1
|
Wang S, Xie Y, Huo YW, Li Y, Abel PW, Jiang H, Zou X, Jiao HZ, Kuang X, Wolff DW, Huang YG, Casale TB, Panettieri RA, Wei T, Cao Z, Tu Y. Airway relaxation mechanisms and structural basis of osthole for improving lung function in asthma. Sci Signal 2020; 13:eaax0273. [PMID: 33234690 PMCID: PMC8720283 DOI: 10.1126/scisignal.aax0273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Overuse of β2-adrenoceptor agonist bronchodilators evokes receptor desensitization, decreased efficacy, and an increased risk of death in asthma patients. Bronchodilators that do not target β2-adrenoceptors represent a critical unmet need for asthma management. Here, we characterize the utility of osthole, a coumarin derived from a traditional Chinese medicine, in preclinical models of asthma. In mouse precision-cut lung slices, osthole relaxed preconstricted airways, irrespective of β2-adrenoceptor desensitization. Osthole administered in murine asthma models attenuated airway hyperresponsiveness, a hallmark of asthma. Osthole inhibited phosphodiesterase 4D (PDE4D) activity to amplify autocrine prostaglandin E2 signaling in airway smooth muscle cells that eventually triggered cAMP/PKA-dependent relaxation of airways. The crystal structure of the PDE4D complexed with osthole revealed that osthole bound to the catalytic site to prevent cAMP binding and hydrolysis. Together, our studies elucidate a specific molecular target and mechanism by which osthole induces airway relaxation. Identification of osthole binding sites on PDE4D will guide further development of bronchodilators that are not subject to tachyphylaxis and would thus avoid β2-adrenoceptor agonist resistance.
Collapse
Affiliation(s)
- Sheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yan-Wu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Li
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Peter W Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Haihong Jiang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hai-Zhan Jiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Kuang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dennis W Wolff
- Kansas City University of Medicine and Biosciences-Joplin, Joplin, MO 64804, USA
| | - You-Guo Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Thomas B Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL 33612, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
2
|
Ojiaku CA, Chung E, Parikh V, Williams JK, Schwab A, Fuentes AL, Corpuz ML, Lui V, Paek S, Bexiga NM, Narayan S, Nunez FJ, Ahn K, Ostrom RS, An SS, Panettieri RA. Transforming Growth Factor-β1 Decreases β 2-Agonist-induced Relaxation in Human Airway Smooth Muscle. Am J Respir Cell Mol Biol 2020; 61:209-218. [PMID: 30742476 DOI: 10.1165/rcmb.2018-0301oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Helper T effector cytokines implicated in asthma modulate the contractility of human airway smooth muscle (HASM) cells. We have reported recently that a profibrotic cytokine, transforming growth factor (TGF)-β1, induces HASM cell shortening and airway hyperresponsiveness. Here, we assessed whether TGF-β1 affects the ability of HASM cells to relax in response to β2-agonists, a mainstay treatment for airway hyperresponsiveness in asthma. Overnight TGF-β1 treatment significantly impaired isoproterenol (ISO)-induced relaxation of carbachol-stimulated, isolated HASM cells. This single-cell mechanical hyporesponsiveness to ISO was corroborated by sustained increases in myosin light chain phosphorylation. In TGF-β1-treated HASM cells, ISO evoked markedly lower levels of intracellular cAMP. These attenuated cAMP levels were, in turn, restored with pharmacological and siRNA inhibition of phosphodiesterase 4 and Smad3, respectively. Most strikingly, TGF-β1 selectively induced phosphodiesterase 4D gene expression in HASM cells in a Smad2/3-dependent manner. Together, these data suggest that TGF-β1 decreases HASM cell β2-agonist relaxation responses by modulating intracellular cAMP levels via a Smad2/3-dependent mechanism. Our findings further define the mechanisms underlying β2-agonist hyporesponsiveness in asthma, and suggest TGF-β1 as a potential therapeutic target to decrease asthma exacerbations in severe and treatment-resistant asthma.
Collapse
Affiliation(s)
- Christie A Ojiaku
- 1Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Elena Chung
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Vishal Parikh
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | | | - Anthony Schwab
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Ana Lucia Fuentes
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Maia L Corpuz
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Victoria Lui
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sam Paek
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Natalia M Bexiga
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,6Department of Pharmaceutical Biochemistry Technology, University of Sao Paulo, Sao Paulo, Brazil
| | - Shreya Narayan
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Francisco J Nunez
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Kwangmi Ahn
- 7National Institutes of Health, Bethesda, Maryland
| | - Rennolds S Ostrom
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Steven S An
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,8Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; and.,9Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Reynold A Panettieri
- 1Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
3
|
Xu R, Gopireddy RR, Wu Y, Wu L, Tao X, Shao J, Wang W, Li L, Jovanovic A, Xu B, Kenyon NJ, Lu Q, Xiang YK, Fu Q. Hyperinsulinemia promotes heterologous desensitization of β 2 adrenergic receptor in airway smooth muscle in obesity. FASEB J 2020; 34:3996-4008. [PMID: 31960515 DOI: 10.1096/fj.201800688rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/08/2019] [Accepted: 12/30/2019] [Indexed: 01/05/2023]
Abstract
β-Adrenergic receptor (β-AR) agonists are the most common clinical bronchodilators for asthma. Obesity influences asthma severity and may impair response to β-AR agonists. Previous studies show that in obese mice, hyperinsulinemia plays a crucial role in β-AR desensitization in the heart. We therefore investigated whether insulin promotes β-AR desensitization in airway smooth muscle (ASM) and compromises airway relaxation responsiveness to β-AR agonists. We found that human ASM cells and mouse airway tissues exposed to insulin exhibit impaired β2 AR-induced cAMP accumulation and airway relaxation. This impaired relaxation is associated with insulin-induced phosphorylation and expression of phosphodiesterase 4D (PDE4D) through transactivation of a G protein-coupled receptor kinase 2 (GRK2)-dependent β2 AR-Gi -ERK1/2 cascade. Both acute and chronic pharmacological inhibition of PDE4 effectively reversed impaired β2 AR-mediated ASM relaxation in an obesity mouse model induced by a high fat diet. Collectively, these findings reveal that cross talk between insulin and β2 AR signaling promotes ASM β2 AR desensitization in obesity through upregulation of PDE4D phosphorylation and expression. Our results identify a novel pathway of asthma pathogenesis in patients with obesity/metabolic syndrome, in which the GRK2-mediated signaling can be a potential therapeutic modality to prevent or treat β2 AR desensitization in ASM. Moreover, PDE4 inhibitors may be used as efficacious therapeutic agents for asthma in obese and diabetic subjects.
Collapse
Affiliation(s)
- Rui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | | | - Yudi Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Tao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Shao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxin Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | | | - Bing Xu
- Department of Pharmacology, University of California at Davis, Davis, CA, USA.,VA northern California Healthcare System, Mather, CA, USA
| | - Nicolas J Kenyon
- Department of Medicine, University of California at Davis, Davis, CA, USA
| | - Quan Lu
- Department of Environmental Health, School of Public Health, Harvard University, Boston, MA, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA, USA.,VA northern California Healthcare System, Mather, CA, USA
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| |
Collapse
|
4
|
Discovery of tetrahydro-ß-carboline derivatives as a new class of phosphodiesterase 4 inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2011-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Muñoz-Pérez VM, Fernández-Martínez E, Ponce-Monter H, Ortiz MI. Relaxant and anti-inflammatory effect of two thalidomide analogs as PDE-4 inhibitors in pregnant rat uterus. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:429-437. [PMID: 28706457 PMCID: PMC5507782 DOI: 10.4196/kjpp.2017.21.4.429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 01/21/2023]
Abstract
The aim of this study was to evaluate the relaxant and anti-inflammatory effects of two thalidomide analogs as phosphodiesterase-4 (PDE-4) inhibitors in pregnant rat uterus. Uteri from Wistar female rats were isolated at 19 day of pregnancy. Uterine samples were used in functional studies to evaluate the inhibitory effects of the thalidomide analogs, methyl 3-(4-nitrophthalimido)-3-(3,4-dimethoxyphenyl)-propanoate (4NO2PDPMe) and methyl 3-(4-aminophthalimido)-3-(3,4-dimethoxyphenyl)-propanoate (4APDPMe), on prostaglandin-F2α (PGF2α)-induced phasic, K+-induced tonic, and Ca2+-induced contractions. Accumulation of cAMP was quantified in uterine homogenates by ELISA. Anti-inflammatory effect was assessed by using ELISA for determination of the pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin (IL)-1β, and anti-inflammatory IL-10, from uterine explants stimulated with lipopolysaccharide (LPS). Nifedipine, forskolin and rolipram were used as positive controls where required. Both thalidomide analogs induced a significant inhibition of the uterine contractions induced by the pharmaco- and electro-mechanic stimuli. Nifedipine and forskolin were more potent than the analogs to inhibit the uterine contractility, but these were more potent than rolipram, and 4APDPMe was equieffective to nifedipine. Thalidomide analogs increased uterine cAMP-levels in a concentration-dependent manner. The LPS-induced TNFα and IL-1β uterine secretion was diminished in a concentration-dependent fashion by both analogs, whereas IL-10 secretion was increased significantly. The thalidomide analogs induced utero-relaxant and anti-inflammatory effects, which were associated with the increased cAMP levels as PDE-4 inhibitors in the pregnant rat uterus. Such properties place these thalidomide analogs as potentially safe and effective tocolytic agents in a field that urgently needs improved pharmacological treatments, as in cases of preterm labor.
Collapse
Affiliation(s)
- Víctor Manuel Muñoz-Pérez
- Center for Research on Reproductive Biology, Academic Area of Medicine, Institute of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Hidalgo 42090, Mexico
| | - Eduardo Fernández-Martínez
- Center for Research on Reproductive Biology, Academic Area of Medicine, Institute of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Hidalgo 42090, Mexico
| | - Héctor Ponce-Monter
- Center for Research on Reproductive Biology, Academic Area of Medicine, Institute of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Hidalgo 42090, Mexico
| | - Mario I Ortiz
- Center for Research on Reproductive Biology, Academic Area of Medicine, Institute of Health Sciences, Autonomous University of Hidalgo's State, Pachuca, Hidalgo 42090, Mexico
| |
Collapse
|
6
|
Brown A, Danielsson J, Townsend EA, Zhang Y, Perez-Zoghbi JF, Emala CW, Gallos G. Attenuation of airway smooth muscle contractility via flavonol-mediated inhibition of phospholipase-Cβ. Am J Physiol Lung Cell Mol Physiol 2016; 310:L747-58. [PMID: 26773068 DOI: 10.1152/ajplung.00215.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/10/2016] [Indexed: 01/12/2023] Open
Abstract
Enhanced contractility of airway smooth muscle (ASM) is a major pathophysiological characteristic of asthma. Expanding the therapeutic armamentarium beyond β-agonists that target ASM hypercontractility would substantially improve treatment options. Recent studies have identified naturally occurring phytochemicals as candidates for acute ASM relaxation. Several flavonoids were evaluated for their ability to acutely relax human and murine ASM ex vivo and murine airways in vivo and were evaluated for their ability to inhibit procontractile signaling pathways in human ASM (hASM) cells. Two members of the flavonol subfamily, galangin and fisetin, significantly relaxed acetylcholine-precontracted murine tracheal rings ex vivo (n = 4 and n = 5, respectively, P < 0.001). Galangin and fisetin also relaxed acetylcholine-precontracted hASM strips ex vivo (n = 6-8, P < 0.001). Functional respiratory in vivo murine studies demonstrated that inhaled galangin attenuated the increase in lung resistance induced by inhaled methacholine (n = 6, P < 0.01). Both flavonols, galangin and fisetin, significantly inhibited purified phosphodiesterase-4 (PDE4) (n = 7, P < 0.05; n = 7, P < 0.05, respectively), and PLCβ enzymes (n = 6, P < 0.001 and n = 6, P < 0.001, respectively) attenuated procontractile Gq agonists' increase in intracellular calcium (n = 11, P < 0.001), acetylcholine-induced increases in inositol phosphates, and CPI-17 phosphorylation (n = 9, P < 0.01) in hASM cells. The prorelaxant effect retained in these structurally similar flavonols provides a novel pharmacological method for dual inhibition of PLCβ and PDE4 and therefore may serve as a potential treatment option for acute ASM constriction.
Collapse
Affiliation(s)
- Amy Brown
- Division of Pediatric Pulmonology, Department of Pediatrics College of Physicians and Surgeons of Columbia University, New York, New York
| | - Jennifer Danielsson
- Department of Anesthesiology College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Elizabeth A Townsend
- Department of Anesthesiology College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Yi Zhang
- Department of Anesthesiology College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Jose F Perez-Zoghbi
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Charles W Emala
- Department of Anesthesiology College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - George Gallos
- Department of Anesthesiology College of Physicians and Surgeons of Columbia University, New York, New York; and
| |
Collapse
|
7
|
Thompson MA, Britt RD, Kuipers I, Stewart A, Thu J, Pandya HC, MacFarlane P, Pabelick CM, Martin RJ, Prakash YS. cAMP-mediated secretion of brain-derived neurotrophic factor in developing airway smooth muscle. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:2506-14. [PMID: 26112987 PMCID: PMC4558218 DOI: 10.1016/j.bbamcr.2015.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/28/2015] [Accepted: 06/20/2015] [Indexed: 01/12/2023]
Abstract
Moderate hyperoxic exposure in preterm infants contributes to subsequent airway dysfunction and to risk of developing recurrent wheeze and asthma. The regulatory mechanisms that can contribute to hyperoxia-induced airway dysfunction are still under investigation. Recent studies in mice show that hyperoxia increases brain-derived neurotrophic factor (BDNF), a growth factor that increases airway smooth muscle (ASM) proliferation and contractility. We assessed the mechanisms underlying effects of moderate hyperoxia (50% O2) on BDNF expression and secretion in developing human ASM. Hyperoxia increased BDNF secretion, but did not alter endogenous BDNF mRNA or intracellular protein levels. Exposure to hyperoxia significantly increased [Ca2+]i responses to histamine, an effect blunted by the BDNF chelator TrkB-Fc. Hyperoxia also increased ASM cAMP levels, associated with reduced PDE4 activity, but did not alter protein kinase A (PKA) activity or adenylyl cyclase mRNA levels. However, 50% O2 increased expression of Epac2, which is activated by cAMP and can regulate protein secretion. Silencing RNA studies indicated that Epac2, but not Epac1, is important for hyperoxia-induced BDNF secretion, while PKA inhibition did not influence BDNF secretion. In turn, BDNF had autocrine effects of enhancing ASM cAMP levels, an effect inhibited by TrkB and BDNF siRNAs. Together, these novel studies suggest that hyperoxia can modulate BDNF secretion, via cAMP-mediated Epac2 activation in ASM, resulting in a positive feedback effect of BDNF-mediated elevation in cAMP levels. The potential functional role of this pathway is to sustain BDNF secretion following hyperoxic stimulus, leading to enhanced ASM contractility and proliferation.
Collapse
Affiliation(s)
| | - Rodney D Britt
- Department of Anesthesiology Mayo Clinic, Rochester, MN, USA
| | - Ine Kuipers
- Department of Anesthesiology Mayo Clinic, Rochester, MN, USA
| | - Alecia Stewart
- Department of Anesthesiology Mayo Clinic, Rochester, MN, USA
| | - James Thu
- Department of Anesthesiology Mayo Clinic, Rochester, MN, USA
| | - Hitesh C Pandya
- Department Pediatrics, University of Leicester, Leicester, UK
| | - Peter MacFarlane
- Department of Pediatrics, Division of Neonatology, Rainbow Babies Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Christina M Pabelick
- Department of Anesthesiology Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, Rainbow Babies Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Y S Prakash
- Department of Anesthesiology Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Patel BS, Prabhala P, Oliver BG, Ammit AJ. Inhibitors of Phosphodiesterase 4, but Not Phosphodiesterase 3, Increase β2-Agonist-Induced Expression of Antiinflammatory Mitogen-Activated Protein Kinase Phosphatase 1 in Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2015; 52:634-40. [PMID: 25296132 DOI: 10.1165/rcmb.2014-0344oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
β2-agonists are principally used in asthma to provide bronchodilation; however, they also have antiinflammatory properties, due, in part, to their ability to up-regulate mitogen-activated protein kinase phosphatase (MKP) 1 in a cAMP-dependent manner. Phosphodiesterases (PDEs) are attractive targets for potentiating the antiinflammatory response. There are 11 subfamilies of PDE enzymes; among these, inhibition of PDE3 and PDE4 are the main targets for airway smooth muscle (ASM). PDE enzymes are important intracellular regulators that catalyze the breakdown of cyclic adenosine monophosphate (cAMP) and/or 3',5'-cyclic guanosine monophosphate to their inactive forms. Given that MKP-1 is cAMP dependent, and inhibition of PDE acts to increase β2-agonist-induced cAMP, it is possible that the presence of PDE inhibitors may enhance β2-adrenoceptor-mediated responses. We address this herein by comparing the ability of a panel of inhibitors against PDE3 (cilostamide, cilostazol, milrinone) or PDE4 (cilomilast, piclamilast, rolipram) to increase cAMP, MKP-1 mRNA expression, and protein up-regulation in ASM cells induced in response to the β2-agonist formoterol. Our data show that inhibitors of PDE4, but not PDE3, increase β2-agonist-induced cAMP and induce MKP-1 mRNA expression and protein up-regulation. When cAMP was increased, there was a concomitant increase in MKP-1 levels and significant inhibition of TNF-α-induced CXCL8 (IL-8). This result was consistent with all PDE4 inhibitors examined but not for the PDE3 inhibitors. These findings reinforce cAMP-dependent control of MKP-1 expression, and suggest that PDE4 is the predominant PDE isoform responsible for formoterol-induced cAMP breakdown in ASM cells. Our study is the first to demonstrate that PDE4 inhibitors augment antiinflammatory effects of β2-agonists via increased MKP-1 expression in ASM cells.
Collapse
|
9
|
Townsend EA, Sathish V, Thompson MA, Pabelick CM, Prakash YS. Estrogen effects on human airway smooth muscle involve cAMP and protein kinase A. Am J Physiol Lung Cell Mol Physiol 2012; 303:L923-8. [PMID: 23002077 DOI: 10.1152/ajplung.00023.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Clinically observed differences in airway reactivity and asthma exacerbations in women at different life stages suggest a role for sex steroids in modulating airway function although their targets and mechanisms of action are still being explored. We have previously shown that clinically relevant concentrations of exogenous estrogen acutely decrease intracellular calcium ([Ca(2+)](i)) in human airway smooth muscle (ASM), thereby facilitating bronchodilation. In this study, we hypothesized that estrogens modulate cyclic nucleotide regulation, resulting in decreased [Ca(2+)](i) in human ASM. In Fura-2-loaded human ASM cells, 1 nM 17β-estradiol (E(2)) potentiated the inhibitory effect of the β-adrenoceptor (β-AR) agonist isoproterenol (ISO; 100 nM) on histamine-mediated Ca(2+) entry. Inhibition of protein kinase A (PKA) activity (KT5720; 100 nM) attenuated E(2) effects on [Ca(2+)](i). Acute treatment with E(2) increased cAMP levels in ASM cells comparable to that of ISO (100 pM). In acetylcholine-contracted airways from female guinea pigs or female humans, E(2) potentiated ISO-induced relaxation. These novel data suggest that, in human ASM, physiologically relevant concentrations of estrogens act via estrogen receptors (ERs) and the cAMP pathway to nongenomically reduce [Ca(2+)](i), thus promoting bronchodilation. Activation of ERs may be a novel adjunct therapeutic avenue in reactive airway diseases in combination with established cAMP-activating therapies such as β(2)-agonists.
Collapse
Affiliation(s)
- Elizabeth A Townsend
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
10
|
Nino G, Hu A, Grunstein JS, McDonough J, Kreiger PA, Josephson MB, Choi JK, Grunstein MM. G Protein βγ-subunit signaling mediates airway hyperresponsiveness and inflammation in allergic asthma. PLoS One 2012; 7:e32078. [PMID: 22384144 PMCID: PMC3284547 DOI: 10.1371/journal.pone.0032078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/23/2012] [Indexed: 01/11/2023] Open
Abstract
Since the Gβγ subunit of Gi protein has been importantly implicated in regulating immune and inflammatory responses, this study investigated the potential role and mechanism of action of Gβγ signaling in regulating the induction of airway hyperresponsiveness (AHR) in a rabbit model of allergic asthma. Relative to non-sensitized animals, OVA-sensitized rabbits challenged with inhaled OVA exhibited AHR, lung inflammation, elevated BAL levels of IL-13, and increased airway phosphodiesterase-4 (PDE4) activity. These proasthmatic responses were suppressed by pretreatment with an inhaled membrane-permeable anti-Gβγ blocking peptide, similar to the suppressive effect of glucocorticoid pretreatment. Extended mechanistic studies demonstrated that: 1) corresponding proasthmatic changes in contractility exhibited in isolated airway smooth muscle (ASM) sensitized with serum from OVA-sensitized+challenged rabbits or IL-13 were also Gβγ-dependent and mediated by MAPK-upregulated PDE4 activity; and 2) the latter was attributed to Gβγ-induced direct stimulation of the non-receptor tyrosine kinase, c-Src, resulting in downstream activation of ERK1/2 and its consequent transcriptional upregulation of PDE4. Collectively, these data are the first to identify that a mechanism involving Gβγ-induced direct activation of c-Src, leading to ERK1/2-mediated upregulation of PDE4 activity, plays a decisive role in regulating the induction of AHR and inflammation in a rabbit model of allergic airway disease.
Collapse
Affiliation(s)
- Gustavo Nino
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Pediatric Pulmonary and Sleep Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Aihua Hu
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Judith S. Grunstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joseph McDonough
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Portia A. Kreiger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Maureen B. Josephson
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John K. Choi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael M. Grunstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Suárez L, Pipa M, Granda J, Coto A, Bordallo J, Cantabrana B, García de Boto MJ, Sánchez M. Sex hormones modulate salbutamol-elicited long-term relaxation in isolated bovine tracheal strips. Pharmacology 2011; 87:249-56. [PMID: 21494056 DOI: 10.1159/000324315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/12/2011] [Indexed: 11/19/2022]
Abstract
Sex hormones are of interest regarding gender differences in the clinical manifestations of airway diseases. No conclusive data are available on the sex hormone modulation of β-adrenoceptor-mediated responses on airways. To this aim, isolated preparations of bovine trachea were used to establish the sex hormone influence on salbutamol-elicited relaxation. This had 2 components, a full acute relaxation followed by a loss of efficacy, close to half of the effect. The remaining half was reverted by the β-blocker, propranolol. The loss of salbutamol-elicited relaxation might reflect the receptor desensitization, as shown by the lack of effect by subsequent administration of salbutamol, and the decrease in the immunostaining of β(2)-adrenoceptors. Sex hormones differently modified the salbutamol-elicited response. Testosterone, but not other androgens or estradiol, had a synergic effect, facilitating the acute relaxation and decreasing the loss of spasmolytic effect, associated with an increase in the latency of desensitization and a decrease in the time taken to reach long-term steady-state tone. These effects, not modified by the antiandrogen flutamide or epithelium removal, seem to be independent of a modulation of β(2)-adrenoceptor desensitization. Testosterone also relaxed preparations with desensitized β-adrenoceptor. Therefore, testosterone modulates tracheal smooth muscle tone, facilitating bronchodilation caused by β(2)-adrenoceptor agonists which might be of pharmacological interest.
Collapse
Affiliation(s)
- Lorena Suárez
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Oviedo, España
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Penn RB. Embracing emerging paradigms of G protein-coupled receptor agonism and signaling to address airway smooth muscle pathobiology in asthma. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:149-69. [PMID: 18278482 DOI: 10.1007/s00210-008-0263-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 01/15/2008] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) regulate numerous airway cell functions, and signaling events transduced by GPCRs are important in both asthma pathogenesis and therapy. Indeed, most asthma therapies target GPCRs either directly or indirectly. Within recent years, our understating of how GPCRs signal and are regulated has changed significantly as new concepts have emerged and traditional ideas have evolved. In this review, we discuss current concepts regarding constitutive GPCR activity and receptor agonism, functional selectivity, compartmentalized signaling, and GPCR desensitization. We further discuss the relevance of these ideas to asthma and asthma therapy, while emphasizing their potential application to the GPCR signaling in airway smooth muscle that regulates airway patency and thus disease severity.
Collapse
Affiliation(s)
- Raymond B Penn
- Department of Internal Medicine, Wake Forest University Health Sciences Center, Winston-Salem, NC 27157, USA.
| |
Collapse
|
13
|
|