1
|
Bolcun-Filas E, Handel MA. Meiosis: the chromosomal foundation of reproduction. Biol Reprod 2019; 99:112-126. [PMID: 29385397 DOI: 10.1093/biolre/ioy021] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Meiosis is the chromosomal foundation of reproduction, with errors in this important process leading to aneuploidy and/or infertility. In this review celebrating the 50th anniversary of the founding of the Society for the Study of Reproduction, the important chromosomal structures and dynamics contributing to genomic integrity across generations are highlighted. Critical unsolved biological problems are identified, and the advances that will lead to their ultimate resolution are predicted.
Collapse
|
2
|
Zhou Z, Wang L, Ge F, Gong P, Wang H, Wang F, Chen L, Liu L. Pold3 is required for genomic stability and telomere integrity in embryonic stem cells and meiosis. Nucleic Acids Res 2019; 46:3468-3486. [PMID: 29447390 PMCID: PMC6283425 DOI: 10.1093/nar/gky098] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/01/2018] [Indexed: 12/29/2022] Open
Abstract
Embryonic stem cells (ESCs) and meiosis are featured by relatively higher frequent homologous recombination associated with DNA double strand breaks (DSB) repair. Here, we show that Pold3 plays important roles in DSB repair, telomere maintenance and genomic stability of both ESCs and spermatocytes in mice. By attempting to generate Pold3 deficient mice using CRISPR/Cas9 or transcription activator-like effector nucleases, we show that complete loss of Pold3 (Pold3−/−) resulted in early embryonic lethality at E6.5. Rapid DNA damage response and massive apoptosis occurred in both outgrowths of Pold3-null (Pold3−/−) blastocysts and Pold3 inducible knockout (iKO) ESCs. While Pold3−/− ESCs were not achievable, Pold3 iKO led to increased DNA damage response, telomere loss and chromosome breaks accompanied by extended S phase. Meanwhile, loss of Pold3 resulted in replicative stress, micronucleation and aneuploidy. Also, DNA repair was impaired in Pold3+/− or Pold3 knockdown ESCs. Moreover, Pold3 mediates DNA replication and repair by regulating 53BP1, RIF1, ATR and ATM pathways. Furthermore, spermatocytes of Pold3 haploinsufficient (Pold3+/−) mice with increasing age displayed impaired DSB repair, telomere shortening and loss, and chromosome breaks, like Pold3 iKO ESCs. These data suggest that Pold3 maintains telomere integrity and genomic stability of both ESCs and meiosis by suppressing replicative stress.
Collapse
Affiliation(s)
- Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lingling Wang
- Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feixiang Ge
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Peng Gong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feng Wang
- Department of Genetics, School of basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Department of Cell Biology and Genetics, The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Mu X, Wen J, Chen Q, Wang Z, Wang Y, Guo M, Yang Y, Xu J, Wei Z, Xia G, Yang M, Wang C. Retinoic acid-induced CYP51 nuclear translocation promotes meiosis prophase I process and is correlated to the expression of REC8 and STAG3 in mice. Biol Open 2018; 7:bio.035626. [PMID: 30420384 PMCID: PMC6262859 DOI: 10.1242/bio.035626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lanosterol 14 α-demethylase (CYP51) plays a crucial role in cholesterol biosynthesis. In gamete development, CYP51 is involved in initiating meiosis resumption in oocytes through its product, meiosis activating sterol (MAS). In this study, CYP51 was observed to localize within the nucleus of germ cells undergoing meiotic prophase I. Following the addition of retinoic acid (RA) to induce meiosis or the RA receptor pan-antagonist AGN193109 to block meiosis in fetal ovaries, the translocation of CYP51 into the nucleus of oocytes was advanced or delayed, respectively. In addition, treatment with Cyp51-siRNA or RS21745, a specific CYP51 inhibitor, significantly delayed the meiotic progression of oocytes in the ovary, with most oocytes arresting at the zygotene stage, and likewise, significantly reduced perinatal primordial follicle formation. Furthermore, inhibition of CYP51 is correlated to significantly decreased expression of REC8 and STAG3, both of which are meiosis-specific cohesin subunits. To sum up, RA-induced CYP51 nuclear translocation is critical for oocytes meiotic progression, and consequently folliculogenesis, which might act through impacting the expression of meiosis-specific cohesins REC8 and STAG3. Summary: CYP51 displays cytoplasm-to-nucleus translocation in germ cells in mice. CYP51 participates in germ cell meiotic progression and folliculogenesis via regulating the expression of cohesin REC8 and STAG3.
Collapse
Affiliation(s)
- Xinyi Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Jia Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengpin Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yijing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng Guo
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - JinRui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Zhiqing Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, 539 W Helanshan Road, Xixia District, Yinchuan, Ningxia 750021, China
| | - Mengye Yang
- Department of Biochemistry, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan 430072, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Mu X, Wen J, Guo M, Wang J, Li G, Wang Z, Wang Y, Teng Z, Cui Y, Xia G. Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells. J Cell Physiol 2013; 228:627-39. [PMID: 22886539 DOI: 10.1002/jcp.24172] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/31/2012] [Indexed: 11/11/2022]
Abstract
Meiotic initiation of germ cells at 13.5 dpc (days post-coitus) indicates female sex determination in mice. Recent studies reveal that mesonephroi-derived retinoic acid (RA) is the key signal for induction of meiosis. However, whether the mesonephroi is dispensable for meiosis is unclear and the role of the ovary in this meiotic process remains to be clarified. This study provides data that RA derived from fetal ovaries is sufficient to induce germ cell meiosis in a fetal ovary culture system. When fetal ovaries were collected from 11.5 to 13.5 dpc fetuses, isolated and cultured in vitro, germ cells enter meiosis in the absence of mesonephroi. To exclude RA sourcing from mesonephroi, 11.5 dpc urogenital ridges (UGRs; mesonephroi and ovary complexes) were treated with diethylaminobenzaldehyde (DEAB) to block retinaldehyde dehydrogenase (RALDH) activity in the mesonephros and the ovary. Meiosis occurred when DEAB was withdrawn and the mesonephros was removed 2 days later. Furthermore, RALDH1, rather than RALDH2, serves as the major RA synthetase in UGRs from 12.5 to 15.5 dpc. DEAB treatment to the ovary alone was able to block germ cell meiotic entry. We also found that exogenously supplied RA dose-dependently reduced germ cell numbers in ovaries by accelerating the entry into meiosis. These results suggest that ovary-derived RA is responsible for meiosis initiation.
Collapse
Affiliation(s)
- Xinyi Mu
- State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Oka A, Mita A, Takada Y, Koseki H, Shiroishi T. Reproductive isolation in hybrid mice due to spermatogenesis defects at three meiotic stages. Genetics 2010; 186:339-51. [PMID: 20610405 PMCID: PMC2940298 DOI: 10.1534/genetics.110.118976] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/27/2010] [Indexed: 11/18/2022] Open
Abstract
Early in the process of speciation, reproductive failures occur in hybrid animals between genetically diverged populations. The sterile hybrid animals are often males in mammals and they exhibit spermatogenic disruptions, resulting in decreased number and/or malformation of mature sperms. Despite the generality of this phenomenon, comparative study of phenotypes in hybrid males from various crosses has not been done, and therefore the comprehensive genetic basis of the disruption is still elusive. In this study, we characterized the spermatogenic phenotype especially during meiosis in four different cases of reproductive isolation: B6-ChrX(MSM), PGN-ChrX(MSM), (B6 × Mus musculus musculus-NJL/Ms) F(1), and (B6 × Mus spretus) F(1). The first two are consomic strains, both bearing the X chromosome of M. m. molossinus; in B6-ChrX(MSM), the genetic background is the laboratory strain C57BL/6J (predominantly M. m. domesticus), while in PGN-ChrX(MSM) the background is the PGN2/Ms strain purely derived from wild M. m. domesticus. The last two cases are F(1) hybrids between mouse subspecies or species. Each of the hybrid males exhibited cell-cycle arrest and/or apoptosis at either one or two of three distinct meiotic stages: premeiotic stage, zygotene-to-pachytene stage of prophase I, and metaphase I. This study shows that the sterility in hybrid males is caused by spermatogenic disruptions at multiple stages, suggesting that the responsible genes function in different cellular processes. Furthermore, the stages with disruptions are not correlated with the genetic distance between the respective parental strains.
Collapse
Affiliation(s)
- Ayako Oka
- Transdsciplinary Research Integration Center, Research Organization of Information and Systems, Toranomon, Tokyo, Japan 105-0001, Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan 411-8540 and RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan 230-0045
| | - Akihiko Mita
- Transdsciplinary Research Integration Center, Research Organization of Information and Systems, Toranomon, Tokyo, Japan 105-0001, Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan 411-8540 and RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan 230-0045
| | - Yuki Takada
- Transdsciplinary Research Integration Center, Research Organization of Information and Systems, Toranomon, Tokyo, Japan 105-0001, Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan 411-8540 and RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan 230-0045
| | - Haruhiko Koseki
- Transdsciplinary Research Integration Center, Research Organization of Information and Systems, Toranomon, Tokyo, Japan 105-0001, Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan 411-8540 and RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan 230-0045
| | - Toshihiko Shiroishi
- Transdsciplinary Research Integration Center, Research Organization of Information and Systems, Toranomon, Tokyo, Japan 105-0001, Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan 411-8540 and RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan 230-0045
| |
Collapse
|
6
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 2010; 73:364-408. [PMID: 19941288 DOI: 10.1002/jemt.20785] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Montreal, QC Canada H3A 2B2.
| | | | | | | |
Collapse
|
7
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 2009; 73:241-78. [DOI: 10.1002/jemt.20783] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Abstract
In recent years, it has become increasingly clear that epigenetic regulation of gene expression is critical during spermatogenesis. In this review, the epigenetic regulation and the consequences of its aberrant regulation during mitosis, meiosis and spermiogenesis are described. The current knowledge on epigenetic modifications that occur during male meiosis is discussed, with special attention on events that define meiotic sex chromosome inactivation. Finally, the recent studies focused on transgenerational and paternal effects in mice and humans are discussed. In many cases, these epigenetic effects resulted in impaired fertility and potentially long-ranging affects underlining the importance of research in this area.
Collapse
|
9
|
Comparative genomics approach to the expression of figalpha, one of the earliest marker genes of oocyte differentiation in medaka (Oryzias latipes). Gene 2008; 423:180-7. [PMID: 18678233 DOI: 10.1016/j.gene.2008.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 06/26/2008] [Accepted: 07/07/2008] [Indexed: 11/23/2022]
Abstract
We analyzed molecular cascades of sex differentiation in medaka gonads by examining the transcriptional regulation of the oocyte-expressed gene, figalpha. We first confirmed that figalpha is one of the earliest marker genes of oocyte differentiation by quantitative RT-PCR and in situ hybridization. Expression of putative figalpha target genes, zpc4 and zpb, followed that of figalpha. A meiosis-specific gene, scp3, showed expression temporally and spatially similar to figalpha. To characterize the cis-regulatory sequences of figalpha, we compared genomic organizations of vertebrate figalpha genes. Both number and sequence homology of the C-terminal exons showed divergence, suggesting their less important roles. In the frog, Xenopus tropicalis, and in many teleosts, figalpha is located between hexokinase 2 and beta-adducin. We compared this genomic region for potential cis-regulatory elements and found no DNA stretches with high homology. In spite of this lack of sequence similarities, fluorescent protein transgenes surrounded with figalpha flanking sequences from the compact genomes of fugu or Tetraodon faithfully reproduced the endogenous expression of figalpha in the medaka oocytes, indicating conserved regulatory mechanisms.
Collapse
|
10
|
Burgoyne PS, Mahadevaiah SK, Turner JMA. The management of DNA double-strand breaks in mitotic G2, and in mammalian meiosis viewed from a mitotic G2 perspective. Bioessays 2007; 29:974-86. [PMID: 17876782 DOI: 10.1002/bies.20639] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DNA double-strand breaks (DSBs) are extremely hazardous lesions for all DNA-bearing organisms and the mechanisms of DSB repair are highly conserved. In the eukaryotic mitotic cell cycle, DSBs are often present following DNA replication while, in meiosis, hundreds of DSBs are generated as a prelude to the reshuffling of the maternally and paternally derived genomes. In both cases, the DSBs are repaired by a process called homologous recombinational repair (HRR), which utilises an intact DNA molecule as the repair template. Mitotic and meiotic HRR are managed by 'checkpoints' that inhibit cell division until DSB repair is complete. Here we attempt to summarise the substantial recent progress in understanding the checkpoint management of HRR in mitosis (focussing mainly on mammals) and then go on to use this information as a framework for understanding the presumed checkpoint management of HRR in mammalian meiosis.
Collapse
Affiliation(s)
- Paul S Burgoyne
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
11
|
Apoptosis in mouse fetal and neonatal oocytes during meiotic prophase one. BMC DEVELOPMENTAL BIOLOGY 2007; 7:87. [PMID: 17650311 PMCID: PMC1965470 DOI: 10.1186/1471-213x-7-87] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 07/24/2007] [Indexed: 01/13/2023]
Abstract
Background The vast majority of oocytes formed in the fetal ovary do not survive beyond birth. Possible reasons for their loss include the elimination of non-viable genetic constitutions arising through meiosis, however, the precise relationship between meiotic stages and prenatal apoptosis of oocytes remains elusive. We studied oocytes in mouse fetal and neonatal ovaries, 14.5–21 days post coitum, to examine the relationship between oocyte development and programmed cell death during meiotic prophase I. Results Microspreads of fetal and neonatal ovarian cells underwent immunocytochemistry for meiosis- and apoptosis-related markers. COR-1 (meiosis-specific) highlighted axial elements of the synaptonemal complex and allowed definitive identification of the stages of meiotic prophase I. Labelling for cleaved poly-(ADP-ribose) polymerase (PARP-1), an inactivated DNA repair protein, indicated apoptosis. The same oocytes were then labelled for DNA double strand breaks (DSBs) using TUNEL. 1960 oocytes produced analysable results. Oocytes at all stages of meiotic prophase I stained for cleaved PARP-1 and/or TUNEL, or neither. Oocytes with fragmented (19.8%) or compressed (21.2%) axial elements showed slight but significant differences in staining for cleaved PARP-1 and TUNEL to those with intact elements. However, fragmentation of axial elements alone was not a good indicator of cell demise. Cleaved PARP-1 and TUNEL staining were not necessarily coincident, showing that TUNEL is not a reliable marker of apoptosis in oocytes. Conclusion Our data indicate that apoptosis can occur throughout meiotic prophase I in mouse fetal and early postnatal oocytes, with greatest incidence at the diplotene stage. Careful selection of appropriate markers for oocyte apoptosis is essential.
Collapse
|
12
|
Abstract
Spermatocytes normally sustain many meiotically induced double-strand DNA breaks (DSBs) early in meiotic prophase; in autosomal chromatin, these are repaired by initiation of meiotic homologous-recombination processes. Little is known about how spermatocytes respond to environmentally induced DNA damage after recombination-related DSBs have been repaired. The experiments described here tested the hypothesis that, even though actively completing meiotic recombination, pachytene spermatocytes cultured in the absence of testicular somatic cells initiate appropriate chromatin remodeling and cell-cycle responses to environmentally induced DNA damage. Two DNA-damaging agents were employed for in vitro treatment of pachytene spermatocytes: gamma-irradiation and etoposide, a topoisomerase II (TOP2) inhibitor that results in persistent unligated DSBs. Chromatin modifications associated with DSBs were monitored after exposure by labeling surface-spread chromatin with antibodies against RAD51 (which recognizes DSBs) and the phosphorylated variant of histone H2AFX (herein designated by its commonly used symbol, H2AX), gammaH2AX (which modifies chromatin associated with DSBs). Both gammaH2AX and RAD51 were rapidly recruited to irradiation- or etoposide-damaged chromatin. These chromatin modifications imply that spermatocytes recruit active DNA damage responses, even after recombination is substantially completed. Furthermore, irradiation-induced DNA damage inhibited okadaic acid-induced progression of spermatocytes from meiotic prophase to metaphase I (MI), implying efficacy of DNA damage checkpoint mechanisms. Apoptotic responses of spermatocytes with DNA damage differed, with an increase in frequency of early apoptotic spermatocytes after etoposide treatment, but not following irradiation. Taken together, these results demonstrate modification of pachytene spermatocyte chromatin and inhibition of meiotic progress after DNA damage by mechanisms that may ensure gametic genetic integrity.
Collapse
Affiliation(s)
- Shannon Matulis
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | | |
Collapse
|
13
|
Pigozzi MI, Solari AJ. The germ-line-restricted chromosome in the zebra finch: recombination in females and elimination in males. Chromosoma 2005; 114:403-9. [PMID: 16215738 DOI: 10.1007/s00412-005-0025-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/11/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
In the zebra finch (Taeniopygia guttata), there is a germ-line-restricted chromosome regularly present in males and females. A reexamination of male and female meiosis in the zebra finch showed that this element forms a euchromatic bivalent in oocytes, but it is always a single, heterochromatic element in spermatocytes. Immunostaining with anti-MLH1 showed that the bivalent in oocytes has two or three foci with a localized pattern, indicating the regular occurrence of recombination. In male meiosis, the single restricted chromosome forms an axis that contains the cohesin subunit SMC3, and the associated chromatin is densely packed until late pachytene. Electron microscopy of thin-sectioned seminiferous tubules shows that the restricted chromosome is eliminated in postmeiotic stages in the form of packed chromatin inside a micronucleus, visible in the cytoplasm of young spermatids. The selective condensation of the restricted chromosome during early meiotic prophase in males is interpreted as a strategy to avoid the triggering of asynaptic checkpoints, but this condensation is reversed prior to the final condensation that leads to its (ulterior) elimination. Recombination during female meiosis may prevent the genetic attrition of the restricted chromosome and, along with the elimination in male germ cells, ensures its regular transmission through females.
Collapse
Affiliation(s)
- M I Pigozzi
- Centro de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 Piso 10, C1121ABG, Buenos Aires, Argentina.
| | | |
Collapse
|
14
|
Marcon E, Moens PB. The evolution of meiosis: recruitment and modification of somatic DNA-repair proteins. Bioessays 2005; 27:795-808. [PMID: 16015600 DOI: 10.1002/bies.20264] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several DNA-damage detection and repair mechanisms have evolved to repair double-strand breaks induced by mutagens. Later in evolutionary history, DNA single- and double-strand cuts made possible immune diversity by V(D)J recombination and recombination at meiosis. Such cuts are induced endogenously and are highly regulated and controlled. In meiosis, DNA cuts are essential for the initiation of homologous recombination, and for the formation of joint molecule and crossovers. Many proteins that function during somatic DNA-damage detection and repair are also active during homologous recombination. However, their meiotic functions may be altered from their somatic roles through localization, posttranslational modifications and/or interactions with meiosis-specific proteins. Presumably, somatic repair functions and meiotic recombination diverged during evolution, resulting in adaptations specific to sexual reproduction. (c) 2005 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Edyta Marcon
- Department of Biology, York University, Toronto, Canada
| | | |
Collapse
|
15
|
Pankratz DG, Forsburg SL. Meiotic S-phase damage activates recombination without checkpoint arrest. Mol Biol Cell 2005; 16:1651-60. [PMID: 15689488 PMCID: PMC1073649 DOI: 10.1091/mbc.e04-10-0934] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Checkpoints operate during meiosis to ensure the completion of DNA synthesis and programmed recombination before the initiation of meiotic divisions. Studies in the fission yeast Schizosaccharomyces pombe suggest that the meiotic response to DNA damage due to a failed replication checkpoint response differs substantially from the vegetative response, and may be influenced by the presence of homologous chromosomes. The checkpoint responses to DNA damage during fission yeast meiosis are not well characterized. Here we report that DNA damage induced during meiotic S-phase does not activate checkpoint arrest. We also find that in wild-type cells, markers for DNA breaks can persist at least to the first meiotic division. We also observe increased spontaneous S-phase damage in checkpoint mutants, which is repaired by recombination without activating checkpoint arrest. Our results suggest that fission yeast meiosis is exceptionally tolerant of DNA damage, and that some forms of spontaneous S-phase damage can be repaired by recombination without activating checkpoint arrest.
Collapse
Affiliation(s)
- Daniel G Pankratz
- Molecular & Cell Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
16
|
Anuradha S, Muniyappa K. Molecular aspects of meiotic chromosome synapsis and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:49-132. [PMID: 16096027 DOI: 10.1016/s0079-6603(04)79002-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Anuradha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
17
|
Rogers RS, Inselman A, Handel MA, Matunis MJ. SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 2004; 113:233-43. [PMID: 15349788 DOI: 10.1007/s00412-004-0311-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 01/26/2023]
Abstract
The XY body is a specialized chromatin territory that forms during meiotic prophase of spermatogenesis and comprises the transcriptionally repressed sex chromosomes. Remodeling of the XY chromatin is brought about by recruitment of specific proteins to the X and Y chromosomes during meiosis, and also by post-translational modifications of histones and other chromatin-associated proteins. Here, we demonstrate that SUMO, a small ubiquitin-related modifier protein that regulates a wide variety of nuclear functions in somatic cells, dramatically localizes to the XY body. SUMO was first detected in the XY body of early pachytene spermatocytes and gradually accumulated, reaching maximal levels there during the mid to late pachytene stages. Several known SUMO substrates, including PML and DAXX, were also found to accumulate in the XY body of mid to late stage pachytene spermatocytes. These same proteins localize to PML nuclear bodies of somatic interphase nuclei. Together, these findings indicate a role for SUMO modification in regulating the structure and function of the XY body and reveal molecular similarities between the XY body and PML nuclear bodies.
Collapse
Affiliation(s)
- Richard S Rogers
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
18
|
Saito TT, Tougan T, Kasama T, Okuzaki D, Nojima H. Mcp7, a meiosis-specific coiled-coil protein of fission yeast, associates with Meu13 and is required for meiotic recombination. Nucleic Acids Res 2004; 32:3325-39. [PMID: 15210864 PMCID: PMC443530 DOI: 10.1093/nar/gkh654] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We previously showed that Meu13 of Schizosaccharomyces pombe functions in homologous pairing and recombination at meiosis I. Here we show that a meiosis-specific gene encodes a coiled-coil protein that complexes with Meu13 during meiosis in vivo. This gene denoted as mcp7+ (after meiotic coiled-coil protein) is an ortholog of Mnd1 of Saccharomyces cerevisiae. Mcp7 proteins are detected on meiotic chromatin. The phenotypes of mcp7Delta cells are similar to those of meu13Delta cells as they show reduced recombination rates and spore viability and produce spores with abnormal morphology. However, a delay in initiation of meiosis I chromosome segregation of mcp7Delta cells is not so conspicuous as meu13Delta cells, and no meiotic delay is observed in mcp7Deltameu13Delta cells. Mcp7 and Meu13 proteins depend on each other differently; Mcp7 becomes more stable in meu13Delta cells, whereas Meu13 becomes less stable in mcp7Delta cells. Genetic analysis shows that Mcp7 acts in the downstream of Dmc1, homologs of Escherichia coli RecA protein, for both recombination and subsequent sporulation. Taken together, we conclude that Mcp7 associates with Meu13 and together they play a key role in meiotic recombination.
Collapse
Affiliation(s)
- Takamune T Saito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
19
|
Bishop DK, Zickler D. Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 2004; 117:9-15. [PMID: 15066278 DOI: 10.1016/s0092-8674(04)00297-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During meiosis, DNA double-strand breaks ultimately yield two types of recombinants: crossovers (CO) and noncrossovers (NCO). Recent studies in budding yeast show the CO/NCO designation occurs before stable strand exchange and thus well before Holliday junction resolution. Chromosome synapsis occurs after CO/NCO designation and is not required for the regulated distribution of COs along chromosomes manifested as CO interference.
Collapse
Affiliation(s)
- Douglas K Bishop
- Department of Radiation & Cellular Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
20
|
Sharan SK, Pyle A, Coppola V, Babus J, Swaminathan S, Benedict J, Swing D, Martin BK, Tessarollo L, Evans JP, Flaws JA, Handel MA. BRCA2 deficiency in mice leads to meiotic impairment and infertility. Development 2003; 131:131-42. [PMID: 14660434 DOI: 10.1242/dev.00888] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of Brca2 in gametogenesis has been obscure because of embryonic lethality of the knockout mice. We generated Brca2-null mice carrying a human BAC with the BRCA2 gene. This construct rescues embryonic lethality and the mice develop normally. However, there is poor expression of the transgene in the gonads and the mice are infertile, allowing examination of the function of BRCA2 in gametogenesis. BRCA2-deficient spermatocytes fail to progress beyond the early prophase I stage of meiosis. Observations on localization of recombination-related and spermatogenic-related proteins suggest that the spermatocytes undergo early steps of recombination (DNA double strand break formation), but fail to complete recombination or initiate spermiogenic development. In contrast to the early meiotic prophase arrest of spermatocytes, some mutant oocytes can progress through meiotic prophase I, albeit with a high frequency of nuclear abnormalities, and can be fertilized and produce embryos. Nonetheless, there is marked depletion of germ cells in adult females. These studies provide evidence for key roles of the BRCA2 protein in mammalian gametogenesis and meiotic success.
Collapse
Affiliation(s)
- Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, 1050 Boyles Street, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu X, Aprelikova O, Moens P, Deng CX, Furth PA. Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development 2003; 130:2001-12. [PMID: 12642502 DOI: 10.1242/dev.00410] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Breast tumor suppressor gene 1 (BRCA1) plays an essential role in maintaining genomic integrity. Here we show that mouse Brca1 is required for DNA-damage repair and crossing-over during spermatogenesis. Male Brca1(Delta11/Delta11)p53(+/-) mice that carried a homozygous deletion of Brca1 exon 11 and a p53 heterozygous mutation had significantly reduced testicular size and no spermatozoa in their seminiferous tubules. During spermatogenesis, homologous chromosomes from the mutant mice synapsed and advanced to the pachytene stage but failed to progress to the diplotene stage. Our analyses revealed that the Brca1 mutation affected cellular localization of several DNA damage-repair proteins. This included prolonged association of gammaH2AX with sites of DNA damage, reduced sex body formation, diminished Rad51 foci and absence of Mlh1 foci in the pachytene stage. Consequently, chromosomes from mutant mice did not form chiasmata, a point that connects exchanging homologous chromosomes. Brca1-mutant spermatocytes also exhibited decreased RNA expression levels of several genes that are involved in DNA-damage repair, including RuvB-like DNA helicase, XPB, p62 and TFIID. Of note, the premature termination of spermatogenesis at the pachytene stage was accompanied by increased apoptosis by both p53-dependent and p53-independent mechanisms. Thus, our study revealed an essential role of Brca1 in DNA-damage repair and crossing-over of homologous chromosomes during spermatogenesis.
Collapse
Affiliation(s)
- Xiaoling Xu
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
22
|
Eaker S, Cobb J, Pyle A, Handel MA. Meiotic prophase abnormalities and metaphase cell death in MLH1-deficient mouse spermatocytes: insights into regulation of spermatogenic progress. Dev Biol 2002; 249:85-95. [PMID: 12217320 DOI: 10.1006/dbio.2002.0708] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MLH1 protein is required for normal meiosis in mice and its absence leads to failure in maintenance of pairing between bivalent chromosomes, abnormal meiotic division, and ensuing sterility in both sexes. In this study, we investigated whether failure to develop foci of MLH1 protein on chromosomes in prophase would lead to elimination of prophase spermatocytes, and, if not, whether univalent chromosomes could align normally on the meiotic spindle and whether metaphase spermatocytes would be delayed and/or eliminated. In spite of the absence of MLH1 foci, no apoptosis of spermatocytes in prophase was detected. In fact, chromosomes of pachytene spermatocytes from Mlh1(-/-) mice were competent to condense metaphase chromosomes, both in vivo and in vitro. Most condensed chromosomes were univalents with spatially distinct FISH signals. Typical metaphase events, such as synaptonemal complex breakdown and the phosphorylation of Ser10 on histone H3, occurred in Mlh1(-/-) spermatocytes, suggesting that there is no inhibition of onset of meiotic metaphase in the face of massive chromosomal abnormalities. However, the condensed univalent chromosomes did not align correctly onto the spindle apparatus in the majority of Mlh1(-/-) spermatocytes. Most meiotic metaphase spermatocytes were characterized with bipolar spindles, but chromosomes radiated away from the microtubule-organizing centers in a prometaphase-like pattern rather than achieving a bipolar orientation. Apoptosis was not observed until after the onset of meiotic metaphase. Thus, spermatocytes are not eliminated in direct response to the initial meiotic defect, but are eliminated later. Taken together, these observations suggest that a spindle assembly checkpoint, rather than a recombination or chiasmata checkpoint, may be activated in response to meiotic errors, thereby ensuring elimination of chromosomally abnormal gamete precursors.
Collapse
Affiliation(s)
- Shannon Eaker
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennesse 37996, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The process of meiosis reduces a diploid cell to four haploid gametes and is accompanied by extensive recombination. Thus, chromosome dynamics in meiosis are significantly different than in mitotic cells. This review analyzes unique features of meiotic DNA replication and describes how it affects subsequent recombination and chromosome segregation.
Collapse
Affiliation(s)
- Susan L Forsburg
- Molecular and Cell Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|