1
|
Ryan AF, Ikeda R, Masuda M. The regulation of gene expression in hair cells. Hear Res 2015; 329:33-40. [PMID: 25616095 DOI: 10.1016/j.heares.2014.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/10/2014] [Accepted: 12/29/2014] [Indexed: 01/21/2023]
Abstract
No genes have been discovered for which expression is limited only to inner ear hair cells. This is hardly surprising, since the number of mammalian genes is estimated to be 20-25,000, and each gene typically performs many tasks in various locations. Many genes are expressed in inner ear sensory cells and not in other cells of the labyrinth. However, these genes are also expressed in other locations, often in other sensory or neuronal cell types. How gene transcription is directed specifically to hair cells is unclear. Key transcription factors that act during development can specify cell phenotypes, and the hair cell is no exception. The transcription factor ATOH1 is well known for its ability to transform nonsensory cells of the developing inner ear into hair cells. And yet, ATOH1 also specifies different sensory cells at other locations, neuronal phenotypes in the brain, and epithelial cells in the gut. How it specifies hair cells in the inner ear, but alternate cell types in other locations, is not known. Studies of regulatory DNA and transcription factors are revealing mechanisms that direct gene expression to hair cells, and that determine the hair cell identity. The purpose of this review is to summarize what is known about such gene regulation in this key auditory and vestibular cell type.
Collapse
Affiliation(s)
- Allen F Ryan
- Departments of Surgery/Otolaryngology, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Departments of Neurosciences, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Ryoukichi Ikeda
- Departments of Surgery/Otolaryngology, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Masatsugu Masuda
- Departments of Surgery/Otolaryngology, University of California, San Diego - School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Buckingham ME, Lyons GE, Ott MO, Sassoon DA. Myogenesis in the mouse. CIBA FOUNDATION SYMPOSIUM 2007; 165:111-24; discussion 124-31. [PMID: 1516464 DOI: 10.1002/9780470514221.ch7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first striated muscle to form during mouse embryogenesis is the heart followed by skeletal muscle which is derived from the somites. The expression of genes encoding muscle structural proteins and myogenic regulatory sequences of the MyoD1 family has been examined using 35S-labelled riboprobes. In the cardiac tube, actin and myosin genes are expressed together from an early stage, whereas in the myotome, the earliest skeletal muscle, they are activated asynchronously over days. They are not expressed in the somite prior to myotome formation. One potential muscle marker, carbonic anhydrase III, is expressed in early mesoderm and subsequently in the notochord, similarly to the Brachyury gene. The myogenic sequences are not detectable in the heart. In the myotome they show distinct patterns of expression; this is discussed in the context of their role as muscle transcription factors. myf-5 is the only myogenic factor sequence present in the somite prior to muscle formation and thus is potentially involved in an earlier step of muscle determination. It is also present in the early limb bud, but the status of myogenic precursor cells in the limb in this context is less clear.
Collapse
Affiliation(s)
- M E Buckingham
- Department of Molecular Biology, CNRS URA 1148, Pasteur Institute, Paris, France
| | | | | | | |
Collapse
|
3
|
Ricchiuti V, Voss EM, Ney A, Odland M, Apple FS. Skeletal muscle expression of creatine kinase-B in end-stage renal disease. Clin Proteomics 2004. [DOI: 10.1385/cp:1:1:033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
4
|
Maeda T, Chapman DL, Stewart AFR. Mammalian vestigial-like 2, a cofactor of TEF-1 and MEF2 transcription factors that promotes skeletal muscle differentiation. J Biol Chem 2002; 277:48889-98. [PMID: 12376544 DOI: 10.1074/jbc.m206858200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of many skeletal muscle-specific genes depends on TEF-1 (transcription enhancer factor-1) and MEF2 transcription factors. In Drosophila, the TEF-1 homolog Scalloped interacts with the cofactor Vestigial to drive differentiation of the wing and indirect flight muscles. Here, we identify three mammalian vestigial-like genes, Vgl-1, Vgl-2, and Vgl-3, that share homology in a TEF-1 interaction domain. Vgl-1 and Vgl-3 transcripts are enriched in the placenta, whereas Vgl-2 is expressed in the differentiating somites and branchial arches during embryogenesis and is skeletal muscle-specific in the adult. During muscle differentiation, Vgl-2 mRNA levels increase and Vgl-2 protein translocates from the cytoplasm to the nucleus. In situ hybridization revealed co-expression of Vgl-2 with myogenin in the differentiating muscle of embryonic myotomes but not in newly formed somites prior to muscle differentiation. Like Vgl-1, Vgl-2 interacts with TEF-1. In addition, we show that Vgl-2 interacts with MEF2 in a mammalian two-hybrid assay and that Vgl-2 selectively binds to MEF2 in vitro. Co-expression of Vgl-2 with MEF2 markedly co-activates an MEF2-dependent promoter through its MEF2 element. Overexpression of Vgl-2 in MyoD-transfected 10T(1/2) cells markedly increased myosin heavy chain expression, a marker of terminal muscle differentiation. These results identify Vgl-2 as an important new component of the myogenic program.
Collapse
Affiliation(s)
- Tomoji Maeda
- Cardiovascular Institute, School of Medicine, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
5
|
Morimoto T, Hasegawa K, Kaburagi S, Kakita T, Masutani H, Kitsis RN, Matsumori A, Sasayama S. GATA-5 is involved in leukemia inhibitory factor-responsive transcription of the beta-myosin heavy chain gene in cardiac myocytes. J Biol Chem 1999; 274:12811-8. [PMID: 10212267 DOI: 10.1074/jbc.274.18.12811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukemia inhibitory factor is a member of a family of structurally related cytokines sharing the receptor component gp130. Activation of gp130 by leukemia inhibitory factor is sufficient to induce myocardial cell hypertrophy accompanied by specific changes in the pattern of gene expression. However, the molecular mechanisms that link gp130 activation to these changes have not been clarified. The present study investigated the transcriptional pathways by which leukemia inhibitory factor activates beta-myosin heavy chain expression during myocardial cell hypertrophy. Mutation of the GATA motif in the beta-myosin heavy chain promoter totally abolished leukemia inhibitory factor-responsive transcription without changing basal transcriptional activity. In contrast, endothelin-1 responsiveness was unaffected by the GATA mutation. Among members of the cardiac GATA transcription factor subfamily (GATA-4, -5, and -6), GATA-5 was the sole and potent transactivator for the beta-myosin heavy chain promoter. This transactivation was dependent on sequence-specific binding of GATA-5 to the beta-myosin heavy chain GATA element. Cardiac nuclear factors that bind to to the beta-myosin heavy chain GATA element were induced by leukemia inhibitory factor stimulation. Last, leukemia inhibitory factor stimulation markedly increased transcripts of cardiac GATA-5, the expression of which is normally restricted to the early embryo. Thus, GATA-5 may be involved in gp130 signaling in cardiac myocytes.
Collapse
Affiliation(s)
- T Morimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hasegawa K, Lee SJ, Jobe SM, Markham BE, Kitsis RN. cis-Acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation 1997; 96:3943-53. [PMID: 9403619 DOI: 10.1161/01.cir.96.11.3943] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Marked alterations in the expression of specific genes occur during the development of cardiac hypertrophy in vivo. Little is known, however, about the cis-acting elements that mediate these changes in response to clinically relevant hypertrophic stimuli, such as hemodynamic overload, in intact adult animals. METHODS AND RESULTS The left ventricular expression of a directly injected reporter gene driven by 3542 bp of rat beta-myosin heavy chain (beta-MHC) promoter was increased 3.0-fold by aortic constriction (P<.005), an increment similar to the 3.2-fold increase in the level of the endogenous beta-MHC mRNA in the same left ventricles. Subsequent analysis identified a 107-bp beta-MHC promoter sequence (-303/-197) sufficient to convert a heterologous neutral promoter to one that is activated by aortic constriction. These sequences contain two M-CAT elements, which have previously been demonstrated to mediate inducible expression during alpha1-adrenergic-stimulated hypertrophy in cultured neonatal cardiac myocytes, and a GATA element. Although simultaneous mutation of both M-CAT elements markedly decreased the basal transcriptional activity of an injected 333-bp beta-MHC promoter, it had no effect on aortic constriction-stimulated transcription (3.5-fold increase, P<.005 for both wild type and mutant). In contrast, mutation of the GATA motif markedly attenuated aortic constriction-stimulated transcription (1.6-fold, P=NS) without affecting the basal transcriptional activity. This GATA site can interact with in vitro translated GATA-4 and compete with an established GATA site for GATA-4 binding activity in nuclear extracts from aortic constricted hearts. CONCLUSIONS Basal and aortic constriction-stimulated transcription of the beta-MHC gene is mediated, at least in part, through different mechanisms. A GATA element within beta-MHC sequences -303/-197 plays a role in the transcriptional activation of this gene by aortic constriction.
Collapse
Affiliation(s)
- K Hasegawa
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
7
|
Gupta MP, Amin CS, Gupta M, Hay N, Zak R. Transcription enhancer factor 1 interacts with a basic helix-loop-helix zipper protein, Max, for positive regulation of cardiac alpha-myosin heavy-chain gene expression. Mol Cell Biol 1997; 17:3924-36. [PMID: 9199327 PMCID: PMC232245 DOI: 10.1128/mcb.17.7.3924] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The M-CAT binding factor transcription enhancer factor 1 (TEF-1) has been implicated in the regulation of several cardiac and skeletal muscle genes. Previously, we identified an E-box-M-CAT hybrid (EM) motif that is responsible for the basal and cyclic AMP-inducible expression of the rat cardiac alpha-myosin heavy chain (alpha-MHC) gene in cardiac myocytes. In this study, we report that two factors, TEF-1 and a basic helix-loop-helix leucine zipper protein, Max, bind to the alpha-MHC EM motif. We also found that Max was a part of the cardiac troponin T M-CAT-TEF-1 complex even when the DNA template did not contain an apparent E-box binding site. In the protein-protein interaction assay, a stable association of Max with TEF-1 was observed when glutathione S-transferase (GST)-TEF-1 or GST-Max was used to pull down in vitro-translated Max or TEF-1, respectively. In addition, Max was coimmunoprecipitated with TEF-1, thus documenting an in vivo TEF-1-Max interaction. In the transient transcription assay, overexpression of either Max or TEF-1 resulted a mild activation of the alpha-MHC-chloramphenicol acetyltransferase (CAT) reporter gene at lower concentrations and repression of this gene at higher concentrations. However, when Max and TEF-1 expression plasmids were transfected together, the repression mediated by a single expression plasmid was alleviated and a three- to fourfold transactivation of the alpha-MHC-CAT reporter gene was observed. This effect was abolished once the EM motif in the promoter-reporter construct was mutated, thus suggesting that the synergistic transactivation function of the TEF-1-Max heterotypic complex is mediated through binding of the complex to the EM motif. These results demonstrate a novel association between Max and TEF-1 and indicate a positive cooperation between these two factors in alpha-MHC gene regulation.
Collapse
Affiliation(s)
- M P Gupta
- Department of Medicine, The University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
8
|
Lin JJ, Warren KS, Wamboldt DD, Wang T, Lin JL. Tropomyosin isoforms in nonmuscle cells. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 170:1-38. [PMID: 9002235 DOI: 10.1016/s0074-7696(08)61619-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vertebrate nonmuscle cells, such as human and rat fibroblasts, express multiple isoforms of tropomyosin, which are generated from four different genes and a combination of alternative promoter activities and alternative splicing. The amino acid variability among these isoforms is primarily restricted to three alternatively spliced exon regions; an amino-terminal region, an internal exon, and a carboxyl-terminal exon. Recent evidence reveals that these variable exon regions encode amino acid sequences that may dictate isoform-specific functions. The differential expression of tropomyosin isoforms found in cell transformation and cell differentiation, as well as the differential localization of tropomyosin isoforms in some types of culture cells and developing neurons suggest a differential isoform function in vivo. Tropomyosin in striated muscle works together with the troponin complex to regulate muscle contraction in a Ca(2+)-dependent fashion. Both in vitro and in vivo evidence suggest that multiple isoforms of tropomyosin in nonmuscle cells may be required for regulating actin filament stability, intracellular granule movement, cell shape determination, and cytokinesis. Tropomyosin-binding proteins such as caldesmon, tropomodulin, and other unidentified proteins may be required for some of these functions. Strong evidence for the distinct functions carried out by different tropomyosin isoforms has been generated from genetic analysis of yeast and Drosophila tropomyosin mutants.
Collapse
Affiliation(s)
- J J Lin
- Department of Biological Sciences, University of Iowa, Iowa City 52242-1324, USA
| | | | | | | | | |
Collapse
|
9
|
Larkin SB, Farrance IK, Ordahl CP. Flanking sequences modulate the cell specificity of M-CAT elements. Mol Cell Biol 1996; 16:3742-55. [PMID: 8668191 PMCID: PMC231370 DOI: 10.1128/mcb.16.7.3742] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
M-CAT elements mediate both muscle-specific and non-muscle-specific transcription. We used artificial promoters to dissect M-CAT elements derived from the cardiac troponin T promoter, whose regulation is highly striated muscle specific. We show that muscle-specific M-CAT-dependent expression requires two distinct components: the core heptameric M-CAT motif (5'-CATTCCT-3'), which constitutes the canonical binding site for TEF-1-related proteins, and specific sequences immediately flanking the core motif that bind an additional factor(s). These factors are found in higher-order M-CAT DNA-protein complexes with TEF-1 proteins. Non-muscle-specific promoters are produced when the sequences flanking the M-CAT motif are removed or modified to match those of non-muscle-specific promoters such as the simian virus 40 promoter. Moreover, a mutation of the 5'-flanking region of the cardiac troponin T M-CAT-1 element upregulated expression in nonmuscle cells. That mutation also disrupts a potential E box that apparently does not bind myogenic basic helix-loop-helix proteins. We propose a model in which M-CAT motifs are potentially active in many cell types but are modulated through protein binding to specific flanking sequences. In nonmuscle cells, these flanking sequences bind a factor(s) that represses M-CAT-dependent activity. In muscle cells, on the other hand, the factor(s) binding to these flanking sequences contributes to both the cell specificity and the overall transcriptional strength of M-CAT-dependent promoters.
Collapse
Affiliation(s)
- S B Larkin
- Department of Anatomy, University of California San Francisco, California 94143, USA
| | | | | |
Collapse
|
10
|
Azakie A, Larkin SB, Farrance IK, Grenningloh G, Ordahl CP. DTEF-1, a novel member of the transcription enhancer factor-1 (TEF-1) multigene family. J Biol Chem 1996; 271:8260-5. [PMID: 8626520 DOI: 10.1074/jbc.271.14.8260] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
M-CAT motifs mediate muscle-specific transcriptional activity via interaction with binding factors that are antigenically and biochemically related to vertebrate transcription enhancer factor-1 (TEF-1), a member of the TEA/ATTS domain family of transcription factors. M-CAT binding activities present in cardiac and skeletal muscle tissues cannot be fully accounted for by existing cloned isoforms of TEF-1. TEF-1-related cDNAs isolated from heart libraries indicate that at least three classes of TEF-1-related cDNAs are expressed in these and other tissues. One class are homologues of the human TEF-1 originally cloned from HeLa cells (Xiao, J. H., Davidson, I., Matthes, H., Garnier, J. M., and Chambon, P. (1991) Cell 65, 551-568). A second class represents homologues of the avian TEF-1-related gene previously isolated (Stewart, A. F., Larkin, S. B., Farrance, I. K., Mar, J. H., Hall, D. E., and Ordahl, C. P. (1994) J. Biol. Chem. 269, 3147-3150). The third class consists of a novel, divergent TEF-1 cDNA, named DTEF-1, and its preliminary characterization is described here. Two isoforms of DTEF-1 (DTEF-1A and DTEF-1B) were isolated as 1.9-kilobase pair clones with putative open reading frames of 433 and 432 amino acids whose differences are attributable to alternative splicing at the C terminus of the TEA DNA binding domain. Cardiac muscle contains high levels of DTEF-1 transcripts, but unexpectedly low levels are detected in skeletal muscle. DTEF-1 transcripts are present at intermediate levels in gizzard and lung, and at low levels in kidney. DTEF-1A is a sequence-specific M-CAT-binding factor. The distinct spatial pattern of expression, and unusual amino acid sequence in its DNA binding domain, may indicate a particular role for DTEF-1 in cell-specific gene regulation. Recent work also suggests that at least one more TEF-1-related gene exists in vertebrates. We propose a naming system for the four TEF-1 gene family members identified to date that preserves existing nomenclature and provides a means for extending that nomenclature as additional family members may be identified.
Collapse
Affiliation(s)
- A Azakie
- Department of Surgery, Cardiovascular Research Institute, University of California, San Francisco, 94143, USA. 674
| | | | | | | | | |
Collapse
|
11
|
Farrance IK, Ordahl CP. The role of transcription enhancer factor-1 (TEF-1) related proteins in the formation of M-CAT binding complexes in muscle and non-muscle tissues. J Biol Chem 1996; 271:8266-74. [PMID: 8626521 DOI: 10.1074/jbc.271.14.8266] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
M-CAT sites are required for the activity of many promoters in cardiac and skeletal muscle. M-CAT binding activity is muscle-enriched, but is found in many tissues and is immunologically related to the HeLa transcription enhancer factor-1 (TEF-1). TEF-1-related cDNAs (RTEF-1) have been cloned from chick heart. RTEF-1 mRNA is muscle-enriched, consistent with a role for RTEF-1 in the regulation of muscle-specific gene expression. Here, we have examined the tissue distribution of TEF-1-related proteins and of M-CAT binding activity by Western analysis and mobility shift polyacrylamide gel electrophoresis. TEF-1-related proteins of 57, 54 and 52 kDa were found in most tissues with the highest levels in muscle tissues. All of these TEF-1-related proteins bound M-CAT DNA and the 57- and 54-kDa TEF-1-related polypeptides were phosphorylated. Proteolytic digestion mapping showed that the 54-kDa TEF-1-related polypeptide is encoded by a different gene than the 52- and 57-kDa TEF-1-related polypeptides. A comparison of the migration and proteolytic digestion of the 54-kDa TEF-1-related polypeptide with proteins encoded by the cloned RTEF-1 cDNAs showed that the 54-kDa TEF-1-related polypeptide is encoded by RTEF-1A. High resolution mobility shift polyacrylamide gel electrophoresis showed multiple M-CAT binding activities in tissues. All of these activities contained TEF-1-related proteins. One protein-M-CAT DNA complex was muscle-enriched and was up-regulated upon differentiation of a skeletal muscle cell line. This complex contained the 54-kDa TEF-1-related polypeptide. Therefore, RTEF1-A protein is a component of a muscle-enriched transcription complex that forms on M-CAT sites and may play a key role in the regulation of transcription in muscle.
Collapse
Affiliation(s)
- I K Farrance
- Department of Anatomy and Cardiovascular Research Institute, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
12
|
Abstract
A DNase I-hypersensitive site analysis of the 5'-flanking region of the mouse alpha-cardiac actin gene with muscle cell lines derived from C3H mice shows the presence of two such sites, at about -5 and -7 kb. When tested for activity in cultured cells with homologous and heterologous promoters, both sequences act as muscle-specific enhancers. Transcription from the proximal promoter of the alpha-cardiac actin gene is increased 100-fold with either enhancer. The activity of the distal enhancer in C2/7 myotubes is confined to an 800-bp fragment, which contains multiple E boxes. In transfection assays, this sequence does not give detectable transactivation by any of the myogenic factors even though one of the E boxes is functionally important. Bandshift assays showed that MyoD and myogenin can bind to this E box. However, additional sequences are also required for activity. We conclude that in the case of this muscle enhancer, myogenic factors alone are not sufficient to activate transcription either directly via an E box or indirectly through activation of genes encoding other muscle factors. In BALB/c mice, in which cardiac actin mRNA levels are 8- to 10-fold lower, the alpha-cardiac actin locus is perturbed by a 9.5-kb insertion (I. Garner, A. J. Minty, S. Alonso, P. J. Barton, and M. E. Buckingham, EMBO J. 5:2559-2567, 1986). This is located at -6.5 kb, between the two enhancers. The insertion therefore distances the distal enhancer from the promoter and from the proximal enhancer of the bona fide cardiac actin gene, probably thus perturbing transcriptional activity.
Collapse
|
13
|
Biben C, Kirschbaum BJ, Garner I, Buckingham M. Novel muscle-specific enhancer sequences upstream of the cardiac actin gene. Mol Cell Biol 1994; 14:3504-13. [PMID: 8164695 PMCID: PMC358714 DOI: 10.1128/mcb.14.5.3504-3513.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A DNase I-hypersensitive site analysis of the 5'-flanking region of the mouse alpha-cardiac actin gene with muscle cell lines derived from C3H mice shows the presence of two such sites, at about -5 and -7 kb. When tested for activity in cultured cells with homologous and heterologous promoters, both sequences act as muscle-specific enhancers. Transcription from the proximal promoter of the alpha-cardiac actin gene is increased 100-fold with either enhancer. The activity of the distal enhancer in C2/7 myotubes is confined to an 800-bp fragment, which contains multiple E boxes. In transfection assays, this sequence does not give detectable transactivation by any of the myogenic factors even though one of the E boxes is functionally important. Bandshift assays showed that MyoD and myogenin can bind to this E box. However, additional sequences are also required for activity. We conclude that in the case of this muscle enhancer, myogenic factors alone are not sufficient to activate transcription either directly via an E box or indirectly through activation of genes encoding other muscle factors. In BALB/c mice, in which cardiac actin mRNA levels are 8- to 10-fold lower, the alpha-cardiac actin locus is perturbed by a 9.5-kb insertion (I. Garner, A. J. Minty, S. Alonso, P. J. Barton, and M. E. Buckingham, EMBO J. 5:2559-2567, 1986). This is located at -6.5 kb, between the two enhancers. The insertion therefore distances the distal enhancer from the promoter and from the proximal enhancer of the bona fide cardiac actin gene, probably thus perturbing transcriptional activity.
Collapse
Affiliation(s)
- C Biben
- Department of Molecular Biology, Centre National de la Recherche Scientifique ERS 67, Pasteur Institute, Paris, France
| | | | | | | |
Collapse
|
14
|
Stewart A, Larkin S, Farrance I, Mar J, Hall D, Ordahl C. Muscle-enriched TEF-1 isoforms bind M-CAT elements from muscle-specific promoters and differentially activate transcription. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41840-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Kariya K, Karns L, Simpson P. An enhancer core element mediates stimulation of the rat beta-myosin heavy chain promoter by an alpha 1-adrenergic agonist and activated beta-protein kinase C in hypertrophy of cardiac myocytes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41927-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
16
|
Ausoni S, Campione M, Picard A, Moretti P, Vitadello M, De Nardi C, Schiaffino S. Structure and regulation of the mouse cardiac troponin I gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42354-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Transcriptional enhancer factor-1 in cardiac myocytes interacts with an alpha 1-adrenergic- and beta-protein kinase C-inducible element in the rat beta-myosin heavy chain promoter. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74362-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Farrance I, Mar J, Ordahl C. M-CAT binding factor is related to the SV40 enhancer binding factor, TEF-1. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41917-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|