1
|
Maruri A, Anchordoquy JP, Farnetano NA, Flaherti AL, Rosa DE, Balbi M, Lombardo D, Furnus CC, Anchordoquy JM. Effect of zinc supplementation on bovine luteal function: In vivo and in vitro findings. Theriogenology 2025; 238:117365. [PMID: 40024097 DOI: 10.1016/j.theriogenology.2025.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Zinc (Zn) is an essential trace element for cellular processes such as oxidative stress regulation. Research on the relationship between Zn and the corpus luteum (CL) is limited, showing contradictory findings. Zinc supplementation before artificial insemination (AI) increases bovine CL size and progesterone (P4) levels. In mice, in vitro experiments suggest that Zn may reduce P4 production. This study aimed to evaluate the role of Zn in bovine luteal cell function by assessing 1) the effect of parenteral Zn supplementation (400 mg) 7 days after AI on CL size and plasma P4 levels in vivo, and 2) the impact of Zn supplementation (0, 0.8 and 1.2 μg/ml) on P4 production, reactive oxygen species (ROS) levels and luteal cell viability in vitro. In vivo, Zn supplementation increased CL size but reduced plasma P4 levels. In vitro, 0.8 μg/ml Zn decreased P4 synthesis and ROS levels while enhancing cell viability, whereas 1.2 μg/ml Zn had no significant effect compared to the control. These findings indicate that Zn modulates luteal function in a dose-dependent manner, reducing oxidative stress while impairing P4 production. Further studies are needed to optimize Zn supplementation strategies during assisted reproductive technologies and clarify Zn mechanisms of action.
Collapse
Affiliation(s)
- Alejandro Maruri
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO, CABA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Juan Patricio Anchordoquy
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina
| | - Nicolás Agustín Farnetano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina
| | - Ana Laura Flaherti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina
| | - Diana Esther Rosa
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina
| | - Marianela Balbi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Daniel Lombardo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO, CABA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cecilia Cristina Furnus
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina
| | - Juan Mateo Anchordoquy
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Gao Q, Zhang D, Zhang JL, Wang BJ, Lu CY, Cui S. PGF2alpha Inhibits 20alpha-HSD Expression by Suppressing CK1alpha-induced ERK and SP1 Activation in the Corpus Luteum of Pregnant Mice. Reprod Sci 2024; 31:248-259. [PMID: 37644378 DOI: 10.1007/s43032-023-01322-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Prostaglandin F2α (PGF2α) is a luteolytic hormone that promotes parturition in mammals at the end of pregnancy by reducing progesterone secretion from the corpus luteum (CL). In rodents and primates, PGF2α rapidly converts progesterone to 20α-hydroxyprogesterone (20α-OHP) by promoting 20α-hydroxysteroid dehydrogenase (20α-HSD) expression. However, the specific mechanism of 20α-HSD regulation by PGF2α remains unclear. Casein Kinase 1α (CK1α) is a CK1 family member that regulates a variety of physiological functions, including reproductive development. Here, we investigated the effects of CK1α on pregnancy in female mice. Our experiments showed that CK1α is expressed in mouse CL, and its inhibition enhanced progesterone metabolism, decreased progesterone levels, and affected mouse embryo implantation. Further, CK1α mediated the effect of PGF2α on 20α-HSD in mouse luteal cells in vitro. Our results are the first to show that CK1α affects the 20α-HSD mRNA level by affecting the ERK signalling pathway to regulate the expression of the transcription factor SP1. These findings improve our understanding of PGF2α regulation of 20α-HSD.
Collapse
Affiliation(s)
- Qiao Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing-Lin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Bing-Jie Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chen-Yang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
3
|
Yang X, Gao S, Luo W, Fu W, Xiong Y, Li J, Lan D, Yin S. Dynamic transcriptome analysis of Maiwa yak corpus luteum during the estrous cycle. Anim Biotechnol 2023; 34:4569-4579. [PMID: 36752221 DOI: 10.1080/10495398.2023.2174130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Maiwa yak is a special breed of animal living on the Qinghai-Tibet Plateau, which has great economic value, but its fertility rate is low. The corpus luteum (CL) is a temporary tissue that plays a crucial role in maintaining the physiological cycle. However, little is known about the transcriptome profile in Maiwa yak CL. In the present study, the transcriptome of Maiwa yak CL at early (EYCL), middle (MYCL) and late-stages (LYCL) was studied employing high-throughput sequencing. A total of 25,922 transcripts were identified, including 22,277 known as well as 3,645 novel ones. Furthermore, 690 and 212 differentially expressed (DE) mRNAs were detected in the EYCL vs. MYCL and MYCL vs. LYCL groups, respectively. KEGG pathway enrichment analysis of DEGs illustrated that the most enriched pathway was PI3K-Akt pathway. Furthermore, twenty-six DEGs were totally found to be associated with different biological processes of CL development. One of these genes, PGRMC1, displayed a dynamical expression trend during the lifespan of yak CL. The knockdown of PGRMC1 in luteinized yak granulosa cells resulted in defective steroidogenesis. In conclusion, this study analyzed the transcriptome profiles in yak CL of different stages, and provided a novel database for analyzing the gene network in yak CL.HIGHLIGHTSThe manuscript analyzed the transcriptome profiles in yak CL during the estrous cycle.Twenty-six DEGs were found to be associated with the development or function of CL.One of the DEGs, PGRMC1, was found to be responsible for steroidogenesis in luteinized yak granulosa cells.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shaoshuai Gao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Wen Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Araujo ASL, Simões MDJ, Araujo-Jr OP, Simões RS, Baracat EC, Nader HB, Soares-Jr JM, Gomes RCT. Hyperprolactinemia modifies extracellular matrix components associated with collagen fibrillogenesis in harderian glands of non- and pregnant female mice. Exp Eye Res 2023; 235:109612. [PMID: 37580001 DOI: 10.1016/j.exer.2023.109612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
The harderian gland (HG) is a gland located at the base of the nictating membrane and fills the inferomedial aspect of the orbit in rodents. It is under the influence of the hypothalamic-pituitary-gonadal axis and, because of its hormone receptors, it is a target tissue for prolactin (PRL) and sex steroid hormones (estrogen and progesterone). In humans and murine, the anterior surface of the eyes is protected by a tear film synthesized by glands associated with the eye. In order to understand the endocrine changes caused by hyperprolactinemia in the glands responsible for the formation of the tear film, we used an animal model with metoclopramide-induced hyperprolactinemia (HPRL). Given the evidences that HPRL can lead to a process of cell death and tissue fibrosis, the protein expression of small leucine-rich proteoglycans (SLRPs) was analyzed through immunohistochemistry in the HG of the non- and the pregnant female mice with hyperprolactinemia. The SRLPs are related to collagen fibrillogenesis and they participate in pro-apoptotic signals. Our data revealed that high prolactin levels and changes in steroid hormones (estrogen and progesterone) can lead to an alteration in the amount of collagen, and in the structure of type I and III collagen fibers through changes in the amounts of lumican and decorin, which are responsible for collagen fibrillogenesis. This fact can lead to the impaired functioning of the HG by excessive apoptosis in the HG of the non- and the pregnant female mice with HPRL and especially in the HG of pregnancy-associated hyperprolactinemia.
Collapse
Affiliation(s)
- Ariadne S L Araujo
- Morphology and Genetics Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Manuel de J Simões
- Morphology and Genetics Department, Federal University of São Paulo, UNIFESP, Brazil; Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Osvaldo P Araujo-Jr
- Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Ricardo S Simões
- Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Edmund C Baracat
- Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Helena B Nader
- Molecular Biology Division of the Department of Biochemistry, Federal University of São Paulo, Brazil
| | - José M Soares-Jr
- Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil
| | - Regina C T Gomes
- Morphology and Genetics Department, Federal University of São Paulo, UNIFESP, Brazil; Faculty of Medicine University of São Paulo, Obstetrics and Gynecology Department, FMUSP, Brazil; Obstetrics and Gynecology Department, Federal University of São Paulo, UNIFESP, Brazil.
| |
Collapse
|
5
|
Guo M, Yang L, Zhao X, Yan P, Zhu M, Ding W, Li D, Han X, Wu J. Microcystin-LR inhibits early pregnancy by impairing the vascular network of luteum: Involvement of the MEK/ERK/SP1/VEGFR2 axis. Food Chem Toxicol 2022; 170:113454. [DOI: 10.1016/j.fct.2022.113454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
|
6
|
Single-Cell Sequencing Reveals an Intrinsic Heterogeneity of the Preovulatory Follicular Microenvironment. Biomolecules 2022; 12:biom12020231. [PMID: 35204732 PMCID: PMC8961562 DOI: 10.3390/biom12020231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
The follicular microenvironment, including intra-follicular granulosa cells (GCs), is responsible for oocyte maturation and subsequent ovulation. However, the functions of GCs and cellular components of the follicular microenvironment in preovulatory follicles have not been extensively explored. Here, we surveyed the single-cell transcriptome of the follicular microenvironment around MII oocytes in six human preovulatory follicles in in vitro fertilization. There were six different cell types in the preovulatory follicles, including GCs and various immune cells. In GCs, we identified nine different functional clusters with different functional transcriptomic profiles, including specific clusters involved in inflammatory responses and adhesive function. Follicular macrophages are involved in immune responses, extracellular matrix remoulding and assist GCs in promoting the oocyte meiotic resumption. Interestingly, we observed that the specific terminal state subcluster of GCs with high levels of adhesive-related molecules should result in macrophage recruitment and residence, further contributing to an obvious heterogeneity of the immune cell proportion in preovulatory follicles from different patients. Our results provide a comprehensive understanding of the transcriptomic landscape of the preovulatory follicular microenvironment at the single-cell level. It provides valuable insights into understanding the regulation of the oocyte maturation and ovulation process, offering potential clues for the diagnosis and treatment of oocyte-maturation-related and ovulation-related diseases.
Collapse
|
7
|
Sirisin J, Kamnate A, Polsan Y, Somintara S, Chomphoo S, Sakagami H, Kondo H, Hipkaeo W. Localization of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) α confined to the surface of lipid droplets and adjacent narrow cytoplasm in progesterone-producing cells of in situ ovaries of adult mice. Acta Histochem 2021; 123:151794. [PMID: 34624591 DOI: 10.1016/j.acthis.2021.151794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/15/2022]
Abstract
Phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) produced by phosphatidylinositol phosphate 5 kinase (PIP5K) plays not only as a precursor of second messengers in the phosphoinositide signal transduction, but also multiple roles influencing a variety of cellular activities. From this viewpoint, the present study attempted to localize PIP5Kα in the ovaries in situ of adult mice. PIP5Kα-immunoreactivity was confined to the surfaces of lipid droplets (LDs) and their adjacent cytoplasm in progesterone-producing cells of the interstitial glands, corpora lutea and theca interna. The LDs often contained membranous tubules/lamellae along their surfaces and within their interior whose membranes were continuous with those delineating LDs composed of a monolayer of phospholipids and were partially PIP5Kα-immunoreactive. Although granulosa cells of healthy-looking follicles were immunonegative, as the atresia progressed, PIP5Kα-immunoreactivity first appeared in sparsely dispersed dot forms in mural cells of the follicular epithelia, and then were dominant in almost all mural cells that remained after desquamation of the antral cells. The present study provides evidence suggesting that PI(4,5)P2 locally synthesized by PIP5K in LDs is involved in the lipid transfer between lipid droplets (LDs) and the endoplasmic reticulum, which eventually regulates ovarian progesterone production through control of multiple dynamic activities of LDs. It is also suggested that PIP5Kα and PI(4,5)P2 are implicated in the modulation of programmed cell death and/or acquiring the ability of progesterone production in some follicular cells surviving atresia.
Collapse
Affiliation(s)
- Juthathip Sirisin
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Anussara Kamnate
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yada Polsan
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Somsuda Somintara
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Surang Chomphoo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hiroyuki Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Hisatake Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
8
|
Yin S, Zhou J, Yang L, Yuan Y, Xiong X, Lan D, Li J. Identification of microRNA transcriptome throughout the lifespan of yak ( Bos grunniens) corpus luteum. Anim Biotechnol 2021; 34:143-155. [PMID: 34310260 DOI: 10.1080/10495398.2021.1946552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The corpus luteum (CL) is a temporary organ that plays a critical role for female fertility by maintaining the estrous cycle. MicroRNA (miRNA) is a class of non-coding RNAs involved in various biological processes. However, there exists limited knowledge of the role of miRNA in yak CL. In this study, we used high-throughput sequencing to study the transcriptome dynamics of miRNA in yak early (eCL), middle (mCL) and late-stage CL (lCL). A total of 6,730 miRNAs were identified, including 5,766 known and 964 novels miRNAs. Three miRNAs, including bta-miR-126-3p, bta-miR-143 and bta-miR-148a, exhibited the highest expressions in yak CLs of all the three stages. Most of the miRNAs were 20-24 nt in length and the peak was at 22 nt. Besides, most miRNAs with different lengths displayed significant uracil preference at the 5'-end. Furthermore, 1,067, 280 and 112 differentially expressed (DE) miRNAs were found in eCL vs. mCL, mCL vs. lCL, and eCL vs. lCL, respectively. Most of the DE miRNAs were down-regulated in the eCL vs. mCL and eCL vs. lCL groups, and up-regulated in the mCL vs. lCL group. A total of 18,904 target genes were identified, with 18,843 annotated. Pathway enrichment analysis of the DE miRNAs target genes illustrated that the most enriched cellular process in each group included pathways in cancer, PI3K-Akt pathway, endocytosis, and focal adhesion. A total of 20 putative target genes in 47 DE miRNAs were identified to be closely associated with the formation, function or regression of CL. Three DE miRNAs, including bta-miR-11972, novel-miR-619 and novel-miR-153, were proved to directly bind to the 3'-UTR of their predicated target mRNAs, including CDK4, HSD17B1 and MAP1LC3C, respectively. Both of these DE miRNAs and their target mRNAs exhibited dynamic expression profiles across the lifespan of yak CL. This study presents a general basis for understanding of the regulation of miRNA on yak CL and also provides a novel genetic resource for future analysis of the gene network during the estrous cycle in the yak.
Collapse
Affiliation(s)
- Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China.,Key Laboratory of Modern Biotechnology, State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jingwen Zhou
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Liuqing Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yujie Yuan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Tomac J, Mazor M, Lisnić B, Golemac M, Kveštak D, Bralić M, Bilić Zulle L, Brinkmann MM, Dölken L, Reinert LS, Paludan SR, Krmpotić A, Jonjić S, Juranić Lisnić V. Viral infection of the ovaries compromises pregnancy and reveals innate immune mechanisms protecting fertility. Immunity 2021; 54:1478-1493.e6. [PMID: 34015257 DOI: 10.1016/j.immuni.2021.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/29/2020] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Viral infections during pregnancy are a considerable cause of adverse outcomes and birth defects, and the underlying mechanisms are poorly understood. Among those, cytomegalovirus (CMV) infection stands out as the most common intrauterine infection in humans, putatively causing early pregnancy loss. We employed murine CMV as a model to study the consequences of viral infection on pregnancy outcome and fertility maintenance. Even though pregnant mice successfully controlled CMV infection, we observed highly selective, strong infection of corpus luteum (CL) cells in their ovaries. High infection densities indicated complete failure of immune control in CL cells, resulting in progesterone insufficiency and pregnancy loss. An abundance of gap junctions, absence of vasculature, strong type I interferon (IFN) responses, and interaction of innate immune cells fully protected the ovarian follicles from viral infection. Our work provides fundamental insights into the effect of CMV infection on pregnancy loss and mechanisms protecting fertility.
Collapse
Affiliation(s)
- Jelena Tomac
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Marija Mazor
- Center for Proteomics, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia; Center for Proteomics, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Daria Kveštak
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Marina Bralić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Lidija Bilić Zulle
- Clinical Hospital Rijeka, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Melanie M Brinkmann
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research, 97080 Würzburg, Germany
| | - Line S Reinert
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Soren R Paludan
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Astrid Krmpotić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia; Center for Proteomics, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia.
| | - Vanda Juranić Lisnić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia; Center for Proteomics, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia.
| |
Collapse
|
10
|
Cardoso LC, Costa BFMD, Felicioni F, Oliveira DR, Caliari MV, Bloise E, Chiarini-Garcia H, Almeida FRCL. Maternal protein restriction before and during pregnancy leads to a gestational day-dependent response of folliculogenesis in outbred mice. Reprod Fertil Dev 2021; 33:655-664. [PMID: 34112314 DOI: 10.1071/rd21028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022] Open
Abstract
Knowledge of follicle development during pregnancy under experimental conditions could be a key factor to understanding maternal ovarian activity. Thus, this study evaluated the effects of maternal protein restriction before and during pregnancy on folliculogenesis. Swiss outbred female mice were allocated to either a control (CC; 20% protein) or treated (TT; 8% protein) group. Pregnant females were killed either on Gestational day (GD) 7.5 or GD17.5 and the ovaries were evaluated using histomorphometric and immunohistochemical methods. TT females showed higher feed and energy intakes, but lower bodyweight gain at GD17.5 (P <0.05). They also had lower number of secondary follicles at GD7.5 and a higher proportion of primordial follicles at GD17.5 (P <0.05). In addition, the areas of the secondary follicles and their granulosa layer were smaller in the TT group on GD7.5, whereas the areas of the oocyte and granulosa layer from atretic follicles were larger (P <0.05). Notwithstanding the slight increase in the insulin-like growth factor 1 (IGF1) receptor expression on GD7.5 in the TT group, there was a marked reduction in IGF1 expression detected in secondary follicles on GD17.5 (P <0.05). Collectively, these results demonstrate that protein restriction during pregnancy negatively affects follicle quality by reducing the size and activation capacity, which is more severe in late pregnancy.
Collapse
Affiliation(s)
- Lucas C Cardoso
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Beatriz F M D Costa
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Fernando Felicioni
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil; and School of Medicine, Atenas University Centre, Av. Prefeito Alberto Moura, 6000, 35701-383, Sete Lagoas, MG, Brazil
| | - Dirce R Oliveira
- Department of Basic Life Sciences, Federal University of Juiz de Fora, Campus Governador Valadares, Av. Dr Raimundo Monteiro de Rezende, 330, Centro - Governador Valadares, MG, CEP 35010-177, Brazil
| | - Marcelo V Caliari
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Enrrico Bloise
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Hélio Chiarini-Garcia
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Fernanda R C L Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil; and Corresponding author
| |
Collapse
|
11
|
Lough-Stevens M, Ghione CR, Urness M, Hobbs A, Sweeney CM, Dean MD. Male-derived copulatory plugs enhance implantation success in female Mus musculus. Biol Reprod 2021; 104:684-694. [PMID: 33355341 PMCID: PMC7962766 DOI: 10.1093/biolre/ioaa228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Among a wide diversity of sexually reproducing species, male ejaculates coagulate to form what has been termed a copulatory plug. A number of functions have been attributed to copulatory plugs, including the inhibition of female remating and the promotion of ejaculate movement. Here we demonstrate that copulatory plugs also influence the likelihood of implantation, which occurs roughly 4 days after copulation in mice. Using a bead transfer method to control for differences in ejaculate retention and fertilization rates, we show that implantation rates significantly drop among females mated to genetically engineered males incapable of forming plugs (because they lack functional transglutaminase 4, the main enzyme responsible for its formation). Surprisingly, this result does not correlate with differences in circulating progesterone levels among females, an important hormone involved in implantation. We discuss three models that connect male-derived copulatory plugs to implantation success, including the hypothesis that plugs contribute to a threshold amount of stimulation required for females to become receptive to implantation.
Collapse
Affiliation(s)
- Michael Lough-Stevens
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Caleb R Ghione
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Matthew Urness
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Adelaide Hobbs
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Colleen M Sweeney
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Asadi Zarch ME, Afshar A, Rahmanifar F, Jafarzadeh Shirazi MR, Baghban M, Dadpasand M, Mohammad Rezazadeh F, Khoradmehr A, Baharvand H, Tamadon A. Three-dimensional and two-dimensional relationships of gangliogenesis with folliculogenesis in mature mouse ovary: a Golgi-Cox staining approach. Sci Rep 2021; 11:5547. [PMID: 33692376 PMCID: PMC7970916 DOI: 10.1038/s41598-021-84835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
The present study was set out to investigate two-dimensional (2D) and three-dimensional (3D) evaluations of ovarian nervous network development and the structural relationship between folliculogenesis and gangliogenesis in mouse ovaries. Adult mice ovarian tissue samples were collected from follicular and luteal phases after cardiac perfusion. Ovarian samples were stained by a Golgi-Cox protocol. Following staining, tissues were serially sectioned for imaging. Neural filaments and ganglia were present in the ovaries. In both 2D and 3D studies, an increase in the number and area of ganglia was seen during the follicular growth. The same pattern was also seen in corpora lutea development. However, in some cases such as ratio of ganglia number to follicle area, the ratio of ganglia area to follicular area, 2D findings were different compared with the 3D results. 3D analysis of ovarian gangliogenesis showed the possible direct effect of them on folliculogenesis. Golgi-Cox staining was used in this study for 3D evaluation in non-brain tissue. The results of 3D analysis of the present study showed that, in some cases, the information provided by 2D analysis does not match the reality of ovarian neuronal function. This confirmed the importance of 3D analysis for evaluation of ovarian function.
Collapse
Affiliation(s)
| | - Alireza Afshar
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, 75146-33196, Bushehr, Iran
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Mandana Baghban
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Dadpasand
- Department of Animal Sciences, College of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran
| | | | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, 75146-33196, Bushehr, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, 75146-33196, Bushehr, Iran.
| |
Collapse
|
13
|
Wetendorf M, Li R, Wu SP, Liu J, Creighton CJ, Wang T, Janardhan KS, Willson CJ, Lanz RB, Murphy BD, Lydon JP, DeMayo FJ. Constitutive expression of progesterone receptor isoforms promotes the development of hormone-dependent ovarian neoplasms. Sci Signal 2020; 13:eaaz9646. [PMID: 33023986 PMCID: PMC10251233 DOI: 10.1126/scisignal.aaz9646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Differences in the relative abundances of the progesterone receptor (PGR) isoforms PGRA and PGRB are often observed in women with reproductive tract cancers. To assess the importance of the PGR isoform ratio in the maintenance of the reproductive tract, we generated mice that overexpress PGRA or PGRB in all PGR-positive tissues. Whereas few PGRA-overexpressing mice developed reproductive tract tumors, all PGRB-overexpressing mice developed ovarian neoplasms that were derived from ovarian luteal cells. Transcriptomic analyses of the ovarian tumors from PGRB-overexpressing mice revealed enhanced AKT signaling and a gene expression signature similar to those of human ovarian and endometrial cancers. Treating PGRB-overexpressing mice with the PGR antagonist RU486 stalled tumor growth and decreased the expression of cell cycle-associated genes, indicating that tumor growth and cell proliferation were hormone dependent in addition to being isoform dependent. Analysis of the PGRB cistrome identified binding events at genes encoding proteins that are critical regulators of mitotic phase entry. This work suggests a mechanism whereby an increase in the abundance of PGRB relative to that of PGRA drives neoplasia in vivo by stimulating cell cycling.
Collapse
Affiliation(s)
- Margeaux Wetendorf
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jian Liu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | - Rainer B Lanz
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bruce D Murphy
- Centre de recherche en reproduction et fertilité, University of Montreal, St-Hyacinthe, QC, Canada
| | - John P Lydon
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
14
|
Timaxian C, Raymond-Letron I, Bouclier C, Gulliver L, Le Corre L, Chébli K, Guillou A, Mollard P, Balabanian K, Lazennec G. The health status alters the pituitary function and reproduction of mice in a Cxcr2-dependent manner. Life Sci Alliance 2020; 3:3/3/e201900599. [PMID: 32041848 PMCID: PMC7010316 DOI: 10.26508/lsa.201900599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
This study explores the effects of microbiota on reproductive function of Cxcr2 knockout animals. Cxcr2 is involved in the control of pituitary action and the subsequent development of mammary gland, uterus and ovary. Microbiota and chronic infections can affect not only immune status, but also the overall physiology of animals. Here, we report that chronic infections dramatically modify the phenotype of Cxcr2 KO mice, impairing in particular, their reproduction ability. We show that exposure of Cxcr2 KO females to multiple types of chronic infections prevents their ability to cycle, reduces the development of the mammary gland and alters the morphology of the uterus due to an impairment of ovary function. Mammary gland and ovary transplantation demonstrated that the hormonal contexture was playing a crucial role in this phenomenon. This was further evidenced by alterations to circulating levels of sex steroid and pituitary hormones. By analyzing at the molecular level the mechanisms of pituitary dysfunction, we showed that in the absence of Cxcr2, bystander infections affect leukocyte migration, adhesion, and function, as well as ion transport, synaptic function behavior, and reproduction pathways. Taken together, these data reveal that a chemokine receptor plays a direct role in pituitary function and reproduction in the context of chronic infections.
Collapse
Affiliation(s)
- Colin Timaxian
- Centre National de la Recherche Scientifique (CNRS), SYS2DIAG-ALCEDIAG, Cap Delta, Montpellier, France.,CNRS, Groupement de Recherche 3697 "Microenvironment of Tumor Niches," Micronit, France
| | - Isabelle Raymond-Letron
- Department of Histopathology, National Veterinary School of Toulouse, France and Platform of Experimental and Compared Histopathology, STROMALab, Unité de recherche mixte (UMR) Université Paul Sabatier/CNRS 5223, Etablissement français du sang, Institut national de la santé et de la recherche médicale (Inserm) U1031, Toulouse, France
| | - Céline Bouclier
- Centre National de la Recherche Scientifique (CNRS), SYS2DIAG-ALCEDIAG, Cap Delta, Montpellier, France
| | | | - Ludovic Le Corre
- Nutrition et Toxicologie Alimentaire (NUTOX) Laboratory - INSERM Lipides, Nutrition, Cancer UMR 1231 - AgrosupDijon, Dijon, France
| | - Karim Chébli
- Equipe Metazoan Messenger RNAs Metabolism, Montpellier, France
| | - Anne Guillou
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Karl Balabanian
- CNRS, Groupement de Recherche 3697 "Microenvironment of Tumor Niches," Micronit, France.,Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France
| | - Gwendal Lazennec
- Centre National de la Recherche Scientifique (CNRS), SYS2DIAG-ALCEDIAG, Cap Delta, Montpellier, France .,CNRS, Groupement de Recherche 3697 "Microenvironment of Tumor Niches," Micronit, France
| |
Collapse
|
15
|
Xu P, Bao R, Zhang Y, Lu E, Feng F, Zhang L, Li J, Wang J, Tan X, Tang M, Hu C, Li G, Zhang C. Prolyl oligopeptidase regulates progesterone secretion via the ERK signaling pathway in murine luteal cells. Mol Reprod Dev 2019; 86:714-726. [PMID: 30990944 DOI: 10.1002/mrd.23149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/31/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022]
Abstract
Prolyl oligopeptidase (POP), one of the most widely distributed serine endopeptidases, is highly expressed in the ovaries. However, the physiological role of POP in the ovaries is not clear. In this study, we investigated the significance of POP in the corpus luteum. Murine luteal cells were cultured in vitro and treated with a POP selective inhibitor, (2S)-1[[(2 S)-1-(1-oxo-4-phenylbutyl)-2-pyrrolidinyl carbonyl]-2-pyrrolidinecarbonitrile (KYP-2047). We found that KYP-2047 treatment decreased progesterone secretion. In contrast, POP overexpression increased progesterone secretion. Three essential steroidogenic enzymes, including p450 cholesterol side-chain cleavage enzyme (CYP11A), 3β-hydroxysteroid dehydrogenase (3β-HSD), and the steroidogenic acute regulatory protein (StAR), were regulated by POP. Further studies showed that POP overexpression increased ERK1/2 phosphorylation and increased the expression of steroidogenic factor 1 (SF1), while KYP-2047 treatment decreased ERK1/2 phosphorylation and SF1 expression. To clarify the role of ERK1/2 signaling in POP-regulated progesterone synthesis, U0126-EtOH, an inhibitor of the ERK signaling pathway, was used to treat luteal cells. We found that U0126-EtOH decreased progesterone production and the expression of steroidogenic enzymes and SF1. POP overexpression did not reverse the effects of U0126-EtOH. Overall, POP regulates progesterone secretion by stimulating the expression of CYP11A, 3β-HSD, and StAR in luteal cells. ERK signaling and downstream SF1 expression contribute to this process.
Collapse
Affiliation(s)
- Ping Xu
- Second Clinical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Riqiang Bao
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yaqiong Zhang
- Department of Medical Genetics, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Enhang Lu
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Fen Feng
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Luyin Zhang
- Second Clinical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jiaheng Li
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jing Wang
- Department of Microbiology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ximin Tan
- Forth Clinical College, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Min Tang
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chuan Hu
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Gang Li
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chunping Zhang
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
16
|
Impact of exogenous adrenocorticotropic hormone on gelatinase expression and steroidogenesis in the newly formed corpus luteum in sows. Livest Sci 2018. [DOI: 10.1016/j.livsci.2017.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Accialini P, Irusta G, Bechis A, Bas D, Parborell F, Abramovich D, Tesone M. Tankyrase inhibition regulates corpus luteum development and luteal function in gonadotropin-treated rats. Mol Reprod Dev 2017. [PMID: 28628258 DOI: 10.1002/mrd.22853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tankyrases are physiological regulators of Axin, a protein involved in several cellular processes, including Wnt signaling. Here, we investigated the effect of a specific Tankyrase inhibitor (XAV939) in follicular-luteal dynamics, and its possible relationship with ovarian vascular development. Studies were designed to analyze the effect of intrabursa administration of XAV939 in gonadotropin-treated prepubertal rats. In particular, we examined follicle and corpus luteum development, steroidogenesis, angiogenic markers, and apoptotic parameters. We found that in vivo inhibition of Wnt signaling impaired corpus luteum development, with a decrease in the number of corpora lutea balanced by a high number of cysts; decreased circulating progesterone levels, likely due to a decrease in Steroidogenic acute regulatory protein content in the corpus luteum; and increased pro-apoptotic parameters. In addition, Extracellular signal-regulated kinase phosphorylation, Vascular endothelium growth factor 120 content, and endothelial cell area were diminished in corpora lutea of inhibitor-treated ovaries. Thus, Wnt/β-catenin signaling appears to participate in the regulation of corpus luteum development and luteal cell function.
Collapse
Affiliation(s)
- Paula Accialini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Griselda Irusta
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Andrés Bechis
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Departamento de Quıímica Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diana Bas
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Marta Tesone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Departamento de Quıímica Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Chien Y, Rosal K, Chung BC. Function of CYP11A1 in the mitochondria. Mol Cell Endocrinol 2017; 441:55-61. [PMID: 27815210 DOI: 10.1016/j.mce.2016.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023]
Abstract
Steroids are synthesized from the adrenal glands and gonads by enzymes of the cytochromes P450 and hydroxysteroid dehydrogenase in nature. These enzymes are located in the membrane of endoplasmic reticulum and mitochondria to catalyze redox reactions using electrons transported from the membrane. In the mitochondria, steroidogenic enzymes are inserted into the inner membrane with the bulk of the protein facing the matrix. They are not only important for steroid biosynthesis, their presence also affects mitochondrial morphology. Mitochondria undergo constant fission and fusion; they play important roles in energy production, apoptosis, and metabolism. Their defects often lead to human diseases. Mitochondrial cristae are usually lamellar in shape, but can also assume different shapes. Cristae in the mitochondria of steroidogenic cells are tubular-vesicular in shape. This cristae shape is also related to the degree of steroidogenic cell differentiation. Steroidogenic enzymes in the mitochondria appear to have a dual role in shaping the morphology of mitochondria and in steroid production.
Collapse
Affiliation(s)
- Yu Chien
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Karen Rosal
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
19
|
Abstract
The ovary, the female gonad, serves as the source for the germ cells as well as the major supplier of steroid sex hormones. During embryonic development, the primordial germ cells (PGCs) are specified, migrate to the site of the future gonad, and proliferate, forming structures of germ cells nests, which will eventually break down to generate the primordial follicles (PMFs). Each PMF contains an oocyte arrested at the first prophase of meiosis, surrounded by a flattened layer of somatic pre-granulosa cells. Most of the PMFs are kept dormant and only a selected population is activated to join the growing pool of follicles in a process regulated by both intra- and extra-oocyte factors. The PMFs will further develop into secondary pre-antral follicles, a stage which depends on bidirectional communication between the oocyte and the surrounding somatic cells. Many of the signaling molecules involved in this dialog belong to the transforming growth factor β (TGF-β) superfamily. As the follicle continues to develop, a cavity called antrum is formed. The resulting antral follicles relay on the pituitary gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) for their development. Most of the follicles undergo atretic degeneration and only a subset of the antral follicles, known as the dominant follicles, will reach the preovulatory stage at each reproductive cycle, respond to LH, and subsequently ovulate, releasing a fertilizable oocyte. The remaining somatic cells in the raptured follicle will undergo terminal differentiation and form the corpus luteum, which secretes progesterone necessary to maintain pregnancy.
Collapse
|
20
|
Sankar A, Kooistra SM, Gonzalez JM, Ohlsson C, Poutanen M, Helin K. Maternal expression of the JMJD2A/KDM4A histone demethylase is critical for pre-implantation development. Development 2017; 144:3264-3277. [DOI: 10.1242/dev.155473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Abstract
Regulation of chromatin composition through post-translational modifications of histones contributes to transcriptional regulation and is essential for many cellular processes, including differentiation and development. JMJD2A/KDM4A is a lysine demethylase with specificity towards di- and tri-methylated lysine 9 and lysine 36 of histone H3 (H3K9me2/me3 and H3K36me2/me3). Here, we report that Kdm4a as a maternal factor plays a key role in embryo survival and is vital for female fertility. Kdm4a−/- female mice ovulate normally with comparable fertilization but poor implantation rates, and cannot support healthy transplanted embryos to term. This is due to a role for Kdm4a in uterine function, where its loss causes reduced expression of key genes involved in ion transport, nutrient supply and cytokine signalling, that impact embryo survival. In addition, a significant proportion of Kdm4a deficient oocytes displays a poor intrinsic ability to develop into blastocysts. These embryos cannot compete with healthy embryos for implantation in vivo, highlighting Kdm4a as a maternal effect gene. Thus, our study dissects an important dual role for maternal Kdm4a in determining faithful early embryonic development and the implantation process.
Collapse
Affiliation(s)
- Aditya Sankar
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Present Address: Centre for Chromosome Stability, Institute of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Susanne Marije Kooistra
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Denmark
- Present Address: Department of Neuroscience, University Medical Centre, Groningen, University of Groningen, Groningen, The Netherlands
| | - Javier Martin Gonzalez
- Core Facility for Transgenic Mice, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Claes Ohlsson
- Department of Physiology Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matti Poutanen
- Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kristian Helin
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
21
|
Komatsu K, Masubuchi S. Observation of the dynamics of follicular development in the ovary. Reprod Med Biol 2016; 16:21-27. [PMID: 29259446 PMCID: PMC5715870 DOI: 10.1002/rmb2.12010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/09/2016] [Indexed: 12/26/2022] Open
Abstract
The number of ovulated oocytes is different among mammals but does not vary much within the same species. In order to sustain periodic ovulation, follicular development must be coordinated at the tissue level. Elucidating the regulatory mechanisms of follicular development is difficult because the ovary has a complicated structure and it takes a long time for primordial follicles to develop into Graafian follicles. Therefore, it is not possible to observe follicular development by conventional experiments. The authors previously developed a new ovarian tissue culture method that enabled the observation of follicular development from the early follicle stage. These findings indicated that follicular interactions are important in regulating follicular development and ovulation. This review describes the current methods of observing follicular development in the ovary and the regulatory mechanisms of follicular development.
Collapse
Affiliation(s)
- Kouji Komatsu
- Department of PhysiologyAichi Medical UniversityAichiJapan
| | | |
Collapse
|
22
|
Reshma R, Mishra SR, Thakur N, Parmar MS, Somal A, Bharti MK, Pandey S, Chandra V, Chouhan VS, Verma MR, Singh G, Sharma GT, Maurya VP, Sarkar M. Modulatory role of leptin on ovarian functions in water buffalo (Bubalus bubalis). Theriogenology 2016; 86:1720-39. [PMID: 27381558 DOI: 10.1016/j.theriogenology.2016.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to demonstrate the modulatory role of leptin on bubaline granulosa cells (GCs) and luteal cells (LCs) functions using an in vitro cell culture system and to establish a cross talk between leptin and insulin-like growth factor-1 (IGF-1). GCs were collected from group IV follicles (>13 mm size) and LCs from mid-luteal phase corpus luteum and were grown in serum-containing media supplemented with leptin at three different dose rates (0.1, 1, and 10 ng/mL) and time durations (24, 48, and 72 hours). We evaluated the production and secretion of estradiol (E2) and progesterone (P4) using RIA and the mRNA expression of steroidogenic acute regulatory protein (STARD1), cytochrome P450 cholesterol side-chain cleavage (CYP11A1), 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450 aromatase (CYP19A1), sterol regulatory element-binding protein 1 (SREBP1), steroidogenic factor-1 (SF1), anti-apoptotic gene PCNA, pro-apoptotic gene caspase 3 and endothelial cell marker, Von Willebrand factor (vWF), using quantitative real-time polymerase chain reaction. The results depicted a direct inhibitory action of leptin on GCs steroidogenesis in a time-dependent manner (P < 0.05), whereas in the presence of IGF-1 the inhibitory effect was reverted. Furthermore, leptin augmented both cellular proliferation (PCNA) and apoptosis (caspase 3). On the other hand, in LCs, leptin alone showed an apparent stimulatory effect on steroidogenesis (P < 0.05); however, in the presence of IGF-1, an antagonistic effect was witnessed. Moreover, leptin had an inhibitory effect on apoptosis while promoted cellular proliferation and angiogenesis. These findings were further strengthened by immunocytochemistry. To conclude, these observations for the first time reported that in buffaloes leptin has a direct dose-, time-, and tissue-dependent effect on ovarian steroidogenesis, angiogenesis, and cytoprotection, and furthermore, it can regulate the effect of systemic factors like IGF-1. Hence, this in vitro study provides an insight into the putative roles of leptin alone and its interactions in vivo.
Collapse
Affiliation(s)
- R Reshma
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - S R Mishra
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - N Thakur
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - M S Parmar
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A Somal
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - M K Bharti
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - S Pandey
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - V Chandra
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - V S Chouhan
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - M R Verma
- Division of Livestock Economics, Statistics and Information Technology, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - G Singh
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - G T Sharma
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - V P Maurya
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - M Sarkar
- Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
23
|
Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life. J Pregnancy 2015; 2015:715735. [PMID: 26697222 PMCID: PMC4678088 DOI: 10.1155/2015/715735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman's lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine-metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum. This review offers a summary of pivotal aspects concerning the physiologic course of female reproductive function.
Collapse
|
24
|
Stegmann BJ, Santillan M, Leader B, Smith E, Santillan D. Changes in antimüllerian hormone levels in early pregnancy are associated with preterm birth. Fertil Steril 2015; 104:347-55.e3. [PMID: 26074093 DOI: 10.1016/j.fertnstert.2015.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/02/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To determine the association of preterm birth with antimüllerian hormone (AMH) levels both in isolation and in combination with other markers of fetoplacental health commonly measured during integrated prenatal screening (IPS) for aneuploidy. DESIGN Retrospective case-control study. SETTING Not applicable. PATIENT(S) Pregnant women in Iowa who elected to undergo IPS and who subsequently delivered in Iowa, including women giving birth at <37 weeks' gestation and controls who delivered at ≥37 weeks' gestation. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Probability of a preterm birth. RESULT(S) Second trimester AMH levels were not associated with preterm birth, either independently or after controlling for other markers of fetoplacental health. The AMH difference was not associated with preterm birth when modeled alone, but a statistically significant association was found after adjusting for maternal serum α-fetoprotein (MSAFP) and maternal weight change between the first and second trimesters. After stratifying the model by MSAFP level, most of the risk for preterm birth was identified in women with an MSAFP >1 multiple of the median and who had a stable or rising AMH level in early pregnancy. CONCLUSION(S) A lack of decline in the AMH level in early pregnancy can be used to identify women with a high probability for preterm birth, especially when MSAFP levels are >1 multiple of the median. Monitoring changes in the AMH level between the first and second trimesters of pregnancy may help identify women who would benefit from interventional therapies such as supplemental progesterone.
Collapse
Affiliation(s)
| | - Mark Santillan
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, Iowa
| | | | - Elaine Smith
- Department of Epidemiology, College of Public Health, Iowa City, Iowa
| | - Donna Santillan
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, Iowa
| |
Collapse
|
25
|
Ozturk S, Sozen B, Demir N. Epab and Pabpc1 are differentially expressed in the postnatal mouse ovaries. J Assist Reprod Genet 2014; 32:137-46. [PMID: 25370180 DOI: 10.1007/s10815-014-0362-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/29/2014] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Embryonic poly(A)-binding protein (EPAB) and poly(A)-binding protein, cytoplasmic 1 (PABPC1) bind poly(A) tails of mRNAs and mediate their translational regulation in germ cells and early preimplantation embryos. Although expression patterns and possible functions of the Epab and Pabpc1 genes have been examined in vertebrate germ cells and early embryos, their expression levels and cellular localizations in the postnatal mouse ovaries remained elusive. METHODS In the present study, we first aimed to characterize expression levels of the Epab and Pabpc1 genes in the prepubertal (1-, 2-, and 3-week old), pubertal (4-, 5-, and 6-week old), postpubertal (16-week and 18-week old), and aged (52-, 60-, and 72-week old) mouse ovaries by using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Epab mRNA was predominantly expressed in the prepubertal ovaries when compared to later developmental periods. However, Pabpc1 transcript was highly generated in the prepubertal and pubertal mouse ovaries except for 1-week old ovary than those of other developmental terms. In the prepubertal mouse ovaries, RNA in situ hybridization localized both Epab and Pabpc1 transcripts in the cytoplasm of oocytes and granulosa cells of all follicular stages. Consistently, Epab and Pabpc1 gene expression were detected in the cumulus cells and MII oocytes obtained from cumulus oocyte complexes (COCs). Ovarian follicle counting in the postnatal ovaries revealed that total number of follicles was higher in the prepubertal ovaries in comparison with later stages of development. CONCLUSION As a result, Epab and Pabpc1 expression exhibit differences at postnatal ovary development stages and both genes are transcribed in the granulosa cells and oocytes. These findings suggest that EPAB may predominantly play roles in translational regulation of the mRNAs during early oogenesis and folliculogenesis, but PABPC1 most likely perform these roles in the later terms of ovarian development along with EPAB protein.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070, Antalya, Turkey
| | | | | |
Collapse
|
26
|
Gadducci A, Sergiampietri C, Tana R. Alternatives to risk-reducing surgery for ovarian cancer. Ann Oncol 2014; 24 Suppl 8:viii47-viii53. [PMID: 24131970 DOI: 10.1093/annonc/mdt311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BRCA1 and BRCA2 mutation carriers have an 18%-60% and 11%-27% lifetime risk of developing ovarian carcinoma, respectively. Prophylactic bilateral salpingo-oophorectomy reduces the risk of this malignancy by up to 96%. Gynecological screening programs with periodical trans-vaginal ultrasound and serum CA125 assay have been widely used in women at hereditary high risk of ovarian carcinoma, but clinical results have been conflicting. These surveillance protocols have often fallen short of expectations because of the advanced stage of ovarian carcinoma in the identified screened women. Several investigations have been addressed to the detection of additional tumor markers able to generate more reliable screening tools. The combined serum assay of leptin, prolactin, osteopontin, CA125, macrophage inhibiting factor and insulin-like growth factor-II appears to have a significant better diagnostic reliability compared with serum CA125 alone in discriminating healthy individuals from ovarian carcinoma patients, and therefore, it could have a role in the screening of women at high risk for this malignancy. As far as chemoprevention is concerned, oral contraceptives significantly reduce the ovarian carcinoma risk also in BRCA mutation carriers, whereas the efficacy of fenretinide is still under investigation.
Collapse
Affiliation(s)
- A Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
27
|
Sun X, Terakawa J, Clevers H, Barker N, Daikoku T, Dey SK. Ovarian LGR5 is critical for successful pregnancy. FASEB J 2014; 28:2380-9. [PMID: 24469993 DOI: 10.1096/fj.13-248344] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is expressed in many organs, including female reproductive organs, and is a stem cell marker in the stomach and intestinal epithelium, hair follicles, and ovarian surface epithelium. Despite ongoing studies, the definitive physiological functions of Lgr5 remain unclear. We utilized mice with conditional deletion of Lgr5 (Lgr5(d/d)) in the female reproductive organs by progesterone receptor-Cre (Pgr(Cre)) to determine Lgr5's functions during pregnancy. Only 30% of plugged Lgr5(d/d) females delivered live pups, and their litter sizes were lower. We found that pregnancy failure in Lgr5(d/d) females was due to insufficient ovarian progesterone (P4) secretion that compromised decidualization, terminating pregnancy. The drop in P4 levels was reflected in elevated levels of P4-metabolizing enzyme 20α-hydroxysteroid dehydrogenase in corpora lutea (CL) inactivated of Lgr5. Of interest, P4 supplementation rescued decidualization failure and supported pregnancy to full term in Lgr5(d/d) females. These results provide strong evidence that Lgr5 is critical to normal CL function, unveiling a new role of LGR5 in the ovary.
Collapse
Affiliation(s)
- Xiaofei Sun
- 1Cincinnati Children's Hospital Medical Center, Division of Reproductive Sciences, MLC 7045, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Chien Y, Cheng WC, Wu MR, Jiang ST, Shen CKJ, Chung BC. Misregulated Progesterone Secretion and Impaired Pregnancy in Cyp11a1 Transgenic Mice1. Biol Reprod 2013; 89:91. [DOI: 10.1095/biolreprod.113.110833] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
29
|
Bachelot A, Carré N, Mialon O, Matelot M, Servel N, Monget P, Ahtiainen P, Huhtaniemi I, Binart N. The permissive role of prolactin as a regulator of luteinizing hormone action in the female mouse ovary and extragonadal tumorigenesis. Am J Physiol Endocrinol Metab 2013; 305:E845-52. [PMID: 23921141 DOI: 10.1152/ajpendo.00243.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transgenic female mice overexpressing the hCGβ subunit (hCGβ(+)) and producing elevated levels of luteinizing hormone (LH)/hCG bioactivity present as young adults with enhanced ovarian steroidogenesis, precocious puberty, and infertility. They subsequently develop pituitary prolactinomas, high circulating prolactin (PRL) levels, and marked mammary gland lobuloalveolar development followed by adenocarcinomas. None of these phenotypes appear in gonadectomized mice, indicating that the hCG-induced aberrations of ovarian function are responsible for the extragonadal phenotypes. PRL receptor-deficient (PRLR(-/-)) female mice are sterile, despite ovulating, due to a failure of embryo implantation, as a consequence of decreased ovarian LH receptor (Lhcgr) expression and inadequate corpus luteum formation and progesterone production. To study further the presumed permissive role of PRL in the maintenance of gonadal responsiveness to LH/hCG stimulation, we crossed the hCGβ(+) and PRLR(-/-) mice. The double-mutant hCGβ(+)/PRLR(-/-) females remained sterile with an ovarian phenotype similar to PRLR(-/-) mice, indicating that LH action, Lhcgr expression, and consequent luteinization are not possible without simultaneous PRL signaling. The high frequency of pituitary prolactinomas in PRLR(-/-) mice was not affected by transgenic hCGβ expression. In contrast, none of the hCGβ(+)/PRLR(-/-) females showed either mammary gland lobuloalveolar development or tumors, and the increased mammary gland Wnt-5b expression, possibly responsible for the tumorigenesis in hCGβ(+) mice, was absent in double-mutant mice. Hence, high LH/hCG stimulation is unable to compensate for missing PRL signaling in the maintenance of luteal function. PRL thus appears to be a major permissive regulator of LH action in the ovary and of its secondary extragonadal effects.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Corpus Luteum/metabolism
- Female
- Luteinizing Hormone/metabolism
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Transgenic
- Ovary/metabolism
- Progesterone/metabolism
- Prolactin/blood
- Prolactin/metabolism
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
Collapse
Affiliation(s)
- Anne Bachelot
- AP-HP, Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nio-Kobayashi J, Iwanaga T. Galectin-1 and galectin-3 in the corpus luteum of mice are differentially regulated by prolactin and prostaglandin F2 α. Reproduction 2012; 144:617-24. [DOI: 10.1530/rep-11-0495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Galectin-1 and galectin-3, β-galactoside-binding lectins, are specifically expressed in the regressing corpus luteum (CL) of mice; however, their function remains unclear. In this study, we examined the effects of prolactin (PRL) and prostaglandin F2
α (PGF2
α), two main regulatory molecules of mouse CL function, on galectin expression. In situ hybridization analysis clearly demonstrated an initial increase in galectin-1 in the newly formed CL (CLN) after postpartum ovulation 48 h after compulsory weaning. This was accompanied by a decline in 3β-hydroxysteroid dehydrogenase (3β-HSD) and LH receptor (LH-R) expression, suggesting a withdrawal of PRL stimulation. At 72 h after the weaning, the expression of both galectins in CLN was remarkably increased, being associated with an intense expression of progesterone degradation enzyme (20α-HSD). Compulsory weaning did not significantly alter both galectin expression in the remaining CL of pregnancy (CLP), while PGF2
α strongly upregulated both galectin expression only in the remaining CLP, which lacked LH-R in postpartum mice. Administration of bromocriptine, an antagonist for PRL secretion, to nonpregnant cyclic mice induced an accumulation of galectin-1 – but not galectin-3 – in all CL of various generations, and additional PRL treatment reduced its accumulation, suggesting a direct suppressive effect of PRL on galectin-1 expression. Although the function and regulatory mechanism of galectin in the CL is not fully understood, PGF2
α is an excellent candidate that regulates galectin expression, but its effect may be abolished by LH-R-mediated signal. PRL withdrawal seems to be necessary for an initiation of luteolysis and the following PGF2
α-induced galectin expression.
Collapse
|
31
|
Bouilly J, Sonigo C, Auffret J, Gibori G, Binart N. Prolactin signaling mechanisms in ovary. Mol Cell Endocrinol 2012; 356:80-7. [PMID: 21664429 DOI: 10.1016/j.mce.2011.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
Prolactin is a hormone that is essential for normal reproduction and signals through two types of receptors. Not only is the classical long form of the prolactin receptor identified, but so are many short form receptors in rodents and human tissues. Mouse mutagenesis studies have offered insight into the biology of prolactin family, providing compelling evidence that the different isoforms have independent biological activity. The possibility that short forms mediate cell proliferation is important for a variety of tissues including mammary gland and ovarian follicles. This review summarizes our current knowledge about prolactin signaling and its role in reproduction through either long or short isoform receptors.
Collapse
|
32
|
Le JA, Wilson HM, Shehu A, Mao J, Devi YS, Halperin J, Aguilar T, Seibold A, Maizels E, Gibori G. Generation of mice expressing only the long form of the prolactin receptor reveals that both isoforms of the receptor are required for normal ovarian function. Biol Reprod 2012; 86:86. [PMID: 22190699 DOI: 10.1095/biolreprod.111.095927] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prolactin (PRL), a pleiotropic hormone essential for maintenance of corpus luteum (CL) function and pregnancy, transduces its signal through two types of receptors, a short form (PRLR-S) and a long form (PRLR-L). Both types of receptors are expressed in the CL, yet their individual roles are not well defined. We have shown previously that female transgenic mice expressing only PRLR-S display total infertility characterized by defective follicular development and early degeneration of CL, suggesting that expression of PRLR-L is a prerequisite for normal follicular development and maintenance of CL. To determine whether PRLR-L alone is the sole receptor required to maintain normal CL formation, differentiation, and progesterone secretion, we generated two transgenic mice which express only PRLR-L, either ubiquitously (Tg-RL) or in a CL-specific manner (CL-RL). To generate CL-specific expression, we used the HSD17B7 promoter. We found both transgenic mice models cycled normally, displayed no apparent defect in follicular development, and had normal ovulation rates. The STAT5 signaling pathway, considered essential for luteinization and progesterone production, was activated by PRL in both transgenic mice models. However, soon after mating, Tg-RL and CL-RL mice showed early regression of CL, lack of progesterone production, and implantation failure that rendered them totally infertile. Embryo transfer studies demonstrated no embryo abnormalities, and supplementation with progesterone rescued implantation failure in these mice. Close observation revealed lack of luteinization and reduced expression of proteins involved in progesterone biosynthesis despite normal levels of LHCGR (LH-R), ESR1 (ER-alpha), CEBPB (C/EBP-beta) and CDKN1B (p27), proteins essential for luteinization. However, we found VEGFA, a key regulator of angiogenesis and vascularization, to be dramatically reduced in both Tg-RL and CL-RL mice. We also found collagen IV, a marker for the basal lamina of endothelial cells, aberrantly expressed and a discordant organization of endothelial cells in CL. Although luteinization did not occur in vivo, granulosa cells isolated from these mice luteinized in culture. Taken together, these results suggest that a vascularization defect in the CL may be responsible for lack of luteinization, progesterone production, and infertility in mice expressing only PRLR-L. This investigation therefore demonstrates that in contrast to earlier presumptions that PRLR-L alone is able to support normal CL formation and function, both isoforms of the PRL receptor are required in the CL for normal female fertility.
Collapse
Affiliation(s)
- Jamie A Le
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Leahy Y. Are serum protein biomarkers effective in detecting ovarian cancer in its early stages? Clin J Oncol Nurs 2010; 13:443-5. [PMID: 19648102 DOI: 10.1188/09.cjon.443-445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Konno T, Graham AR, Rempel LA, Ho-Chen JK, Alam SMK, Bu P, Rumi MAK, Soares MJ. Subfertility linked to combined luteal insufficiency and uterine progesterone resistance. Endocrinology 2010; 151:4537-50. [PMID: 20660062 PMCID: PMC2940508 DOI: 10.1210/en.2010-0440] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early pregnancy loss is common and can be caused by a range of factors. The Brown Norway (BN) rat exhibits reproductive dysfunction characterized by small litter size and pregnancy failure and represents a model for investigating early pregnancy loss. In this study, we investigated the establishment of pregnancy in the BN rat and gained insight into mechanisms causing its subfertility. Early stages of BN uteroplacental organization are unique. The BN primordial placenta is restricted in its development and correlates with limited BN uterine decidual development. BN uterine decidua was shown to be both structurally and functionally distinct and correlated with decreased circulating progesterone (P4) levels. Ovarian anomalies were also apparent in BN rats and included decreased ovulation rates and decreased transcript levels for some steroidogenic enzymes. Attempts to rescue the BN uterine decidual phenotype with steroid hormone therapy were ineffective. BN uteri were shown to exhibit reduced responsiveness to P4 but not to 17beta-estradiol. P4 resistance was associated with decreased transcript levels for the P4 receptor (Pgr), a P4 receptor chaperone (Fkbp4), and P4 receptor coactivators (Ncoa1 and Ncoa2). In summary, the BN rat exhibits luteal insufficiency and uterine P4 resistance, which profoundly affects its ability to reproduce.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line, Tumor
- Cells, Cultured
- Corpus Luteum/drug effects
- Corpus Luteum/metabolism
- Decidua/metabolism
- Estradiol/pharmacology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Humans
- Infertility/genetics
- Infertility/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Male
- Progesterone/blood
- Progesterone/metabolism
- Progesterone/pharmacology
- Promoter Regions, Genetic/genetics
- Rats
- Rats, Inbred BN
- Rats, Inbred Dahl
- Rats, Inbred F344
- Rats, Sprague-Dawley
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Sequence Analysis, DNA
- Stromal Cells/cytology
- Stromal Cells/metabolism
- Uterus/cytology
- Uterus/drug effects
- Uterus/metabolism
Collapse
Affiliation(s)
- Toshihiro Konno
- Institute of Maternal-Fetal Biology, and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Binart N, Bachelot A, Bouilly J. Impact of prolactin receptor isoforms on reproduction. Trends Endocrinol Metab 2010; 21:362-8. [PMID: 20149678 DOI: 10.1016/j.tem.2010.01.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/13/2010] [Accepted: 01/15/2010] [Indexed: 11/24/2022]
Abstract
Prolactin is a hormone involved in growth, development, reproduction, metabolism, water and electrolyte balance, brain and behavior, and immunoregulation. Its actions on reproductive processes represent the largest group of functions identified for this hormone. Besides the classic long form of the prolactin receptor, many short form receptors have been identified in rodents and human tissues. Mouse mutagenesis studies have offered insight into the biology of the prolactin family, providing compelling evidence that different isoforms have independent biological activity. The possibility that short forms mediate cell proliferation is important for a variety of tissues including mammary glands and ovarian follicles. This review summarizes the current knowledge about prolactin signaling and its role in reproduction through either long or short isoform receptors.
Collapse
|
36
|
Kim K, Visintin I, Alvero AB, Mor G. Development and validation of a protein-based signature for the detection of ovarian cancer. Clin Lab Med 2009; 29:47-55. [PMID: 19389550 PMCID: PMC2720626 DOI: 10.1016/j.cll.2009.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To overcome the significant mortality associated with ovarian cancer, a highly sensitive and specific screening test is urgently needed. CA-125 testing is used to monitor response to chemotherapy, detect recurrence, and detect late stage ovarian cancer. However, CA-125 testing, alone or in combination with ultrasonography, has not been adequate for early detection of ovarian cancer. This article discusses the authors' recent report of a novel multiplex assay that uses a panel of six serum biomarkers: leptin, prolactin, osteopontin, insulin-like growth factor II (IGF-II), macrophage inhibitory factor (MIF), and CA-125. The combination of these six proteins yielded 95.3% sensitivity and 99.4% specificity. The application of this test in the clinical context and the most appropriate population, which could benefit from the test, are discussed.
Collapse
Affiliation(s)
- Kyongjin Kim
- Department of Obstetrics, Gynecology and Reproductive Sciences, Reproductive Immunology Unit, Yale University School of Medicine, 333 Cedar Street FMB 301, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
37
|
Butts CL, Bowers E, Horn JC, Shukair SA, Belyavskaya E, Tonelli L, Sternberg EM. Inhibitory effects of progesterone differ in dendritic cells from female and male rodents. ACTA ACUST UNITED AC 2009; 5:434-47. [PMID: 19108816 DOI: 10.1016/j.genm.2008.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Steroid hormones, such as progesterone, are known to have immunomodulatory effects. Our research group previously reported direct effects of progesterone on dendritic cells (DCs) from female rodents. Primarily affecting mature DC function, progesterone effects included inhibition of proinflammatory cytokine secretion, downregulation of cell surface marker (major histocompatibility complex class II, CD80) expression, and decreased T-cell proliferative capacity, and were likely mediated through progesterone receptor (PR) because the PR antagonist RU486 reversed these effects. OBJECTIVE The goal of this study was to assess differences in response to progesterone by DCs from female and male rodents. METHODS Using real-time reverse-transcriptase polymerase chain reaction, transcriptional expression of steroid hormone receptors was measured in immature bone marrow-derived DCs (BMDCs) from male and female rats. Expression of steroid hormone receptor protein was also assessed in these cells using flow cytometry and fluorescence microscopy. To evaluate functional differences between BMDCs from female and male rats in response to the steroid hormone progesterone, levels of secreted cytokines were measured using enzyme-linked immunosorbent assay. RESULTS Higher numbers of immature BMDCs from males expressed glucocorticoid receptor (GR) and androgen receptor (AR) proteins compared with females (males vs females, mean [SD]: GR = 68.75 [7.27] vs 43.61 [13.97], P = NS; AR = 75.99 [15.38] vs 8.25 [1.88], P = 0.002), whereas higher numbers of immature BMDCs from females expressed PR protein compared with males (females vs males: PR = 74.19 [12.11] vs 14.14 [4.55], P = 0.043). These differences were not found at the level of transcription (females vs males: GR = 0.088 vs 0.073, P = NS; AR = 0.076 vs 0.069, P = NS; PR = 0.075 vs 0.065, P = NS). Compared with those from females, mature BMDCs from males produced higher quantities of cytokines (tumor necrosis factor-alpha [TNF-alpha], interleukin [IL]-1beta, IL-10) (females vs males: TNF-alpha = 920.0 [79.25] vs 1100.61 [107.97], P = NS; IL-1beta = 146.60 [38.04] vs 191.10 [10.47], P = NS; IL-10 = 167.25 [4.50] vs 206.15 [23.48], P = NS). Conversely, BMDCs from females were more sensitive to progesterone, as indicated by a more dramatic reduction in proinflammatory cytokine secretion (females vs males, highest concentration of progesterone: TNF-alpha = 268.94 [28.59] vs 589.91 [100.98], P = 0.04; IL-1beta = 119.50 [10.32] vs 154.35 [6.22], P = NS). CONCLUSIONS These findings suggest that progesterone effects on DCs in rodents may be more pronounced in females than in males, and this is likely due to differences in PR protein expression. Our observations may help elucidate disparities in the incidence and severity of autoimmune disorders between females and males, and the role specific steroid hormones play in regulating immune responses.
Collapse
Affiliation(s)
- Cherié L Butts
- Section on Neuroendocrine Immunology & Behavior, National Institute of Mental Health/NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Carletti MZ, Christenson LK. Rapid effects of LH on gene expression in the mural granulosa cells of mouse periovulatory follicles. Reproduction 2009; 137:843-55. [PMID: 19225042 DOI: 10.1530/rep-08-0457] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
LH acts on periovulatory granulosa cells by activating the PKA pathway as well as other cell signaling cascades to increase the transcription of specific genes necessary for ovulation and luteinization. Collectively, these cell signaling responses occur rapidly (within minutes); however, presently no high throughput studies have reported changes before 4 h after the LH surge. To identify early response genes that are likely critical for initiation of ovulation and luteinization, mouse granulosa cells were collected before and 1 h after hCG. Fifty-seven gene transcripts were significantly (P<0.05) upregulated and three downregulated following hCG. Twenty-four of these transcripts were known to be expressed after the LH/hCG surge at later time points, while 36 were unknown to be expressed by periovulatory granulosa cells. Temporal expression of several transcripts, including the transcription factors Nr4a1, Nr4a2, Egr1, Egr2, Btg1, and Btg2, and the epidermal growth factor (EGF)-like ligands Areg and Ereg, were analyzed by quantitative RT-PCR, and their putative roles in granulosa cell function are discussed. Epigen (Epgn), another member of the family of EGF-like ligands was identified for the first time in granulosa cells as rapidly induced by LH/hCG. We demonstrate that Epgn initiates cumulus expansion, similar to the other EGF-receptor ligands Areg and Ereg. These studies illustrate that a number of changes in gene expression occur in vivo in response to LH, and that many of the differentially expressed genes are transcription factors that we would predict in turn modulate granulosa cell gene expression to ultimately impact the processes of ovulation and luteinization.
Collapse
Affiliation(s)
- Martha Z Carletti
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3075 KLSIC, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
39
|
Anupriwan A, Schenk M, Kongmanas K, Vanichviriyakit R, Santos DC, Yaghoubian A, Liu F, Wu A, Berger T, Faull KF, Saitongdee P, Sretarugsa P, Tanphaichitr N. Presence of arylsulfatase A and sulfogalactosylglycerolipid in mouse ovaries: localization to the corpus luteum. Endocrinology 2008; 149:3942-51. [PMID: 18420734 PMCID: PMC2488217 DOI: 10.1210/en.2008-0281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arylsulfatase A (AS-A) is a lysosomal enzyme, which catalyzes the desulfation of certain sulfogalactolipids, including sulfogalactosylglycerolipid (SGG), a molecule implicated in cell adhesion. In this report, immunocytochemistry revealed the selective presence of AS-A in the corpus luteum of mouse ovaries. Immunoblotting indicated that mouse corpus luteum AS-A had a molecular mass of 66 kDa, similar to AS-A of other tissues. Corpus luteum AS-A was active, capable of desulfating the artificial substrate, p-nitrocatechol sulfate, at the optimum pH of five. To understand further the role of AS-A in female reproduction, levels of AS-A were determined during corpus luteum development in pseudopregnant mice and during luteolysis after cessation of pseudopregnancy. Immunocytochemistry, immunoblotting and desulfation activity showed that AS-A expression was evident at the onset of pseudopregnancy in the newly formed corpora lutea, and its level increased steadily during gland development. The increase in the expression and activity of AS-A continued throughout luteolysis after the decrease in serum progesterone levels. We also observed the selective presence of SGG on the luteal cell surface in developed corpora lutea, as shown by immunofluorescence of mouse ovary sections as well as high-performance thin-layer chromatography of lipids isolated from mouse and pig corpora lutea. The identity of the "SGG" band on the thin layer silica plate was further validated by electrospray ionization mass spectrometry. Significantly, SGG disappeared in regressing corpora lutea. Therefore, lysosomal AS-A may be involved in cell-surface remodeling during luteolysis by desulfating SGG after its endocytosis and targeting to the lysosome.
Collapse
Affiliation(s)
- Araya Anupriwan
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tait AS, Butts CL, Sternberg EM. The role of glucocorticoids and progestins in inflammatory, autoimmune, and infectious disease. J Leukoc Biol 2008; 84:924-31. [PMID: 18664528 DOI: 10.1189/jlb.0208104] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A bidirectional communication exists between the CNS and the immune system. The autonomic nervous system, through neurotransmitters and neuropeptides, works in parallel with the hypothalamic-pituitary-adrenal axis through the actions of glucocorticoids to modulate inflammatory events. The immune system, through the action of cytokines and other factors, in turn, activates the CNS to orchestrate negative-feedback mechanisms that keep the immune response in check. Disruption of these interactions has been associated with a number of syndromes including inflammatory, autoimmune, and cardiovascular diseases, metabolic and psychiatric disorders, and the development of shock. The hypothalamic-pituitary-gonadal axis also plays an important part in regulating immunity through the secretion of sex hormones. Although numerous studies have established a role for immunomodulation by estrogen and testosterone, the role of progesterone is less well understood. Progesterone is crucial for reproductive organ development and maintenance of pregnancy, and more recent studies have clearly shown its role as an important immune regulator. The main focus of this review will be about the role of steroid hormones, specifically glucocorticoids and progesterone, in inflammatory responses and infectious diseases and how dysregulation of their actions may contribute to development of autoimmune and inflammatory disease.
Collapse
Affiliation(s)
- A Sasha Tait
- National Institute of Mental Health/NIH, Rockville, MD 20852, USA
| | | | | |
Collapse
|
41
|
Visintin I, Feng Z, Longton G, Ward DC, Alvero AB, Lai Y, Tenthorey J, Leiser A, Flores-Saaib R, Yu H, Azori M, Rutherford T, Schwartz PE, Mor G. Diagnostic markers for early detection of ovarian cancer. Clin Cancer Res 2008; 14:1065-72. [PMID: 18258665 DOI: 10.1158/1078-0432.ccr-07-1569] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Early detection would significantly decrease the mortality rate of ovarian cancer. In this study, we characterize and validate the combination of six serum biomarkers that discriminate between disease-free and ovarian cancer patients with high efficiency. EXPERIMENTAL DESIGN We analyzed 362 healthy controls and 156 newly diagnosed ovarian cancer patients. Concentrations of leptin, prolactin, osteopontin, insulin-like growth factor II, macrophage inhibitory factor, and CA-125 were determined using a multiplex, bead-based, immunoassay system. All six markers were evaluated in a training set (181 samples from the control group and 113 samples from OC patients) and a test set (181 sample control group and 43 ovarian cancer). RESULTS Multiplex and ELISA exhibited the same pattern of expression for all the biomarkers. None of the biomarkers by themselves were good enough to differentiate healthy versus cancer cells. However, the combination of the six markers provided a better differentiation than CA-125. Four models with <2% classification error in training sets all had significant improvement (sensitivity 84%-98% at specificity 95%) over CA-125 (sensitivity 72% at specificity 95%) in the test set. The chosen model correctly classified 221 out of 224 specimens in the test set, with a classification accuracy of 98.7%. CONCLUSIONS We describe the first blood biomarker test with a sensitivity of 95.3% and a specificity of 99.4% for the detection of ovarian cancer. Six markers provided a significant improvement over CA-125 alone for ovarian cancer detection. Validation was performed with a blinded cohort. This novel multiplex platform has the potential for efficient screening in patients who are at high risk for ovarian cancer.
Collapse
Affiliation(s)
- Irene Visintin
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wersinger SR, Temple JL, Caldwell HK, Young WS. Inactivation of the oxytocin and the vasopressin (Avp) 1b receptor genes, but not the Avp 1a receptor gene, differentially impairs the Bruce effect in laboratory mice (Mus musculus). Endocrinology 2008; 149:116-21. [PMID: 17947352 PMCID: PMC2194605 DOI: 10.1210/en.2007-1056] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Bruce effect is a pheromonally mediated process whereby exposure to chemosensory cues from an unfamiliar male terminates pregnancy in a recently mated female. Pharmacological and genetic evidence implicates both oxytocin (Oxt) and vasopressin (Avp) in the regulation of social memory in males, but less work has been done in females. We tested the extent to which the Avp receptors (Avprs) 1a and 1b and Oxt are essential for the Bruce effect, a phenomenon that relies on olfactory memory. Adult female mice were paired with stimulus males and monitored for the presence of sperm plugs. Wild-type, heterozygous, and homozygous knockout (KO) females for either the Avpr1a, Avpr1b, or Oxt genes were randomly assigned to one of the following treatment groups: 1) alone (mate removed, no second exposure to another animal); 2) paired continuously (mate kept with female for 10-14 d); 3) familiar male (mate removed, reintroduced 24 h later); or 4) unfamiliar male (mate removed, BalbC male introduced 24 h later). Regardless of genotype, 90-100% of females in the alone or paired continuously groups became pregnant. The Oxt KO females terminated their pregnancies regardless of whether their original mate or an unfamiliar male was reintroduced. The Avpr1b KO mice failed to terminate pregnancy in the presence of an unfamiliar male. The Avpr1a KO mice exhibited a normal Bruce effect. These data demonstrate that both Oxt and the Avpr1b are critical for the normal expression of the Bruce effect but have different effects on the interpretation of social cues.
Collapse
Affiliation(s)
- Scott R Wersinger
- Department of Psychology, University at Buffalo, State University of New York, NY 14260-1660, USA
| | | | | | | |
Collapse
|
43
|
Erdmann S, Ricken A, Merkwitz C, Struman I, Castino R, Hummitzsch K, Gaunitz F, Isidoro C, Martial J, Spanel-Borowski K. The expression of prolactin and its cathepsin D-mediated cleavage in the bovine corpus luteum vary with the estrous cycle. Am J Physiol Endocrinol Metab 2007; 293:E1365-77. [PMID: 17785503 DOI: 10.1152/ajpendo.00280.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the corpus luteum (CL), blood vessels develop, stabilize, and regress. This process depends on the ratio of pro- and antiangiogenic factors, which change during the ovarian cycle. The present study focuses on the possible roles of 23,000 (23K) prolactin (PRL) in the bovine CL and its antiangiogenic NH(2)-terminal fragments after extracellular cleavage by cathepsin D (Cath D). PRL RNA and protein were demonstrated in the CL tissue, in luteal endothelial cells, and in steroidogenic cells. Cath D was detected in CL tissue, cell extracts, and corresponding cell supernatants. In the intact CL, 23K PRL levels decreased gradually, whereas Cath D levels concomitantly increased between early and late luteal stages. In vitro, PRL cleavage occurred in the presence of acidified homogenates of CL tissue, cells, and corresponding cell supernatants. Similar fragments were obtained with purified Cath D, and their appearance was inhibited by pepstatin A. The aspartic protease specific substrate MOCAc-GKPILF~FRLK(Dnp)-D-R-NH(2) was cleaved by CL cell supernatants, providing further evidence for Cath D activity. The 16,000 PRL inhibited proliferation of luteal endothelial cells accompanied by an increase in cleaved caspase-3. In conclusion, 1) the bovine CL is able to produce PRL and to process it into antiangiogenic fragments by Cath D activity and 2) PRL cleavage might mediate angioregression during luteolysis.
Collapse
Affiliation(s)
- Sabine Erdmann
- Institute of Anatomy, University of Leipzig, Liebigstr 13, 04103, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Alexander BM, Van Kirk EA, Naughton LMA, Murdoch WJ. Ovarian morphometrics in TP53-deficient mice. Anat Rec (Hoboken) 2007; 290:59-64. [PMID: 17441198 PMCID: PMC2571076 DOI: 10.1002/ar.20409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of these investigations was to characterize ovarian responses to hormonal stimulation in TP53-deficient mice. TP53-deficient (KO) and wild-type (WT) mice were induced to ovulate with pregnant mare serum gonadotropin followed by human chorionic gonadotropin. Effect of estradiol on ovarian morphology was determined in induced and control mice implanted with estradiol-containing or placebo pellets. Blood was collected and mice were killed 7 days following implantation. Preserved ovaries were serially sectioned and stained. Numbers of follicles (all classifications) decreased with ovulation induction, but did not differ between WT and KO mice. Numbers of corpora lutea (CL) were less in ovulation-induced KO mice treated with estradiol compared to WT mice. Area of individual CL and serum concentrations of progesterone were greater in ovulation-induced KO mice given estradiol compared to WT mice. Ovulation-induced KO mice had more, larger hemorrhagic follicles than similarly treated WT mice, but hemorrhagic follicles were not influenced by estradiol. Proliferation of ovarian surface epithelial cells did not differ between KO and WT mice induced to ovulate and given estradiol. Ovaries from TP53 gene knockout mice (n = 4) induced to ovulate and given a 21-day estradiol implant three times over 58 days were observed for precursor lesions. There was no indication of precursor lesions in any TP53 KO or WT mouse. TP53 status did not influence recruitment of follicles, but TP53 deficiency hindered the ability of human chorionic gonadotropin to cause ovulation.
Collapse
Affiliation(s)
- Brenda M Alexander
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071, USA.
| | | | | | | |
Collapse
|
45
|
Soares MJ, Konno T, Alam SMK. The prolactin family: effectors of pregnancy-dependent adaptations. Trends Endocrinol Metab 2007; 18:114-21. [PMID: 17324580 DOI: 10.1016/j.tem.2007.02.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 01/17/2007] [Accepted: 02/14/2007] [Indexed: 12/01/2022]
Abstract
Prolactin (PRL) is a hormone involved in many biological functions. In some species, there is a family of PRL-related genes; such is the case in the mouse and rat. The actions of members of the PRL family can be distinguished based on the involvement of the PRL receptor signaling pathway (classical versus nonclassical). Recent insights into the biology of the PRL family have been derived from mouse mutagenesis studies. There is compelling evidence suggesting that the PRL family contributes to the regulation of pregnancy-dependent adaptations to physiological stressors.
Collapse
Affiliation(s)
- Michael J Soares
- Institute of Maternal-Fetal Biology, Division of Cancer and Developmental Biology, Department of Pathology & Laboratory of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
46
|
Abstract
The corpus luteum (CL) is one of the few endocrine glands that forms from the remains of another organ and whose function and survival are limited in scope and time. The CL is the site of rapid remodeling, growth, differentiation, and death of cells originating from granulosa, theca, capillaries, and fibroblasts. The apparent raison d'etre of the CL is the production of progesterone, and all the structural and functional features of this gland are geared toward this end. Because of its unique importance for successful pregnancies, the mammals have evolved a complex series of checks and balances that maintains progesterone at appropriate levels throughout gestation. The formation, maintenance, regression, and steroidogenesis of the CL are among the most significant and closely regulated events in mammalian reproduction. During pregnancy, the fate of the CL depends on the interplay of ovarian, pituitary, and placental regulators. At the end of its life span, the CL undergoes a process of regression leading to its disappearance from the ovary and allowing the initiation of a new cycle. The generation of transgenic, knockout and knockin mice and the development of innovative technologies have revealed a novel role of several molecules in the reprogramming of granulosa cells into luteal cells and in the hormonal and molecular control of the function and demise of the CL. The current review highlights our knowledge on these key molecular events in rodents.
Collapse
Affiliation(s)
- Carlos Stocco
- Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
47
|
Aguilar J, Fraser HM, Wilson H, Clutton E, Shaw DJ, Watson ED. Temporal relationship between proliferating and apoptotic hormone-producing and endothelial cells in the equine corpus luteum. Reproduction 2006; 132:111-8. [PMID: 16816337 DOI: 10.1530/rep.1.01051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The temporal relationship between endothelial cell death, vascular regression and the death of hormone-producing cells in the mare has not been established. To determine the dynamics of cell proliferation and death throughout the luteal phase, corpora lutea were studied at the early, mid- and late luteal phase, and after treatment with cloprostenol in the mid-luteal phase to induce premature luteolysis. Changes in cell proliferation and apoptosis were investigated utilising specific markers (phosphorylated histone-3 and activated caspase-3 respectively). Histone-3 positive cells were most abundant during the early luteal phase, and were mainly present in endothelial cells. Histone-3 activity significantly increased in hormone-producing cells 36 h after cloprostenol treatment. Frequency of activated caspase-3 staining peaked on day 14, and was induced by 36 h after cloprostenol administration in mid-luteal phase. However, cell death occurred simultaneously in the endothelial and hormone-producing cells. These results show that a subset of hormone-producing cells enter the early stages of cell division around luteolysis, while the majority of cells are undergoing cell death. Natural and induced functional and structural luteal regression in the mare can be at least partially attributed to simultaneous apoptosis of endothelial and hormone-producing cells. However, there is no evidence that endothelial cell death is the trigger for naturally occurring luteolysis.
Collapse
Affiliation(s)
- J Aguilar
- Division of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Barnett KR, Schilling C, Greenfeld CR, Tomic D, Flaws JA. Ovarian follicle development and transgenic mouse models. Hum Reprod Update 2006; 12:537-55. [PMID: 16728463 DOI: 10.1093/humupd/dml022] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ovarian follicle development is a complex process that begins with the establishment of what is thought to be a finite pool of primordial follicles and culminates in either the atretic degradation of the follicle or the release of a mature oocyte for fertilization. This review highlights the many advances made in understanding these events using transgenic mouse models. Specifically, this review describes the ovarian phenotypes of mice with genetic mutations that affect ovarian differentiation, primordial follicle formation, follicular growth, atresia, ovulation and corpus luteum (CL) formation. In addition, this review describes the phenotypes of mice with mutations in a variety of genes, which affect the hormones that regulate folliculogenesis. Because studies using transgenic animals have revealed a variety of reproductive abnormalities that resemble many reproductive disorders in women, it is likely that studies using transgenic mouse models will impact our understanding of ovarian function and fertility in women.
Collapse
Affiliation(s)
- K R Barnett
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
49
|
SOARES MJ, ALAM SMK, KONNO T, HO-CHEN JK, AIN R. The prolactin family and pregnancy-dependent adaptations. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00313.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|