1
|
Stead SM, Bădescu I, Boonstra R. Of mammals and milk: how maternal stress affects nursing offspring. Mamm Rev 2021. [DOI: 10.1111/mam.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Samantha M. Stead
- Department of Anthropology University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| | - Iulia Bădescu
- Département d’Anthropologie Université de Montréal 3150 Rue Jean‐Brillant Montréal QCH3T 1N8Canada
| | - Rudy Boonstra
- Department of Biological Sciences University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| |
Collapse
|
2
|
High levels of infant handling by adult males in Rwenzori Angolan colobus (Colobus angolensis ruwenzorii) compared to two closely related species, C. guereza and C. vellerosus. Primates 2021; 62:637-646. [PMID: 33856586 DOI: 10.1007/s10329-021-00907-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Infant handling (holding or carrying) by adult males is rare in mammals; however, high levels have been reported in some primates. Though infant handling is a costly behaviour, there are many benefits that male handlers can accrue. Infant handling by males is most conspicuous in platyrrhines and tends to be uncommon in catarrhines. In the latter species, research on male-infant interactions has focused on low-cost behaviours, such as proximity and grooming. However, to better understand the evolution of infant handling by males, more data on its occurrence across the Primate order are essential, even in species where it is relatively uncommon. We compare the occurrence of infant handling by males in three closely related species of catarrhine: Colobus vellerosus, C. guereza, and C. angolensis ruwenzorii. We collected focal animal samples on infants to quantify infant handling rates and durations, and found that adult male C. a. ruwenzorii handled infants much more frequently and for much longer than males in the other two species. We discuss how C. a. ruwenzorii's unique social organization may explain high levels of infant handling by adult males in this species. More long-term and detailed comparisons of infant handling across species and populations will shed light on how sociality has shaped the evolution of this behaviour in the Primate order.
Collapse
|
3
|
Flores-Morán A, Banuet-Martínez M, Elorriaga-Verplancken FR, García-Ortuño LE, Sandoval-Sierra J, Acevedo-Whitehouse K. Atypical Red Blood Cells Are Prevalent in California Sea Lion Pups Born during Anomalous Sea Surface Temperature Events. Physiol Biochem Zool 2017; 90:564-574. [DOI: 10.1086/692919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Rauner G, Ledet MM, Van de Walle GR. Conserved and variable: Understanding mammary stem cells across species. Cytometry A 2017; 93:125-136. [PMID: 28834173 DOI: 10.1002/cyto.a.23190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/16/2023]
Abstract
Postnatal mammary gland development requires the presence of mammary stem and progenitor cells (MaSC), which give rise to functional milk-secreting cells and regenerate the mammary epithelium with each cycle of lactation. These long-lived, tissue-resident MaSC are also targets for malignant transformation and may be cancer cells-of-origin. Consequently, MaSC are extensively researched in relation to their role and function in development, tissue regeneration, lactation, and breast cancer. The basic structure and function of the mammary gland are conserved among all mammalian species, from the most primitive to the most evolved. However, species vary greatly in their lactation strategies and mammary cancer incidence, making MaSC an interesting focus for comparative research. MaSC have been characterized in mice, to a lesser degree in humans, and to an even lesser degree in few additional mammals. They remain uncharacterized in most mammalian species, including "ancient" monotremes, marsupials, wild, and rare species, as well as in common and domestic species such as cats. Identification and comparison of MaSC across a large variety of species, particularly those with extreme lactational adaptations or low mammary cancer incidence, is expected to deepen our understanding of development and malignancy in the mammary gland. Here, we review the current status of MaSC characterization across species, and underline species variations in lactation and mammary cancer through which we may learn about the role of MaSC in these processes. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, New York 14853
| | - Melissa M Ledet
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, New York 14853
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, New York 14853
| |
Collapse
|
5
|
Sharp JA, Brennan AJ, Polekhina G, Ascher DB, Lefevre C, Nicholas KR. Dimeric but not monomeric α-lactalbumin potentiates apoptosis by up regulation of ATF3 and reduction of histone deacetylase activity in primary and immortalised cells. Cell Signal 2017; 33:86-97. [DOI: 10.1016/j.cellsig.2017.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 11/25/2022]
|
6
|
Hofer H, Benhaiem S, Golla W, East ML. Trade-offs in lactation and milk intake by competing siblings in a fluctuating environment. Behav Ecol 2016. [DOI: 10.1093/beheco/arw078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Pharo EA, Cane KN, McCoey J, Buckle AM, Oosthuizen WH, Guinet C, Arnould JPY. A colostrum trypsin inhibitor gene expressed in the Cape fur seal mammary gland during lactation. Gene 2016; 578:7-16. [PMID: 26639991 DOI: 10.1016/j.gene.2015.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/13/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
The colostrum trypsin inhibitor (CTI) gene and transcript were cloned from the Cape fur seal mammary gland and CTI identified by in silico analysis of the Pacific walrus and polar bear genomes (Order Carnivora), and in marine and terrestrial mammals of the Orders Cetartiodactyla (yak, whales, camel) and Perissodactyla (white rhinoceros). Unexpectedly, Weddell seal CTI was predicted to be a pseudogene. Cape fur seal CTI was expressed in the mammary gland of a pregnant multiparous seal, but not in a seal in its first pregnancy. While bovine CTI is expressed for 24-48 h postpartum (pp) and secreted in colostrum only, Cape fur seal CTI was detected for at least 2-3 months pp while the mother was suckling its young on-shore. Furthermore, CTI was expressed in the mammary gland of only one of the lactating seals that was foraging at-sea. The expression of β-casein (CSN2) and β-lactoglobulin II (LGB2), but not CTI in the second lactating seal foraging at-sea suggested that CTI may be intermittently expressed during lactation. Cape fur seal and walrus CTI encode putative small, secreted, N-glycosylated proteins with a single Kunitz/bovine pancreatic trypsin inhibitor (BPTI) domain indicative of serine protease inhibition. Mature Cape fur seal CTI shares 92% sequence identity with Pacific walrus CTI, but only 35% identity with BPTI. Structural homology modelling of Cape fur seal CTI and Pacific walrus trypsin based on the model of the second Kunitz domain of human tissue factor pathway inhibitor (TFPI) and porcine trypsin (Protein Data Bank: 1TFX) confirmed that CTI inhibits trypsin in a canonical fashion. Therefore, pinniped CTI may be critical for preventing the proteolytic degradation of immunoglobulins that are passively transferred from mother to young via colostrum and milk.
Collapse
Affiliation(s)
- Elizabeth A Pharo
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Cooperative Research Centre for Innovative Dairy Products, Australia.
| | - Kylie N Cane
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Cooperative Research Centre for Innovative Dairy Products, Australia.
| | - Julia McCoey
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - W H Oosthuizen
- Oceans and Coasts, Department of Environmental Affairs, Private Bag X2, Roggebaai 8012, South Africa.
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, CNRS, 79360 Villiers en Bois, France.
| | - John P Y Arnould
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Cooperative Research Centre for Innovative Dairy Products, Australia; School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia.
| |
Collapse
|
8
|
Jonas W, Woodside B. Physiological mechanisms, behavioral and psychological factors influencing the transfer of milk from mothers to their young. Horm Behav 2016; 77:167-81. [PMID: 26232032 DOI: 10.1016/j.yhbeh.2015.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 07/12/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022]
Abstract
This article is part of a Special Issue "Parental Care".Producing milk to support the growth of their young is a central element of maternal care in mammals. In spite of the facts that ecological constraints influence nursing frequency, length of time until weaning and the composition of milk, there is considerable similarity in the anatomy and physiology of milk production and delivery across mammalian species. Here we provide an overview of cross species variation in nursing patterns and milk composition as well as the mechanisms underlying mammary gland development, milk production and letdown. Not all women breastfeed their infants, thus in later sections we review studies of factors that facilitate or impede the initiation and duration of breastfeeding. The results of these investigations suggest that the decisions to initiate and maintain breastfeeding are influenced by an array of personal, social and biological factors. Finally, studies comparing the development of breastfed and formula fed infants as well as those investigating associations between breastfeeding, maternal health and mother/infant interaction are reviewed. Leading health agencies including the World Health Organization and CDC advocate breastfeeding for at least the first 6months postpartum. To achieve these rates will require not only institutional support but also a focus on individual mother/infant dyads and their experience.
Collapse
Affiliation(s)
- Wibke Jonas
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Fraser Mustard Institute of Human Development, University of Toronto, Toronto, Canada
| | - Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Abstract
Lactation represents an important element of the life history strategies of all mammals, whether monotreme, marsupial, or eutherian. Milk originated as a glandular skin secretion in synapsids (the lineage ancestral to mammals), perhaps as early as the Pennsylvanian period, that is, approximately 310 million years ago (mya). Early synapsids laid eggs with parchment-like shells intolerant of desiccation and apparently dependent on glandular skin secretions for moisture. Mammary glands probably evolved from apocrine-like glands that combined multiple modes of secretion and developed in association with hair follicles. Comparative analyses of the evolutionary origin of milk constituents support a scenario in which these secretions evolved into a nutrient-rich milk long before mammals arose. A variety of antimicrobial and secretory constituents were co-opted into novel roles related to nutrition of the young. Secretory calcium-binding phosphoproteins may originally have had a role in calcium delivery to eggs; however, by evolving into large, complex casein micelles, they took on an important role in transport of amino acids, calcium and phosphorus. Several proteins involved in immunity, including an ancestral butyrophilin and xanthine oxidoreductase, were incorporated into a novel membrane-bound lipid droplet (the milk fat globule) that became a primary mode of energy transfer. An ancestral c-lysozyme lost its lytic functions in favor of a role as α-lactalbumin, which modifies a galactosyltransferase to recognize glucose as an acceptor, leading to the synthesis of novel milk sugars, of which free oligosaccharides may have predated free lactose. An ancestral lipocalin and an ancestral whey acidic protein four-disulphide core protein apparently lost their original transport and antimicrobial functions when they became the whey proteins β-lactoglobulin and whey acidic protein, which with α-lactalbumin provide limiting sulfur amino acids to the young. By the late Triassic period (ca 210 mya), mammaliaforms (mammalian ancestors) were endothermic (requiring fluid to replace incubatory water losses of eggs), very small in size (making large eggs impossible), and had rapid growth and limited tooth replacement (indicating delayed onset of feeding and reliance on milk). Thus, milk had already supplanted egg yolk as the primary nutrient source, and by the Jurassic period (ca 170 mya) vitellogenin genes were being lost. All primary milk constituents evolved before the appearance of mammals, and some constituents may have origins that predate the split of the synapsids from sauropsids (the lineage leading to 'reptiles' and birds). Thus, the modern dairy industry is built upon a very old foundation, the cornerstones of which were laid even before dinosaurs ruled the earth in the Jurassic and Cretaceous periods.
Collapse
|
10
|
Wall EH, McFadden TB. Triennial Lactation Symposium: A local affair: How the mammary gland adapts to changes in milking frequency. J Anim Sci 2011; 90:1695-707. [PMID: 22205668 DOI: 10.2527/jas.2011-4790] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Regular removal of milk from the mammary gland is critical to maintaining milk secretion. Early studies in rodents demonstrated that changes in milking frequency influenced mammary blood flow, as well as mammary cell number and activity. Later studies in ruminants confirmed those observations and that the response was regulated locally within the mammary gland. In addition, it was discovered that increased milking frequency (IMF) during early lactation stimulated an increase in milk production that partially persisted through late lactation, indicating long-term effects on mammary function. The local mechanisms regulating the mammary response to IMF are poorly understood, although several have been proposed. To gain insight into the mechanisms underlying the mammary response to IMF, and to identify genes associated with the response, we used a functional genomics approach and conducted experiments on dairy cows exposed to unilateral frequent milking [UFM; twice daily milking (2X) of the left udder half and 4-times daily milking (4X) of the right udder half]. Across multiple experiments, we were unable to detect an effect of UFM on mammary cell proliferation or apoptosis. We have, however, identified distinct transcriptional signatures associated with the mammary response to milk removal and to UFM during early lactation. Sequential sampling of mammary tissue revealed that when UFM was imposed during early lactation, at least 2 sets of genes were coordinately regulated with changes in differential milk production of 4X vs. 2X udder halves. Moreover, some genes were persistently differentially expressed in 4X vs. 2X udder halves after UFM and were associated with the persistent increase in milk yield. We conclude that a coordinated transcriptional response is associated with the increase in milk yield elicited by IMF during early lactation and that the 2 sets of differentially expressed genes may be a marker for the autocrine up-regulation of milk production. Moreover, we propose that we have identified a novel form of imprinting associated with persistent alteration of mammary function, which we term "lactational imprinting."
Collapse
Affiliation(s)
- E H Wall
- Department of Medicine,University of Vermont, Burlinglon 05405, USA
| | | |
Collapse
|
11
|
Lefèvre CM, Sharp JA, Nicholas KR. Evolution of lactation: ancient origin and extreme adaptations of the lactation system. Annu Rev Genomics Hum Genet 2010; 11:219-38. [PMID: 20565255 DOI: 10.1146/annurev-genom-082509-141806] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lactation, an important characteristic of mammalian reproduction, has evolved by exploiting a diversity of strategies across mammals. Comparative genomics and transcriptomics experiments have now allowed a more in-depth analysis of the molecular evolution of lactation. Milk cell and mammary gland genomic studies have started to reveal conserved milk proteins and other components of the lactation system of monotreme, marsupial, and eutherian lineages. These analyses confirm the ancient origin of the lactation system and provide useful insight into the function of specific milk proteins in the control of lactation. These studies also illuminate the role of milk in the regulation of growth and development of the young beyond simple nutritive aspects.
Collapse
Affiliation(s)
- Christophe M Lefèvre
- Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | | | | |
Collapse
|
12
|
Neville MC. Introduction: alpha-lactalbumin, a multifunctional protein that specifies lactose synthesis in the Golgi. J Mammary Gland Biol Neoplasia 2009; 14:211-2. [PMID: 19649774 DOI: 10.1007/s10911-009-9149-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Menzies KK, Lefèvre C, Sharp JA, Macmillan KL, Sheehy PA, Nicholas KR. A novel approach identified the FOLR1 gene, a putative regulator of milk protein synthesis. Mamm Genome 2009; 20:498-503. [DOI: 10.1007/s00335-009-9207-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/01/2009] [Indexed: 12/25/2022]
|
14
|
Evolution of lactation: nutrition v. protection with special reference to five mammalian species. Nutr Res Rev 2009; 21:97-116. [PMID: 19087365 DOI: 10.1017/s0954422408100749] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The evolutionary origin of the mammary gland has been difficult to establish because little knowledge can be gained on the origin of soft tissue organs from fossil evidence. One approach to resolve the origin of lactation has compared the anatomy of existing primitive mammals to skin glands, whilst another has examined the metabolic and molecular synergy between mammary gland development and the innate immune system. We have reviewed the physiology of lactation in five mammalian species with special reference to these theories. In all species, milk fulfils dual functions of providing protection and nutrition to the young and, furthermore, within species the quality and quantity of milk are highly conserved despite maternal malnutrition or illness. There are vast differences in birth weight, milk production, feeding frequency, macronutrient concentration, growth rate and length of lactation between rabbits, quokkas (Setonix brachyurus), pigs, cattle and humans. The components that protect the neonate against infection do so without causing inflammation. Many protective components are not unique to the mammary gland and are shared with the innate immune system. In contrast, many of the macronutrients in milk are unique to the mammary gland, have evolved from components of the innate immune system, and have either retained or developed multiple functions including the provision of nourishment and protection of the hatchling/neonate. Thus, there is a strong argument to suggest that the mammary gland evolved from the inflammatory response; however, the extensive protection that has developed in milk to actively avoid triggering inflammation seems to be a contradiction.
Collapse
|
15
|
Sharp JA, Lefèvre C, Nicholas KR. Lack of functional alpha-lactalbumin prevents involution in Cape fur seals and identifies the protein as an apoptotic milk factor in mammary gland involution. BMC Biol 2008; 6:48. [PMID: 18986549 PMCID: PMC2600633 DOI: 10.1186/1741-7007-6-48] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 11/06/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mammary gland undergoes a sophisticated programme of developmental changes during pregnancy/lactation. However, little is known about processes involving initiation of apoptosis at involution following weaning. We used fur seals as models to study the molecular process of involution as these animals display a unique mammary gland phenotype. Fur seals have long lactation periods whereby mothers cycle between secreting copious quantities of milk for 2 to 3 days suckling pups on land, with trips to sea alone to forage for up to 23 days during which time mammary glands remain active without initiating apoptosis/involution. RESULTS We show the molecular basis by which alpha-lactalbumin (LALBA), a secreted milk protein, is absent in Cape fur seals and demonstrate an apoptotic function for LALBA when exposed to mammary cells. CONCLUSION We propose that apoptosis does not occur in fur seal mammary glands due to lack of LALBA in fur seal milk, allowing evasion of involution during a foraging trip. Our work identifies LALBA as a milk factor that feeds back on the mammary gland to regulate involution.
Collapse
Affiliation(s)
- Julie A Sharp
- CRC for Innovative Dairy Products, Department of Zoology, University of Melbourne, VIC 3010, Australia.
| | | | | |
Collapse
|
16
|
Brennan AJ, Sharp JA, Lefevre C, Topcic D, Auguste A, Digby M, Nicholas KR. The Tammar Wallaby and Fur Seal: Models to Examine Local Control of Lactation. J Dairy Sci 2007; 90 Suppl 1:E66-75. [PMID: 17517753 DOI: 10.3168/jds.2006-483] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammary development and function are regulated by systemic endocrine factors and by autocrine mechanisms intrinsic to the mammary gland, both of which act concurrently. The composition of milk includes nutritional and developmental factors that are crucial to the development of the suckled young, but it is becoming increasingly apparent that milk also has a role in regulating mammary function. This review examines the option of exploiting the comparative biology of species with extreme adaptation to lactation to examine regulatory mechanisms that are present but not readily apparent in other laboratory and livestock species. The tammar wallaby has adopted a reproductive strategy that includes a short gestation (26 d), birth of an immature young, and a relatively long lactation (300 d). The composition of milk changes progressively during the lactation cycle, and this is controlled by the mother and not the sucking pattern of the young. Furthermore, the tammar can practice concurrent asynchronous lactation; the mother provides a concentrated milk high in protein and fat for an older animal that is out of the pouch and a dilute milk low in fat and protein but high in carbohydrates from an adjacent mammary gland for a newborn pouch young. This phenomenon suggests that the mammary gland is controlled locally. The second study species, the Cape fur seal, has a lactation characterized by a repeated cycle of long at-sea foraging trips (up to 28 d) alternating with short suckling periods of 2 to 3 d ashore. Lactation almost ceases while the seal is off shore, but the mammary gland does not progress to apoptosis and involution, most likely because of local control of the mammary gland. Our studies have exploited the comparative biology of these models to investigate how mammary function is regulated by endocrine factors, and particularly by milk. This review reports 3 major findings using these model animals. First, the mammary epithelial cell has an extraordinary intrinsic capacity for survival in our culture model, and the path to either function or death by apoptosis is actively driven. The second outcome is that the route to apoptosis is most likely regulated by specific milk factors. Finally, whey acidic protein, a major milk protein in some species, may play a role in normal mammary development, but that role in vivo may be limited to marsupials. Evolutionary pressure has led to changes in the structure of the protein with an accompanying change in function. Therefore, we propose that a loss of function of this protein in eutherians may relate to a reproductive strategy that is less dependent on lactation.
Collapse
Affiliation(s)
- A J Brennan
- Cooperative Research Centre (CRC) for Innovative Dairy Products, Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Sharp JA, Lefevre C, Brennan AJ, Nicholas KR. The fur seal-a model lactation phenotype to explore molecular factors involved in the initiation of apoptosis at involution. J Mammary Gland Biol Neoplasia 2007; 12:47-58. [PMID: 17431798 DOI: 10.1007/s10911-007-9037-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Mammary gland involution requires co-ordination of milk production, immune responses, apoptosis and remodeling. Initiation and progression of each of these components involves integral control by the mammary gland. Although cell-based culture models and genetically manipulated animals have shed light on these processes, the factors controlling each step in the involution cascade are still poorly understood. The fur seal displays a unique lactation phenotype. During the lactation cycle the mammary gland downregulates milk production and initiates an immune response but fails to initiate the apoptotic phase of involution, allowing the female fur seal to undertake long foraging trips of up to 28 days between suckling bouts. Upon return to shore the female continues feeding her pup following resumption of lactation and milk production. Expression profiling of genes involved in this lactation cycle provides valuable tools for investigation of the factors responsible for the initiation of apoptosis at involution.
Collapse
Affiliation(s)
- Julie A Sharp
- CRC for Innovative Dairy Products, Department of Zoology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
18
|
Sharp JA, Cane KN, Mailer SL, Oosthuizen WH, Arnould JPY, Nicholas KR. Species-specific cell-matrix interactions are essential for differentiation of alveoli like structures and milk gene expression in primary mammary cells of the Cape fur seal (Arctocephalus pusillus pusillus). Matrix Biol 2006; 25:430-42. [PMID: 16844361 DOI: 10.1016/j.matbio.2006.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/20/2006] [Accepted: 05/08/2006] [Indexed: 12/11/2022]
Abstract
Few models are in place for analysis of extreme lactation patterns such as that of the fur seals which are capable of extended down regulation of milk production in the absence of involution. During a 10-12 month lactation period, female fur seals suckle pups on shore for 2-3 days, and then undertake long foraging trips at sea for up to 28 days, resulting in the longest intersuckling bouts recorded. During this time the mammary gland down regulates milk production. We have induced Cape fur seal (Arctocephalus pusillus pusillus) mammary cells in vitro to form mammospheres up to 900 microm in diameter, larger than any of their mammalian counterparts. Mammosphere lumens were shown to form via apoptosis and cells comprising the cellular boundary stained vimentin positive. The Cape fur seal GAPDH gene was cloned and used in RT-PCR as a normalization tool to examine comparative expression of milk protein genes (alphaS2-casein, beta-lactoglobulin and lysozyme C) which were prolactin responsive. Cape fur seal mammary cells were found to be unique; they did not require Matrigel for rapid mammosphere formation and instead deposited their own matrix within 2 days of culture. When grown on Matrigel, cells exhibited branching/stellate morphogenesis highlighting the species-specific nature of cell-matrix interactions during morphological differentiation. Matrix produced in vitro by cells did not support formation of human breast cancer cell line, PMC42 mammospheres. This novel model system will help define the molecular pathways controlling the regulation of milk protein expression and species specific requirements of the extracellular matrix in the cape fur seal.
Collapse
Affiliation(s)
- Julie A Sharp
- CRC for Innovative Dairy Products, Department of Zoology, University of Melbourne, VIC, 3010, Australia.
| | | | | | | | | | | |
Collapse
|