | - Aurore Morello
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | - Laure Garrigue-Antar
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 7149, Université Paris-Est Créteil, Créteil, France
| | - Mike Maillasson
- Unité Mixte de Recherche Institut National de la Santé et de la Recherche Médicale 892, Université de Nantes, Nantes, France
| | - Nathalie Hargous
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | | | - Marc Bonneu
- Centre génomique fonctionnelle, Université de Bordeaux 2, Bordeaux, France
| | - Julie Dechanet-Merville
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | - Patrick Legembre
- Equipe Associée 4427, Institut de Recherche en Santé-Environnement-Travail, Université de Rennes 1, Rennes, France
| | - Myriam Capone
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
| | - Jean-François Moreau
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
- Laboratoire d'Immunologie et immunogénétique, Centre Hospitalier et Universitaire de Bordeaux, Bordeaux, France
| | - Jean-Luc Taupin
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5164, Université de Bordeaux 2, Bordeaux, France
- Laboratoire d'Immunologie et immunogénétique, Centre Hospitalier et Universitaire de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
37
|
Atanasova M, Whitty A. Understanding cytokine and growth factor receptor activation mechanisms. Crit Rev Biochem Mol Biol 2012; 47:502-30. [PMID: 23046381 DOI: 10.3109/10409238.2012.729561] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Our understanding of the detailed mechanism of action of cytokine and growth factor receptors - and particularly our quantitative understanding of the link between structure, mechanism and function - lags significantly behind our knowledge of comparable functional protein classes such as enzymes, G protein-coupled receptors, and ion channels. In particular, it remains controversial whether such receptors are activated by a mechanism of ligand-induced oligomerization, versus a mechanism in which the ligand binds to a pre-associated receptor dimer or oligomer that becomes activated through subsequent conformational rearrangement. A major limitation to progress has been the relative paucity of methods for performing quantitative mechanistic experiments on unmodified receptors expressed at endogenous levels on live cells. In this article, we review the current state of knowledge on the activation mechanisms of cytokine and growth factor receptors, critically evaluate the evidence for and against the different proposed mechanisms, and highlight other key questions that remain unanswered. New approaches and techniques have led to rapid recent progress in this area, and the field is poised for major advances in the coming years which promise to revolutionize our understanding of this large and biologically and medically important class of receptors.
Collapse
Affiliation(s)
- Mariya Atanasova
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
38
|
Garbers C, Hermanns HM, Schaper F, Müller-Newen G, Grötzinger J, Rose-John S, Scheller J. Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev 2012; 23:85-97. [PMID: 22595692 DOI: 10.1016/j.cytogfr.2012.04.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-6-type cytokines are critically involved in health and disease. The duration and strength of IL-6-type cytokine-mediated signaling is tightly regulated to avoid overshooting activities. Here, molecular mechanisms of inter-familiar cytokine cross-talk are reviewed which regulate dynamics and strength of IL-6 signal transduction. Both plasticity and cytokine cross-talk are significantly involved in pro- and anti-inflammatory/regenerative properties of IL-6-type cytokines. Furthermore, we focus on IL-6-type cytokine/cytokine receptor plasticity and cross-talk exemplified by the recently identified composite cytokines IL-30/IL-6R and IL-35, the first inter-familiar IL-6/IL-12 family member. The complete understanding of the intra- and extracellular cytokine networks will aid to develop novel tailor-made therapeutic strategies with reduced side effects.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Doyle TJ, Kaur G, Putrevu SM, Dyson EL, Dyson M, McCunniff WT, Pasham MR, Kim KH, Dufour JM. Immunoprotective properties of primary Sertoli cells in mice: potential functional pathways that confer immune privilege. Biol Reprod 2012; 86:1-14. [PMID: 21900683 DOI: 10.1095/biolreprod.110.089425] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary Sertoli cells isolated from mouse testes survive when transplanted across immunological barriers and protect cotransplanted allogeneic and xenogeneic cells from rejection in rodent models. In contrast, the mouse Sertoli cell line (MSC-1) lacks immunoprotective properties associated with primary Sertoli cells. In this study, enriched primary Sertoli cells or MSC-1 cells were transplanted as allografts into the renal subcapsular area of naive BALB/c mice, and their survival in graft sites was compared. While Sertoli cells were detected within the grafts with 100% graft survival throughout the 20-day study, MSC-1 cells were rejected between 11 and 14 days, with 0% graft survival at 20 days posttransplantation. Nonetheless, the mechanism for primary Sertoli cell survival and immunoprotection remains unresolved. To identify immune factors or functional pathways potentially responsible for immune privilege, gene expression profiles of enriched primary Sertoli cells were compared with those of MSC-1 cells. Microarray analysis identified 2369 genes in enriched primary Sertoli cells that were differentially expressed at ±4-fold or higher levels than in MSC-1 cells. Ontological analyses identified multiple immune pathways, which were used to generate a list of 340 immune-related genes. Three functions were identified in primary Sertoli cells as potentially important for establishing immune privilege: suppression of inflammation by specific cytokines and prostanoid molecules, slowing of leukocyte migration by controlled cell junctions and actin polymerization, and inhibition of complement activation and membrane-associated cell lysis. These results increase our understanding of testicular immune privilege and, in the long-term, could lead to improvements in transplantation success.
Collapse
Affiliation(s)
- Timothy J Doyle
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vascular effects of glycoprotein130 ligands--part I: pathophysiological role. Vascul Pharmacol 2011; 56:34-46. [PMID: 22197898 DOI: 10.1016/j.vph.2011.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/02/2011] [Accepted: 12/09/2011] [Indexed: 12/25/2022]
Abstract
The vessel wall is no longer considered as only an anatomical barrier for blood cells but is recognized as an active endocrine organ. Dysfunction of the vessel wall occurs in various disease processes including atherosclerosis, hypertension, peripheral artery disease, aneurysms, and transplant and diabetic vasculopathies. Different cytokines were shown to modulate the behavior of the cells, which constitute the vessel wall such as immune cells, endothelial cells and smooth muscle cells. Glycoprotein 130 (gp130) is a common cytokine receptor that controls the activity of a group of cytokines, namely, interleukin (IL)-6, oncostatin M (OSM), IL-11, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC), IL-27, and neuropoietin (NP). Gp130 and associated cytokines have abundantly diverse functions. Part I of this review focuses on the pathophysiological functions of gp130 ligands. We specifically describe vascular effects of these molecules and discuss the respective underlying molecular and cellular mechanisms.
Collapse
|
41
|
Kiemnec-Tyburczy KM, Watts RA, Arnold SJ. Characterization of two putative cytokine receptors, gp130 and ciliary neurotrophic factor receptor, from terrestrial salamanders. Genes Genet Syst 2011; 86:131-7. [PMID: 21670553 DOI: 10.1266/ggs.86.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cytokines of the gp130 family are fundamental regulators of immune responses and signal through multimeric receptors to initiate intracellular second-messenger cascades. Here, we provide the first characterization of two full-length gp130 cytokine receptors from the cDNA of the red-legged salamander (Plethodon shermani). The first, gp130 (2745 bp), is a common signaling receptor for several multi-functional cytokines in vertebrates. We also isolated the full-length (1104 bp) sequence of the ciliary neurotrophic factor receptor (CNTFR), which forms a heteromeric signaling complex with gp130. The open reading frames of both receptors were predicted to contain many of the conserved features found in mammalian gp130s, such as cytokine binding homology regions and residues known to form disulfide bonds. Finally, we used RT-PCR to show that gp130 and CNTFR were expressed in most P. shermani tissues, including brain, intestine and muscle. The expression profiles, along with the structural predictions, show that gp130, CNTFR, and their cytokine ligands are parts of the immune system of P. shermani and other caudate amphibians.
Collapse
|
42
|
Viral Interleukin-6: Structure, pathophysiology and strategies of neutralization. Eur J Cell Biol 2011; 90:495-504. [DOI: 10.1016/j.ejcb.2010.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 11/23/2022] Open
|
43
|
Lupardus PJ, Skiniotis G, Rice AJ, Thomas C, Fischer S, Walz T, Garcia KC. Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. Structure 2011; 19:45-55. [PMID: 21220115 DOI: 10.1016/j.str.2010.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/25/2010] [Accepted: 10/31/2010] [Indexed: 11/28/2022]
Abstract
The shared cytokine receptor gp130 signals as a homodimer or heterodimer through activation of Janus kinases (Jaks) associated with the receptor intracellular domains. Here, we reconstitute, in parts and whole, the full-length gp130 homodimer in complex with the cytokine interleukin-6 (IL-6), its alpha receptor (IL-6Rα) and Jak1, for electron microscopy imaging. We find that the full-length gp130 homodimer complex has intimate interactions between the trans- and juxtamembrane segments of the two receptors, appearing to form a continuous connection between the extra- and intracellular regions. 2D averages and 3D reconstructions of full-length Jak1 reveal a three lobed structure comprising FERM-SH2, pseudokinase, and kinase modules possessing extensive intersegmental flexibility that likely facilitates allosteric activation. Single-particle imaging of the gp130/IL-6/IL-6Rα/Jak1 holocomplex shows Jak1 associated with the membrane proximal intracellular regions of gp130, abutting the would-be inner leaflet of the cell membrane. Jak1 association with gp130 is enhanced by the presence of a membrane environment.
Collapse
Affiliation(s)
- Patrick J Lupardus
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Xia X, Li Y, Huang D, Wang Z, Luo L, Song Y, Zhao L, Wen R. Oncostatin M protects rod and cone photoreceptors and promotes regeneration of cone outer segment in a rat model of retinal degeneration. PLoS One 2011; 6:e18282. [PMID: 21479182 PMCID: PMC3068173 DOI: 10.1371/journal.pone.0018282] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/02/2011] [Indexed: 11/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of photoreceptor degenerative disorders that lead to loss of vision. Typically, rod photoreceptors degenerate first, resulting in loss of night and peripheral vision. Secondary cone degeneration eventually affects central vision, leading to total blindness. Previous studies have shown that photoreceptors could be protected from degeneration by exogenous neurotrophic factors, including ciliary neurotrophic factor (CNTF), a member of the IL-6 family of cytokines. Using a transgenic rat model of retinal degeneration (the S334-ter rat), we investigated the effects of Oncostatin M (OSM), another member of the IL-6 family of cytokines, on photoreceptor protection. We found that exogenous OSM protects both rod and cone photoreceptors. In addition, OSM promotes regeneration of cone outer segments in early stages of cone degeneration. Further investigation showed that OSM treatment induces STAT3 phosphorylation in Müller cells but not in photoreceptors, suggesting that OSM not directly acts on photoreceptors and that the protective effects of OSM on photoreceptors are mediated by Müller cells. These findings support the therapeutic strategy using members of IL-6 family of cytokines for retinal degenerative disorders. They also provide evidence that activation of the STAT3 pathway in Müller cells promotes photoreceptor survival. Our work highlights the importance of Müller cell-photoreceptor interaction in the retina, which may serve as a model of glia-neuron interaction in general.
Collapse
Affiliation(s)
- Xin Xia
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai, Shanghai Jiaotong University, People's Republic of China
- Shanghai Key Laboratory for Ocular Fundus Diseases, Shanghai, People's Republic of China
| | - Yiwen Li
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Deqiang Huang
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Zhengying Wang
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Lingyu Luo
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Ying Song
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lian Zhao
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rong Wen
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
45
|
Yanaka S, 谷 中, Sano E, 佐 野, Naruse N, 成 瀬, Miura KI, 三 浦, Futatsumori-Sugai M, 二 ツ, Caaveiro JMM, Tsumoto K, 津 本. Non-core region modulates interleukin-11 signaling activity: generation of agonist and antagonist variants. J Biol Chem 2010; 286:8085-8093. [PMID: 21138838 DOI: 10.1074/jbc.m110.152561] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human interleukin-11 (hIL-11) is a pleiotropic cytokine administered to patients with low platelet counts. From a structural point of view hIL-11 belongs to the long-helix cytokine superfamily, which is characterized by a conserved core motif consisting of four α-helices. We have investigated the region of hIL-11 that does not belong to the α-helical bundle motif, and that for the purpose of brevity we have termed "non-core region." The primary sequence of the interleukin was altered at various locations within the non-core region by introducing glycosylation sites. Functional consequences of these modifications were examined in cell-based as well as biophysical assays. Overall, the data indicated that the non-core region modulates the function of hIL-11 in two ways. First, the majority of muteins displayed enhanced cell-stimulatory properties (superagonist behavior) in a glycosylation-dependent manner, suggesting that the non-core region is biologically designed to limit the full potential of hIL-11. Second, specific modification of a predicted mini α-helix led to cytokine inactivation, demonstrating that this putative structural element belongs to site III engaging a second copy of cell-receptor gp130. These findings have unveiled new and unexpected elements modulating the biological activity of hIL-11, which may be exploited to develop more versatile medications based on this important cytokine.
Collapse
Affiliation(s)
- Saeko Yanaka
- From the Department of Medical Genome Science, School of Frontier Sciences, and
| | - 中冴子 谷
- From the Department of Medical Genome Science, School of Frontier Sciences, and
| | - Emiko Sano
- From the Department of Medical Genome Science, School of Frontier Sciences, and; The Institute of Medical Science, The University of Tokyo, Kashiwa 277-8562 and
| | - 野恵海子 佐
- From the Department of Medical Genome Science, School of Frontier Sciences, and; The Institute of Medical Science, The University of Tokyo, Kashiwa 277-8562 and
| | | | - 瀬紀男 成
- Proteios Inc., Kamakura, 248-8555, Japan
| | - Kin-Ichiro Miura
- From the Department of Medical Genome Science, School of Frontier Sciences, and
| | - 浦謹一郎 三
- From the Department of Medical Genome Science, School of Frontier Sciences, and
| | | | - ツ森ー菅井睦美 二
- From the Department of Medical Genome Science, School of Frontier Sciences, and
| | - Jose M M Caaveiro
- From the Department of Medical Genome Science, School of Frontier Sciences, and; The Institute of Medical Science, The University of Tokyo, Kashiwa 277-8562 and
| | - Kouhei Tsumoto
- From the Department of Medical Genome Science, School of Frontier Sciences, and; The Institute of Medical Science, The University of Tokyo, Kashiwa 277-8562 and.
| | - 本浩平 津
- From the Department of Medical Genome Science, School of Frontier Sciences, and; The Institute of Medical Science, The University of Tokyo, Kashiwa 277-8562 and
| |
Collapse
|
46
|
Xu Y, Kershaw NJ, Luo CS, Soo P, Pocock MJ, Czabotar PE, Hilton DJ, Nicola NA, Garrett TPJ, Zhang JG. Crystal structure of the entire ectodomain of gp130: insights into the molecular assembly of the tall cytokine receptor complexes. J Biol Chem 2010; 285:21214-8. [PMID: 20489211 DOI: 10.1074/jbc.c110.129502] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
gp130 is the shared signal-transducing receptor subunit for the large and important family of interleukin 6-like cytokines. Previous x-ray structures of ligand-receptor complexes of this family lack the three membrane-proximal domains that are essential for signal transduction. Here we report the crystal structure of the entire extracellular portion of human gp130 (domains 1-6, D1-D6) at 3.6 A resolution, in an unliganded form, as well as a higher resolution structure of the membrane-proximal fibronectin type III domains (D4-D6) at 1.9 A. This represents the first atomic resolution structure of the complete ectodomain of any "tall" cytokine receptor. These structures show that other than a reorientation of the D1 domain, there is little structural change in gp130 upon ligand binding. They also reveal that the interface between the D4 and D5 domains forms an acute bend in the gp130 structure. Key residues at this interface are highly conserved across the entire tall receptor family, suggesting that this acute bend may be a common feature of these receptors. Importantly, this geometry positions the C termini of the membrane-proximal fibronectin type III domains of the tall cytokine receptors in close proximity within the transmembrane complex, favorable for receptor-associated Janus kinases to trans-phosphorylate and activate each other.
Collapse
Affiliation(s)
- Yibin Xu
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Le Saux S, Rousseau F, Barbier F, Ravon E, Grimaud L, Danger Y, Froger J, Chevalier S, Gascan H. Molecular dissection of human interleukin-31-mediated signal transduction through site-directed mutagenesis. J Biol Chem 2009; 285:3470-7. [PMID: 19920145 DOI: 10.1074/jbc.m109.049189] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-31 is a recently described cytokine, preferentially produced by T helper 2 lymphocytes and associated with skin diseases, such as atopic dermatitis. IL-31 is a member of the four alpha-helix bundle cytokine family and is related to the IL-6 subgroup. Its heterodimeric membrane receptor is composed of the gp130-like receptor (GPL) subunit associated to the oncostatin M receptor subunit. We identified critical amino acids implicated in the ligand receptor interaction by computational analysis combined with site-directed mutagenesis. Six IL-31 residues selected for their putative involvement in cytokine receptor contact sites were alanine-substituted, and the corresponding proteins were expressed in mammalian and bacterial systems. Biochemical, membrane binding, cell signaling, and cell proliferation analyses showed that mutation E44A, E106A, or H110A abolished IL-31 binding to GPL and the subsequent signaling events. A second ligand receptor-binding site involved Lys(134), with alanine substitution leading to a protein that still binds GPL, but is unable to recruit the second receptor subunit and the subsequent signaling pathways. The results indicate that IL-31 recognizes its receptor complex through two different binding sites, and we propose a three-dimensional model for IL-31.
Collapse
Affiliation(s)
- Sabine Le Saux
- Unité Mixte INSERM 564, Bâtiment Monteclair, 4 rue Larrey, 49933 Angers Cedex 09, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mohamet L, Heath JK, Kimber SJ. Determining the LIF-sensitive period for implantation using a LIF-receptor antagonist. Reproduction 2009; 138:827-36. [DOI: 10.1530/rep-09-0113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uteri of Lif null mice do not support embryo implantation. Since deletion of some genes often prevents the survival of null mice to adulthood, we have used a proven inhibitor of leukaemia inhibitory factor (LIF) signalling to identify the precise window of time during which LIF is required in vivo, and assessed the cellular expression of several LIF-associated targets. On day 4 of pregnancy, mice were injected with hLIF-05 (inhibitor) into the uterine lumen, with corresponding volumes of PBS (vehicle) injected into the contralateral horn. On days 5 and 6, the number of implantation sites was recorded and the uteri processed for immunohistochemistry. Blockade of LIF on day 4 reduced embryo implantation by 50% (P≤0.0001) and was effective maximally between 0930 and 1230 h. Antagonism of LIF signalling was evidenced by a lack of phosphorylated STAT3 in the luminal epithelium (LE). Amphiregulin was absent from the LE on day 4 evening and H-type-1 antigen expression was retained in the LE on day 5 in inhibited uteri. Interleukin-1α and oncostatin M expression were reduced in the stroma on day 6, following LIF inhibition. Unexpectedly, PTGS2 expression in stroma was unaffected by LIF inhibition in vivo, in contrast to Lif null mice. In summary, this suggests that LIF signalling is effective for implantation during a discrete time window on day 4 and antagonism of LIF signalling recapitulates many features exhibited in Lif null uteri. The data presented validates the use of antagonists to investigate tissue specific and temporal cytokine signalling in reproductive function.
Collapse
|
49
|
Detection of ligand-induced CNTF receptor dimers in living cells by fluorescence cross correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1890-900. [PMID: 19482006 DOI: 10.1016/j.bbamem.2009.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/29/2009] [Accepted: 05/15/2009] [Indexed: 01/24/2023]
Abstract
Ciliary neurotrophic factor (CNTF) signals via a receptor complex consisting of the specific CNTF receptor (CNTFR) and two promiscuous signal transducers, gp130 and leukemia inhibitory factor receptor (LIFR). Whereas earlier studies suggested that the signaling complex is a hexamer, more recent analyses strongly support a tetrameric structure. However, all studies so far analyzed the stoichiometry of the CNTF receptor complex in vitro and not in the context of living cells. We generated and expressed in mammalian cells acyl carrier protein-tagged versions of both CNTF and CNTFR. After labeling CNTF and CNTFR with different dyes we analyzed their diffusion behavior at the cell surface. Fluorescence (cross) correlation spectroscopy (FCS/FCCS) measurements reveal that CNTFR diffuses with a diffusion constant of about 2 x 10(-9) cm(2) s(-1) independent of whether CNTF is bound or not. FCS and FCCS measurements detect the formation of receptor complexes containing at least two CNTFs and CNTFRs. In addition, we measured Förster-type fluorescence resonance energy transfer between two differently labeled CNTFs within a receptor complex indicating a distance of 5-7 nm between the two. These findings are not consistent with a tetrameric structure of the CNTFR complex suggesting that either hexamers and or even higher-order structures (e.g. an octamer containing two tetramers) are formed.
Collapse
|
50
|
Abstract
Recent structural information for complexes of cytokine receptor ectodomains bound to their ligands has significantly expanded our understanding of the macromolecular topology and ligand recognition mechanisms used by our three principal shared cytokine signaling receptors-gp130, gamma(c), and beta(c). The gp130 family receptors intricately coordinate three structurally unique cytokine-binding sites on their four-helix bundle cytokine ligands to assemble multimeric signaling complexes. These organizing principles serve as topological blueprints for the entire gp130 family of cytokines. Novel structures of gamma(c) and beta(c) complexes show us new twists, such as the use of a nonstandard sushi-type alpha receptors for IL-2 and IL-15 in assembling quaternary gamma(c) signaling complexes and an antiparallel interlocked dimer in the GM-CSF signaling complex with beta(c). Unlike gp130, which appears to recognize vastly different cytokine surfaces in chemically unique fashions for each ligand, the gamma(c)-dependent cytokines appear to seek out some semblance of a knobs-in-holes shape recognition code in order to engage gamma(c) in related fashions. We discuss the structural similarities and differences between these three shared cytokine receptors, as well as the implications for transmembrane signaling.
Collapse
Affiliation(s)
- Xinquan Wang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|