1
|
Rummler M, Ziouti F, Snyder L, Zimmermann EA, Lynch M, Donnelly E, Wagermaier W, Jundt F, Willie BM. Bone mechanical properties were altered in a mouse model of multiple myeloma bone disease. BIOMATERIALS ADVANCES 2025; 166:214047. [PMID: 39303656 DOI: 10.1016/j.bioadv.2024.214047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Multiple myeloma bone disease (MMBD) is characterized by the growth of malignant plasma cells in bone marrow, leading to an imbalance in bone (re)modeling favoring excessive resorption. Loss of bone mass and altered microstructure characterize MMBD in humans and preclinical animal models, although, no study to date has examined bone composition or material properties. We hypothesized that MMBD alters bone composition, mineral crystal properties and mechanical properties in the MOPC315.BM.Luc model after intra-tibial injection of myeloma cells and three weeks of daily in vivo tibial loading. Decreased cortical bone elastic modulus and hardness measured by nanoindentation of tibiae were observed in MM-injected mice compared to PBS-injected mice, whereas cortical bone composition, mineral crystal properties measured by Fourier-transform infrared imaging or small angle X-ray scattering, respectively remained unchanged. However, MM-injected mice had thinner cancellous bone mineral particles compared to PBS-injected mice. Mechanical loading did not lead to altered cortical bone composition, mineral structure, or mechanical properties in the context of MM. Unexpectedly, we observed the intra-tibial injection itself altered the material composition of bone, manifested by increased matrix mineralization and crystal size of the hydroxyapatite crystals in the bone matrix. In conclusion, our data suggest that mechanical stimuli can be used as an adjuvant bone anabolic therapy in patients with MMBD to rebuild bone with unaltered composition and mineral structure to reduce subsequent fracture risk.
Collapse
Affiliation(s)
- Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Fani Ziouti
- Department of Internal Medicine II, Hematology and Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Leah Snyder
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Elizabeth A Zimmermann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Maureen Lynch
- University of Colorado, Department of Mechanical Engineering, Boulder, CO, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Franziska Jundt
- Department of Internal Medicine II, Hematology and Oncology, University Hospital of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
| |
Collapse
|
2
|
Fernandes H, Kannan S, Alam M, Stan G, Popa A, Buczyński R, Gołębiewski P, Ferreira J. Two decades of continuous progresses and breakthroughs in the field of bioactive ceramics and glasses driven by CICECO-hub scientists. Bioact Mater 2024; 40:104-147. [PMID: 39659434 PMCID: PMC11630650 DOI: 10.1016/j.bioactmat.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 12/12/2024] Open
Abstract
Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactive inorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been the deliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization, confer antioxidant properties, and impart antimicrobial effects, marking significant contributions to the field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertainties posed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroid hormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects. This comprehensive overview of CICECO-hub's significant contributions to the forefront inorganic biomaterials across all research aspects and dimensionalities (powders, granules, thin films, bulk materials, and porous structures), follows a unified approach rooted in a cohesive conceptual framework, including synthesis, characterization, and testing protocols. Tangible outcomes [injectable cements, durable implant coatings, and bone graft substitutes (scaffolds) featuring customized porous architectures for implant fixation, osteointegration, accelerated bone regeneration in critical-sized bone defects] were achieved. The manuscript showcases specific biofunctional examples of successful biomedical applications and effective translations to the market of bone grafts for advanced therapies.
Collapse
Affiliation(s)
- H.R. Fernandes
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - S. Kannan
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - M. Alam
- Centre for Nanoscience and Technology, Pondicherry University, 605014, Puducherry, India
| | - G.E. Stan
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - A.C. Popa
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - R. Buczyński
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - P. Gołębiewski
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| | - J.M.F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02–668, Warsaw, Poland
| |
Collapse
|
3
|
Wu MY, Kao IF, Fu CY, Yen SK. Effects of Adding Chitosan on Drug Entrapment Efficiency and Release Duration for Paclitaxel-Loaded Hydroxyapatite-Gelatin Composite Microspheres. Pharmaceutics 2023; 15:2025. [PMID: 37631239 PMCID: PMC10459076 DOI: 10.3390/pharmaceutics15082025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Hydroxyapatite-gelatin microspheres with cone-like pores were synthesized via the wet-chemical method using ammonium dihydrogen phosphate ((NH4)H2PO4) and calcium nitrate (Ca(NO3)2·4H2O) as a source of calcium and phosphate ions with the addition of gelatin, which proved to be more osteoconductive than commercial products, such as fibrin glue and Osteoset® Bone Graft Substitute. Following the method of the previous study for loading paclitaxel (PTX), a drug entrapment efficiency of around 58% was achieved, which is much lower than that of the doxorubicin (DOX)-loaded one. Since PTX is hydrophobic while DOX is hydrophilic, the order of chitosan processing and addition of the solvent were tuned in this study, finally leading to an increase in drug entrapment efficiency of 94%. Additionally, the release duration of PTX exceeded six months. The MTT assay indicated that the effect of drug release on the suppression of cancer cells reached more than 40% after one week, thereby showcasing PTX's capacity to carry out its medicinal functions without being affected by the loading procedures.
Collapse
Affiliation(s)
- Meng-Ying Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (M.-Y.W.)
- Department of Orthopaedics, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Orthopaedics, Taichung Armed Forces General Hospital, Taichung 40705, Taiwan
| | - I-Fang Kao
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (M.-Y.W.)
| | - Chien-Yao Fu
- Department of Orthopaedics, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Orthopaedics, Taichung Armed Forces General Hospital, Taichung 40705, Taiwan
| | - Shiow-Kang Yen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (M.-Y.W.)
| |
Collapse
|
4
|
Obtel N, Le Cabec A, Nguyen TN, Giabicani E, Van Malderen SJM, Garrevoet J, Percot A, Paris C, Dean C, Hadj‐Rabia S, Houillier P, Breiderhoff T, Bardet C, Coradin T, Ramirez Rozzi F, Chaussain C. Impact of claudin-10 deficiency on amelogenesis: Lesson from a HELIX tooth. Ann N Y Acad Sci 2022; 1516:197-211. [PMID: 35902997 PMCID: PMC9796262 DOI: 10.1111/nyas.14865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In epithelia, claudin proteins are important components of the tight junctions as they determine the permeability and specificity to ions of the paracellular pathway. Mutations in CLDN10 cause the rare autosomal recessive HELIX syndrome (Hypohidrosis, Electrolyte imbalance, Lacrimal gland dysfunction, Ichthyosis, and Xerostomia), in which patients display severe enamel wear. Here, we assess whether this enamel wear is caused by an innate fragility directly related to claudin-10 deficiency in addition to xerostomia. A third molar collected from a female HELIX patient was analyzed by a combination of microanatomical and physicochemical approaches (i.e., electron microscopy, elemental mapping, Raman microspectroscopy, and synchrotron-based X-ray fluorescence). The enamel morphology, formation time, organization, and microstructure appeared to be within the natural variability. However, we identified accentuated strontium variations within the HELIX enamel, with alternating enrichments and depletions following the direction of the periodical striae of Retzius. These markings were also present in dentin. These data suggest that the enamel wear associated with HELIX may not be related to a disruption of enamel microstructure but rather to xerostomia. However, the occurrence of events of strontium variations within dental tissues might indicate repeated episodes of worsening of the renal dysfunction that may require further investigations.
Collapse
Affiliation(s)
- Nicolas Obtel
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,AP‐HP Services de médecine bucco‐dentaire, Hôpitaux Universitaires Bretonneau (CRMR phosphore et calcium, filière OSCAR et ERN Bond) and Charles Foix, FHU DDS‐netIle de FranceFrance
| | - Adeline Le Cabec
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199PessacFrance,Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Thè Nghia Nguyen
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | - Eloise Giabicani
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | | | | | - Aline Percot
- Sorbonne Université, CNRS, De la Molécule aux Nano‐Objets: Réactivité, Interactions et Spectroscopies (MONARIS)ParisFrance
| | - Céline Paris
- Sorbonne Université, CNRS, De la Molécule aux Nano‐Objets: Réactivité, Interactions et Spectroscopies (MONARIS)ParisFrance
| | - Christopher Dean
- Department of Earth Sciences, Centre for Human Evolution ResearchNatural History MuseumLondonUK,Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Smail Hadj‐Rabia
- Université Paris Cité, INSERM1163 Institut Imagine; APHP, Hôpital Necker‐Enfants Malades, Department of Dermatology, Reference Center for Rare Skin DiseasesParisFrance
| | - Pascal Houillier
- Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, INSERM, CNRS‐ERL8228ParisFrance,APHP, Service de Physiologie, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Européen Georges PompidouParisFrance
| | - Tilman Breiderhoff
- Charité Universitaetsmedizin Berlin, Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of PediatricsBerlinGermany
| | - Claire Bardet
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de ParisParisFrance
| | - Fernando Ramirez Rozzi
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,Eco‐anthropologie (EA), Muséum national d'Histoire naturelle, CNRSUniversité de ParisParisFrance
| | - Catherine Chaussain
- Université Paris Cité, URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU‐DDS‐net, IHMOA, Dental SchoolMontrougeFrance,AP‐HP Services de médecine bucco‐dentaire, Hôpitaux Universitaires Bretonneau (CRMR phosphore et calcium, filière OSCAR et ERN Bond) and Charles Foix, FHU DDS‐netIle de FranceFrance
| |
Collapse
|
5
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
6
|
Kuczumow A, Gorzelak M, Kosiński J, Lasota A, Blicharski T, Gągała J, Nowak J, Jarzębski M, Jabłoński M. Hierarchy of Bioapatites. Int J Mol Sci 2022; 23:ijms23179537. [PMID: 36076932 PMCID: PMC9455617 DOI: 10.3390/ijms23179537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Apatites are one of the most intensively studied materials for possible biomedical applications. New perspectives of possible application of apatites correspond with the development of nanomaterials and nanocompounds. Here, an effort to systematize different kinds of human bioapatites forming bones, dentin, and enamel was undertaken. The precursors of bioapatites and hydroxyapatite were also considered. The rigorous consideration of compositions and stoichiometry of bioapatites allowed us to establish an order in their mutual sequence. The chemical reactions describing potential transformations of biomaterials from octacalcium phosphate into hydroxyapatite via all intermediate stages were postulated. Regardless of whether the reactions occur in reality, all apatite biomaterials behave as if they participate in them. To conserve the charge, additional free charges were introduced, with an assumed meaning to be joined with the defects. The distribution of defects was coupled with the values of crystallographic parameters “a” and “c”. The energetic balances of bioapatite transformations were calculated. The apatite biomaterials are surprisingly regular structures with non-integer stoichiometric coefficients. The results presented here will be helpful for the further design and development of nanomaterials.
Collapse
Affiliation(s)
- Andrzej Kuczumow
- ComerLab Dorota Nowak, Radawiec Duży 196, 21-030 Motycz, Poland
- Correspondence: (A.K.); or (M.J.); Tel.: +48-535-255-775 (M.J.)
| | - Mieczysław Gorzelak
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, K. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Jakub Kosiński
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, K. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Agnieszka Lasota
- Chair and Department of Jaw Orthopedics, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, K. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Jacek Gągała
- Department of Orthopaedics and Traumatology, Medical University of Lublin, K. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Jakub Nowak
- ComerLab Dorota Nowak, Radawiec Duży 196, 21-030 Motycz, Poland
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland
- Correspondence: (A.K.); or (M.J.); Tel.: +48-535-255-775 (M.J.)
| | - Mirosław Jabłoński
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, K. Jaczewskiego 8, 20-090 Lublin, Poland
| |
Collapse
|
7
|
Ghayor C, Bhattacharya I, Guerrero J, Özcan M, Weber FE. 3D-Printed HA-Based Scaffolds for Bone Regeneration: Microporosity, Osteoconduction and Osteoclastic Resorption. MATERIALS 2022; 15:ma15041433. [PMID: 35207973 PMCID: PMC8875550 DOI: 10.3390/ma15041433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023]
Abstract
Additive manufacturing enables the realization of the macro- and microarchitecture of bone substitutes. The macroarchitecture is determined by the bone defect and its shape makes the implant patient specific. The preset distribution of the 3D-printed material in the macroarchitecture defines the microarchitecture. At the lower scale, the nanoarchitecture of 3D-printed scaffolds is dependent on the post-processing methodology such as the sintering temperature. However, the role of microarchitecture and nanoarchitecture of scaffolds for osteoconduction is still elusive. To address these aspects in more detail, we produced lithography-based osteoconductive scaffolds from hydroxyapatite (HA) of identical macro- and microarchitecture and varied their nanoarchitecture, such as microporosity, by increasing the maximum sintering temperatures from 1100 to 1400 °C. The different scaffold types were characterized for microporosity, compression strength, and nanoarchitecture. The in vivo results, based on a rabbit calvarial defect model showed that bony ingrowth, as a measure of osteoconduction, was independent from scaffold’s microporosity. The same applies to in vitro osteoclastic resorbability, since on all tested scaffold types, osteoclasts formed on their surfaces and resorption pits upon exposure to mature osteoclasts were visible. Thus, for wide-open porous HA-based scaffolds, a low degree of microporosity and high mechanical strength yield optimal osteoconduction and creeping substitution. Based on our study, non-unions, the major complication during demanding bone regeneration procedures, could be prevented.
Collapse
Affiliation(s)
- Chafik Ghayor
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (C.G.); (I.B.); (J.G.)
| | - Indranil Bhattacharya
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (C.G.); (I.B.); (J.G.)
| | - Julien Guerrero
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (C.G.); (I.B.); (J.G.)
| | - Mutlu Özcan
- Center of Dental Medicine, Division of Dental Biomaterials, Clinic for Reconstructive Dentistry, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland;
| | - Franz E. Weber
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (C.G.); (I.B.); (J.G.)
- CABMM, Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-634-3140
| |
Collapse
|
8
|
Ismail H, Mohamad H. Bioactivity and Biocompatibility Properties of Sustainable Wollastonite Bioceramics from Rice Husk Ash/Rice Straw Ash: A Review. MATERIALS 2021; 14:ma14185193. [PMID: 34576417 PMCID: PMC8465399 DOI: 10.3390/ma14185193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/04/2022]
Abstract
Recently, there has been an increase in interest in agricultural waste in scientific, technological, environmental, economic, and social contexts. The processing of rice husk ash/rice straw ash into biocompatible products—also known as biomaterials—used in biomedical implants is a technique that can enhance the value of agricultural waste. This method has effectively converted unprocessed agricultural waste into high-value products. Rice husk and straw are considered to be unwanted agricultural waste and are largely discarded because they pollute the environment. Because of the related components present in bone and teeth, this waste can produce wollastonite. Wollastonite is an excellent material for bone healing and implants, as well as tissue regeneration. The use of rice husk ash or rice straw ash in wollastonite production reduces the impact of agricultural waste on pollution and prompts the ensuing conversion of waste into a highly beneficial invention. The use of this agricultural waste in the fabrication of wollastonite using rice husk ash or rice straw ash was investigated in this paper. Wollastonite made from rice husk ash and rice straw ash has a fair chance of lowering the cost of bone and tooth repair and replacement, while having no environmental effects.
Collapse
|
9
|
Ulian G, Moro D, Valdrè G. Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective. Biomolecules 2021; 11:728. [PMID: 34068073 PMCID: PMC8152500 DOI: 10.3390/biom11050728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023] Open
Abstract
Hard tissues (e.g., bone, enamel, dentin) in vertebrates perform various and different functions, from sustaining the body to haematopoiesis. Such complex and hierarchal tissue is actually a material composite whose static and dynamic properties are controlled by the subtle physical and chemical interplay between its components, collagen (main organic part) and hydroxylapatite-like mineral. The knowledge needed to fully understand the properties of bony and dental tissues and to develop specific applicative biomaterials (e.g., fillers, prosthetics, scaffolds, implants, etc.) resides mostly at the atomic scale. Among the different methods to obtains such detailed information, atomistic computer simulations (in silico) have proven to be both corroborative and predictive tools in this subject. The authors have intensively worked on quantum mechanical simulations of bioapatite and the present work reports a detailed review addressed to the crystal-chemical, physical, spectroscopic, mechanical, and surface properties of the mineral phase of bone and dental tissues. The reviewed studies were conducted at different length and time scales, trying to understand the features of hydroxylapatite and biological apatite models alone and/or in interaction with simplified collagen-like models. The reported review shows the capability of the computational approach in dealing with complex biological physicochemical systems, providing accurate results that increase the overall knowledge of hard tissue science.
Collapse
Affiliation(s)
- Gianfranco Ulian
- Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna Alma Mater Studiorum, P. Porta San Donato 1, 40126 Bologna, Italy;
| | | | - Giovanni Valdrè
- Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna Alma Mater Studiorum, P. Porta San Donato 1, 40126 Bologna, Italy;
| |
Collapse
|
10
|
Forien JB, Uzuhashi J, Ohkubo T, Hono K, Luo L, Schwarcz HP, Deymier AC, Krywka C, Fleck C, Zaslansky P. X-ray diffraction and in situ pressurization of dentine apatite reveals nanocrystal modulus stiffening upon carbonate removal. Acta Biomater 2021; 120:91-103. [PMID: 32927090 DOI: 10.1016/j.actbio.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Bone-like materials comprise carbonated-hydroxyapatite nanocrystals (c-Ap) embedding a fibrillar collagen matrix. The mineral particles stiffen the nanocomposite by tight attachment to the protein fibrils creating a high strength and toughness material. The nanometer dimensions of c-Ap crystals make it very challenging to measure their mechanical properties. Mineral in bony tissues such as dentine contains 2~6 wt.% carbonate with possibly different elastic properties as compared with crystalline hydroxyapatite. Here we determine strain in biogenic apatite nanocrystals by directly measuring atomic deformation in pig dentine before and after removing carbonate. Transmission electron microscopy revealed the platy 3D morphology while atom probe tomography revealed carbon inside the calcium rich domains. High-energy X-ray diffraction in combination with in situ hydrostatic pressurization quantified reversible c-Ap deformations. Crystal strains differed between annealed and ashed (decarbonated) samples, following 1 or 10 h heating at 250 °C or 550 °C respectively. Measured bulk moduli (K) and a-/c-lattice deformation ratios (η) were used to generate synthetic Ksyn and ηsyn identifying the most likely elastic constants C33 and C13 for c-Ap. These were then used to calculate the nanoparticle elastic moduli. For ashed samples, we find an average E11=107 GPa and E33 =128 GPa corresponding to ~5% and ~17% stiffening of the a-/c-axes of the nanocrystals as compared with the biogenic nanocrystals in annealed samples. Ashed samples exhibit ~10% lower Poisson's ratios as compared with the 0.25~0.36 range of carbonated apatite. Carbonate in c-Ap may therefore serve for tuning local deformability within bony tissues. STATEMENT OF SIGNIFICANCE: Carbonated apatite nanoparticles, typical for bony tissues, stiffen the network of collagen fibrils. However, it is not known if the biogenic apatite mechanical (elastic) properties differ from those of geologic mineral counterparts. Indeed the tiny dimensions and variable carbonate composition may have strong effects on deformation resistance. The present study provides experimental measurements of the elastic constants which we use to estimate Young's moduli and Poisson's ratio values. Comparison between ashed and annealed dentine samples quantifies the properties of both carbonated and decarbonated apatite nanocrystals. The results reveal fundamental attributes of bony mineral and showcase the additive advantages of combining X-ray diffraction with in situ hydrostatic compression, backed by atom probe and transmission electron microscopy tomography.
Collapse
|
11
|
Nakajima K, Matsunaga S, Morioka T, Nakano T, Abe S, Furuya Y, Yajima Y. Effects of unloading by tail suspension on biological apatite crystallite alignment in mouse femur. Dent Mater J 2020; 39:670-677. [PMID: 32037388 DOI: 10.4012/dmj.2019-187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was clarify the effects of reducing various functional pressures essential for the maintenance of bone homeostasis. Femoral bone mineral density (BMD) and biological apatite (BAp) crystallite alignment were measured in conventionally reared and hindlimb-unloaded mice. The femur was divided into 10 equal segments perpendicular to the longitudinal axis of the bone and measurements were performed on the cortical bone in the five segments closest to the midpoint of the femur. Significantly lower BMD and BAp alignment in the longitudinal (Z-axis) direction were observed in the hindlimb-unloaded group. The present findings suggest that unloading by tail suspension significantly decreases not only mouse femoral bone mass but also BAp crystallite alignment, although minimal uniaxial preferential alignment is retained.
Collapse
Affiliation(s)
- Kosuke Nakajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| | - Satoru Matsunaga
- Oral Health Science Center, Tokyo Dental College.,Department of Anatomy, Tokyo Dental College
| | - Toshiyuki Morioka
- Oral Health Science Center, Tokyo Dental College.,Department of Removable Partial Prosthodontics, Tokyo Dental College
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University
| | - Shinichi Abe
- Oral Health Science Center, Tokyo Dental College.,Department of Anatomy, Tokyo Dental College
| | - Yoshitaka Furuya
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College.,Oral Health Science Center, Tokyo Dental College
| |
Collapse
|
12
|
Yuan X, Han L, Lin H, Guo Z, Huang Y, Li S, Long T, Tang W, Tian W, Long J. The role of antimiR-26a-5p/biphasic calcium phosphate in repairing rat femoral defects. Int J Mol Med 2019; 44:857-870. [PMID: 31257525 PMCID: PMC6658005 DOI: 10.3892/ijmm.2019.4249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Although miRNAs have been implicated in the osteogenic differentiation of stem cells, their role in bone repair and reconstruction in tissue‑engineered bone grafts remains unclear. We previously reported that microRNA (miR)‑26a‑5p inhibited the osteogenic differentiation of adipose‑derived mesenchymal stem cells (ADSCs), and that antimiR‑26a‑5p exerted the opposite effect. In the present study, the role of miR‑26a‑5p‑ and antimiR‑26a‑5p‑modified ADSCs combined with biphasic calcium phosphate (BCP) scaffolds was evaluated in a rat femur defect model. The aim of the present study was to improve the understanding of the role of miR‑26a‑5p in bone regeneration in vivo, as well as to provide a new method to optimize the osteogenic ability of BCPs. ADSCs were infected with Lv‑miR‑26a‑5p, Lv‑miR‑NC, Lv‑antimiR‑26a‑5p or Lv‑antimiR‑NC respectively, and then combined with BCP scaffolds to repair rat femoral defects. Using X‑rays, micro‑computed tomography and histology at 2, 4, and 8 weeks postoperatively, the quantity and rate of bone regeneration were analyzed, revealing that they were the highest in animals treated with antimiR‑26a‑5p and the lowest in the miR‑26a‑5p treatment group. The expression levels of osteocalcin, collagen I, Runt‑related transcription factor 2, Wnt family member 5A and calmodulin‑dependent protein kinase II proteins were positively correlated with the bone formation rate. Taken together, the present results demonstrated that miR‑26a‑5p inhibited bone formation while antimiR‑26a‑5p accelerated bone formation via the Wnt/Ca2+ signaling pathway. Therefore, antimiR‑26a‑5p‑modified ADSCs combined with BCP scaffolds may be used to construct an effective tissue‑engineering bone graft for bone repair and reconstruction.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Aesthetic Medicine, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610017
| | - Lu Han
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Zeyou Guo
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Yanling Huang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Shasha Li
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Ting Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Wei Tang
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Weidong Tian
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| |
Collapse
|
13
|
Uskoković V. Mechanism of formation governs the mechanism of release of antibiotics from calcium phosphate nanopowders and cements in a drug-dependent manner. J Mater Chem B 2019; 7:3982-3992. [PMID: 31681475 PMCID: PMC6824273 DOI: 10.1039/c9tb00444k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The kinetics of drug release from hydroxyapatite (HAp) cements could be tuned by controlling the kinetics of crystallization of their HAp precursor powders during synthesis. Here it is shown that this history of formation affects not only the kinetics, but also the mechanism of release. Cements composed of two HAp powders precipitated under different conditions, one (HAp2) taking twice longer to transform from the amorphous to the crystalline state than the other (HAp1), were mixed at different ratios to tune their drug release kinetics and tested for the release mechanism in conjunction with compositional and microstructural analyses. While the cement component converting to the amorphous phase during gelation (HAp2) exhibited a faster, but also more anomalous, non-Fickian mechanism of release of vancomycin, the cement component retaining its crystalline state all throughout gelation, setting and hardening (HAp1) stabilized at the ideal, Fickian diffusion case corresponding to the Korsmeyer-Peppas exponent value of 0.45 ± 0.02. This effect got reversed for the other antibiotic studied as a drug, ciprofloxacin, in which case HAp2 exhibited the ideal, Fickian diffusion with n = 0.45 ± 0.02 and the increase in the content of the cement component retaining its crystallinity during gelation, setting and hardening (HAp1) steadily shifted the mechanism of release to more anomalous, non-Fickian types. This has indicated that the molecular structure of the drug is an essential determinant of the mechanism of release and that the design of a carrier for a universally tunable release of drugs based on the passive transport is likely impossible. Preliminary assays involving the addition of chitosan or gelatin as polymeric components to HAp led to the inclusion of swelling and erosion as additional effects by which the drug escapes the carrier and shifted the release toward less diffusional and more multimodal mechanisms. With regard to the microstructural and compositional effects governing the release mechanism and kinetics, the retention of a finite concentration of slit-like pores of the amorphous precursor in HAp2 and its lower surface energy and lesser drug binding potential in the gelled, amorphous state, but also its possibly less stable and more diffusive particle surface and higher structural water content were elaborated as potential reasons explaining the distinct rates and mechanisms of release from the two HAp powders with different histories of formation.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Bioengineering, University of Illinois, Chicago, IL, USA
| |
Collapse
|
14
|
Predicting binding affinities of nitrogen-containing bisphosphonates on hydroxyapatite surface by molecular dynamics. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Yang X, Wang M, Yang Y, Cui B, Xu Z, Yang X. Physical origin underlying the prenucleation-cluster-mediated nonclassical nucleation pathways for calcium phosphate. Phys Chem Chem Phys 2019; 21:14530-14540. [PMID: 30984939 DOI: 10.1039/c9cp00919a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The involvement of prenucleation clusters (PNCs) in crystallization from a supersaturated solution has been recently admitted within the framework of nonclassical nucleation theory; however, little is known about PNCs, at the quantitative level, for their formation mechanism and stability, the new phase formed by them, as well as their impact on nucleation barriers. Herein, using the sophisticated free energy calculations with a cumulative simulation time of over 5 μs, we identify a thermodynamically favored pathway of the PNC-mediated nucleation for calcium phosphate, starting with the ion pair association in solution. We demonstrate that such an ion association occurs not only between cations and anions, but also for the polyatomic species with charges of the same sign, which, in fact, leads to PNC formation via the consecutive coordination of the phosphate ions to calcium. The free energy decomposition calculations illustrate that the water phase is capable to either hinder or promote ion association for the abovementioned processes, and its specific role is intricately related to the characteristics of the hydration shell around calcium ions. The favorable interactions between the highly charged species play a crucial role in stabilizing the PNC complexes and the aggregates formed by PNCs. Furthermore, our present work reveals that the uptake of an extra calcium ion is the first and mandatory step to trigger PNC aggregation into amorphous calcium phosphate (ACP) by eliminating the related free energy barriers. Our theoretical study successfully provides quantitative explanations to a large set of experimental data in the field, which is currently under intense discussions associated with the nonclassical nucleation mechanism. The combination of computational methods developed in our present work offers a feasible and general solution to quantitatively and systematically study ion associations and crystal nucleation/growth in an aqueous solution at the atomic level, which are normally inaccessible to most of the existing experimental acquisitions.
Collapse
Affiliation(s)
- Xiao Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Mingzhu Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Yang Yang
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, PA 18015, USA
| | - Beiliang Cui
- Network Information Center, Nanjing Tech University, Nanjing 210009, China
| | - Zhijun Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Xiaoning Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
16
|
Accogli A, Scala M, Calcagno A, Napoli F, Di Iorgi N, Arrigo S, Mancardi MM, Prato G, Pisciotta L, Nagel M, Severino M, Capra V. CNNM2 homozygous mutations cause severe refractory hypomagnesemia, epileptic encephalopathy and brain malformations. Eur J Med Genet 2018; 62:198-203. [PMID: 30026055 DOI: 10.1016/j.ejmg.2018.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/01/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022]
Abstract
Magnesium (Mg2+) plays a crucial role in many biological processes especially in the brain, heart and skeletal muscle. Mg2+ homeostasis is regulated by intestinal absorption and renal reabsorption, involving a combination of different epithelial transport pathways. Mutations in any of these transporters result in hypomagnesemia with variable clinical presentations. Among these, CNNM2 is found along the basolateral membrane of distal tubular segments where it is involved in Mg2+ reabsorption. To date, heterozygous mutations in CNNM2 have been associated with a variable phenotype, ranging from isolated hypomagnesemia to intellectual disability and epilepsy. The only homozygous mutation reported so far, is responsible for hypomagnesemia associated with a severe neurological phenotype characterized by refractory epilepsy, microcephaly, severe global developmental delay and intellectual disability. Here, we report the second homozygous CNNM2 mutation (c.1642G > A,p.Val548Met) in a Moroccan patient, presenting with hypomagnesemia and severe epileptic encephalopathy. Thus, we review and discuss the phenotypic spectrum associated with CNNM2 mutations.
Collapse
Affiliation(s)
- Andrea Accogli
- UOC Neurochirurgia, Istituto Giannina Gaslini, Genova, Italy; Università degli studi di Genova, Italy
| | - Marcello Scala
- UOC Neurochirurgia, Istituto Giannina Gaslini, Genova, Italy; Università degli studi di Genova, Italy
| | | | - Flavia Napoli
- UOC Clinica Pediatrica, Istituto Giannina Gaslini, Genova, Italy
| | - Natascia Di Iorgi
- Università degli studi di Genova, Italy; UOC Clinica Pediatrica, Istituto Giannina Gaslini, Genova, Italy
| | - Serena Arrigo
- UOC Gastroenterologia and Endoscopia Pediatrica, Istituto Giannina Gaslini, Genova, Italy
| | | | - Giulia Prato
- UOC Neuropsichiatria Infantile - Centro Epilessia, Istituto Giannina Gaslini, Genova, Italy
| | - Livia Pisciotta
- Università degli studi di Genova, Italy; UOC Neuropsichiatria Infantile - Centro Epilessia, Istituto Giannina Gaslini, Genova, Italy
| | - Mato Nagel
- Center for Nephrology and Metabolic Disorders, Weisswasser, Germany
| | | | - Valeria Capra
- UOC Neurochirurgia, Istituto Giannina Gaslini, Genova, Italy.
| |
Collapse
|
17
|
Bouler J, Pilet P, Gauthier O, Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater 2017; 53:1-12. [PMID: 28159720 DOI: 10.1016/j.actbio.2017.01.076] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/04/2017] [Accepted: 01/27/2017] [Indexed: 12/23/2022]
Abstract
Autologous bone graft is considered as the gold standard in bone reconstructive surgery. However, the quantity of bone available is limited and the harvesting procedure requires a second surgical site resulting in severe complications. Due to these limits, scientists and clinicians have considered alternatives to autologous bone graft. Calcium phosphates (CaPs) biomaterials including biphasic calcium phosphate (BCP) ceramics have proven efficacy in numerous clinical indications. Their specific physico-chemical properties (HA/TCP ratio, dual porosity and subsequent interconnected architecture) control (regulate/condition) the progressive resorption and the bone substitution process. By describing the most significant biological responses reported in the last 30years, we review the main events that made their clinical success. We also discuss about their exciting future applications as osteoconductive scaffold for delivering various bioactive molecules or bone cells in bone tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE Nowadays, BCPs are definitely considered as the gold standard of bone substitutes in bone reconstructive surgery. Among the numerous clinical studies in literature demonstrating the performance of BCP, Passuti et al. and Randsford et al. studies largely contributed to the emergence of the BCPs. It could be interesting to come back to the main events that made their success and could explain their large adhesion from scientists to clinicians. This paper aims to review the most significant biological responses reported in the last 30years, of these BCP-based materials. We also discuss about their exciting future applications as osteoconductive scaffold for delivering various bioactive molecules or bone cells in bone tissue engineering and regenerative medicine.
Collapse
|
18
|
Sundell G, Dahlin C, Andersson M, Thuvander M. The bone-implant interface of dental implants in humans on the atomic scale. Acta Biomater 2017; 48:445-450. [PMID: 27872014 DOI: 10.1016/j.actbio.2016.11.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/27/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
Osseointegration of dental implants occurs on a hierarchy of length scales down to the atomic level. A deeper understanding of the complex processes that take place at the surface of an implant on the smallest scale is of interest for the development of improved biomaterials. To date, transmission electron microscopy (TEM) has been utilized for examination of the bone-implant interface, providing details on the nanometer level. In this study we show that TEM imaging can be complemented with atom probe tomography (APT) to reveal the chemical composition of a Ti-based dental implant in a human jaw on the atomic level of resolution. As the atom probe technique has equal sensitivity for all elements, it allows for 3 dimensional characterizations of osseointegrated interfaces with unprecedented resolution. The APT reconstructions reveal a Ca-enriched zone in the immediate vicinity of the implant surface. A surface oxide of some 5nm thickness was measured on the titanium implant, with a sub-stoichiometric composition with respect to TiO2. Minor incorporation of Ca into the thin oxide film was also evident. We conclude that the APT technique is capable of revealing chemical information from the bone-implant interface in 3D with unprecedented resolution, thus providing important insights into the mechanisms behind osseointegration. STATEMENT OF SIGNIFICANCE Osseointegration of dental implants occurs on a hierarchy of length scales down to the atomic level. A deeper understanding of the complex processes that take place at the surface of an implant on the smallest scale is of interest for the development of improved biomaterials. To date, transmission electron microscopy (TEM) has been utilized for examination of the bone-implant interface, providing details on the nanometer level. In this study we show that TEM imaging can be complemented with atom probe tomography (APT) to reveal the chemical composition of a Ti-based dental implant in a human jaw on the atomic level of resolution. Correlative microscopy ensures the accuracy of APT reconstructions and helps provide both chemical and structural information of the bone-implant interface on the smallest of length scales.
Collapse
|
19
|
Khader BA, Towler MR. Materials and techniques used in cranioplasty fixation: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:315-322. [PMID: 27207068 DOI: 10.1016/j.msec.2016.04.101] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/17/2016] [Accepted: 04/29/2016] [Indexed: 11/29/2022]
Abstract
Cranioplasty is the surgical repair of a deficiency or deformity of the skull. The purpose of cranioplasty is to provide protection for the brain following cranial surgery, and to offer relief to psychological disadvantages while increasing social performance. There are several materials that had been used for cranioplasty but an ideal product has yet to be developed, hence the ongoing research into biologic and non-biologic alternatives to the existing materials. This article critiques the products currently used for cranioplasty in order to facilitate the development of new materials, which can improve patient outcomes.
Collapse
Affiliation(s)
- Basel A Khader
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, M5B 2K3, ON, Canada
| | - Mark R Towler
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, M5B 2K3, ON, Canada.
| |
Collapse
|
20
|
|
21
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
22
|
A mineralogical study in contrasts: highly mineralized whale rostrum and human enamel. Sci Rep 2015; 5:16511. [PMID: 26552356 PMCID: PMC4639718 DOI: 10.1038/srep16511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/14/2015] [Indexed: 11/08/2022] Open
Abstract
The outermost enamel of the human tooth and the rostrum of the whale Mesoplodon densirostris are two highly mineralized tissues that contain over 95 wt.% mineral, i.e., bioapatite. However, the same mineral type (carbonated hydroxylapatite) does not yield the same material properties, as revealed by Raman spectroscopy, scanning electron microscopy, electron microprobe analysis, and synchrotron X-ray diffraction analysis. Overall, the outermost enamel of a tooth has more homogeneous physical and chemical features than the rostrum. Chemical comparison of rostrum and enamel shows bioapatite in the rostrum to be enriched in Na, Mg, CO3, and S, whereas the outermost enamel shows only a slightly enriched Cl concentration. Morphologically, mineral rods (at tens of μm scale), crystallites and prisms (at μm and sub-μm scale), and platelets (at tens of nm scale) all demonstrate less organized texture in the rostrum than in enamel. Such contrasts between two mineralized tissues suggest distinct pathways of biomineralization, e.g., the nature of the equilibrium between mineral and body fluid. This study illustrates the remarkable flexibility of the apatite mineral structure to match its chemical and physical properties to specific biological needs within the same animal or between species.
Collapse
|
23
|
Wang T, Yang X, Qi X, Jiang C. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. J Transl Med 2015; 13:152. [PMID: 25952675 PMCID: PMC4429830 DOI: 10.1186/s12967-015-0499-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/21/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Osteoinduction and proliferation of bone-marrow stromal cells (BMSCs) in three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds have not been studied throughly and are technically challenging. This study aimed to optimize nanocomposites of 3D PCL scaffolds to provide superior adhesion, proliferation and differentiation environment for BMSCs in this scenario. METHODS BMSCs were isolated and cultured in a novel 3D tissue culture poly(ε-caprolactone) (PCL) scaffold coated with poly-lysine, hydroxyapatite (HAp), collagen and HAp/collagen. Cell morphology was observed and BMSC biomarkers for osteogenesis, osteoblast differentiation and activation were analyzed. RESULTS Scanning Electron Microscope (SEM) micrographs showed that coating materials were uniformly deposited on the surface of PCL scaffolds and BMSCs grew and aggregated to form clusters during 3D culture. Both mRNA and protein levels of the key players of osteogenesis and osteoblast differentiation and activation, including runt-related transcription factor 2 (Runx2), alkaline phosphates (ALP), osterix, osteocalcin, and RANKL, were significantly higher in BMSCs seeded in PCL scaffolds coated with HAp or HAp/collagen than those seeded in uncoated PCL scaffolds, whereas the expression levels were not significantly different in collagen or poly-lysine coated PCL scaffolds. In addition, poly-lysine, collagen, HAp/collagen, and HAp coated PCL scaffolds had significantly more viable cells than uncoated PCL scaffolds, especially scaffolds with HAp/collagen and collagen-alone coatings. That BMSCs in HAp or HAp/collagen PCL scaffolds had remarkably higher ALP activities than those in collagen-coated alone or uncoated PCL scaffolds indicating higher osteogenic differentiation levels of BMSCs in HAp or HAp/collagen PCL scaffolds. Moreover, morphological changes of BMSCs after four-week of 3D culture confirmed that BMSCs successfully differentiated into osteoblast with spread-out phenotype in HAp/collagen coated PCL scaffolds. CONCLUSION This study showed a proof of concept for preparing biomimetic 3D poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds with excellent osteoinduction and proliferation capacity for bone regeneration.
Collapse
Affiliation(s)
- Ting Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Rd, Shanghai, 200233, China.
| | - Xiaoyan Yang
- Department of Medicine, Northwestern University, Chicago, IL, 60208, USA.
| | - Xin Qi
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Rd, Shanghai, 200233, China.
| | - Chaoyin Jiang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Rd, Shanghai, 200233, China.
| |
Collapse
|
24
|
Li Z, Pasteris JD. Tracing the pathway of compositional changes in bone mineral with age: preliminary study of bioapatite aging in hypermineralized dolphin's bulla. Biochim Biophys Acta Gen Subj 2014; 1840:2331-9. [PMID: 24650888 DOI: 10.1016/j.bbagen.2014.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Studies of mineral compositional effects during bone aging are complicated by the presence of collagen. METHODS Hypermineralized bullae of Atlantic bottlenose dolphins of <3months, 2.5years, and 20years underwent micrometer-scale point analysis by Raman spectroscopy and electron microprobe in addition to bulk analysis for carbon. RESULTS Bulla central areas have a mineral content of ~96wt.% and 9-10wt.% carbonate in their bioapatite, which is ~2wt.% more than edge areas. Ca/P atomic ratios (~1.8) and concentrations of Mg, S, and other minor/trace elements are almost constant in central areas over time. Maturity brings greater over-all homogeneity in mineral content, stoichiometry, and morphology throughout the central and edge areas of the bullae. During aging, edge areas become less porous, whereas the concentration of organics in the edge is reduced. Enhancement of coupled substitutions of CO3(2-) for PO4(3-) and Na for Ca during aging increases carbonate content up to ~10wt.% in the adult bulla. CONCLUSIONS 1) Changes in physical properties during aging did not occur simultaneously with changes in chemical properties of the bone mineral. 2) Compositional changes in bone mineral were minor during the neonatal to sub-adult stage, but significant during later maturity. 3) Na and CO3 concentrations co-vary in a 1:1 molar proportion during aging. 4) The mineral's crystallinity did not decrease as CO3 concentration increased during aging. GENERAL SIGNIFICANCE Hypermineralized dolphin's bulla, due to extreme depletion in collagen, is an ideal material for investigating mineralogical changes in bioapatite during bone aging.
Collapse
Affiliation(s)
- Zhen Li
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jill D Pasteris
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
25
|
Dorozhkin SV. Calcium Orthophosphate-Based Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2013; 6:3840-3942. [PMID: 28788309 PMCID: PMC5452669 DOI: 10.3390/ma6093840] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/07/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023]
Abstract
Various types of grafts have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A bit later, such synthetic biomaterials were called bioceramics. In principle, bioceramics can be prepared from diverse materials but this review is limited to calcium orthophosphate-based formulations only, which possess the specific advantages due to the chemical similarity to mammalian bones and teeth. During the past 40 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the calcium orthophosphate-based implants remain biologically stable once incorporated into the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed and such formulations became an integrated part of the tissue engineering approach. Now calcium orthophosphate scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous and harbor different biomolecules and/or cells. Therefore, current biomedical applications of calcium orthophosphate bioceramics include bone augmentations, artificial bone grafts, maxillofacial reconstruction, spinal fusion, periodontal disease repairs and bone fillers after tumor surgery. Perspective future applications comprise drug delivery and tissue engineering purposes because calcium orthophosphates appear to be promising carriers of growth factors, bioactive peptides and various types of cells.
Collapse
|
26
|
Cheng CL, Chang HH, Huang PJ, Chu YT, Lin SY. Composition and distribution of elements and ultrastructural topography of a human cardiac calculus. Biol Trace Elem Res 2013; 152:143-51. [PMID: 23404458 DOI: 10.1007/s12011-013-9603-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022]
Abstract
Trace elements (TEs) may contribute to the formation of calculi or stones or be involved in the aetiopathogenesis of stone diseases. The compositions and spatial distribution of elements from the inner nucleus to outer crust of the cardiac calculus were investigated by energy-dispersive X-ray fluorescence (EDXRF) spectrometer. The surface topograph, distribution map of elements, elemental and chemical compositions were also determined by environmental scanning electron microscope (ESEM)-energy-dispersive X-ray (EDX) analysis. Twenty-five elements were identifiable from 18 positions on the cardiac calculus by EDXRF spectrometer, in which the highest concentrations of toxic TEs (Ni, Pt, Hg, Sn, Pb, W, Au, Al, Si) and higher levels of essential TEs (Ca, Sr, Cr, P) were detected. A moderate positive Pearson's correlation between TEs concentrations of Mg, Ca or P and location differences from centre to periphery in the cardiac calculus was observed. A positive correlation was also found for Ca/Zn and Ca/Cu, indicating the gradual increase of calcium concentration from inner nucleus to outer crust of cardiac calculus. The drop-like nodules/crystals on the surface of petrous part of cardiac calculus were observed from ESEM analysis. ESEM-EDX analysis determined the calculus to be predominantly composed of calcium hydroxyapatite and cholesterol, as indicated by the petrous surface and drop-like nodules/crystals, respectively. This composition was confirmed using a portable Raman analyser. The spatial distribution analysis indicated a gradual increase in Mg, P and Ca concentrations from the inner nucleus to the outer crust of the cardiac calculus. The major chemical compositions of calcium hydroxyapatite and cholesterol were detected on this cardiac calculus.
Collapse
Affiliation(s)
- Ching-Li Cheng
- Department of Nursing, National Tainan Institute of Nursing, Tainan, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
27
|
Abstract
The long-recognized promise of gene therapy to treat a broad range of currently incurable diseases remains largely unfulfilled, hindered by lack of a safe and efficient delivery vehicle. Hydroxyapatite nanoparticles are deemed a feasible candidate and possess many characteristics desired of an ideal gene vector. Current fabrication techniques can readily synthesize hydroxyapatite particles in the nanometer range; however, these particles suffer from extensive aggregation and heterogeneity, mainly in size, shape and surface charge, which render them inappropriate for gene-therapy application. There is thus a pertinent need to develop a method capable of fabricating homogenous and monodispersed hydroxyapatite nanoparticles in a rapid, efficient and cost-effective manner that can be easily upscaled. Cell transfection is impeded by several physical and biological barriers, with the vector's properties highly determinant of its ability to overcome these barriers. Fine-tuning hydroxyapatite nanoparticles' morphological and physicochemical properties, achievable through precise regulation of the reaction environment, can enhance transfection efficiencies of particles, in turn, generating safe and effective gene vectors.
Collapse
|
28
|
Healing of long-bone defects in sheep metatarsals using bioceramics and mesenchymal stem cells. CURRENT ORTHOPAEDIC PRACTICE 2012. [DOI: 10.1097/bco.0b013e318259e847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Ogai T, Morioka T, Matsunaga S, Nojima K, Nishii Y, Sueishi K, Yoshinari M. Relationship between Biological Apatite Alignment and Hemi-occlusion in Rabbit Mandibular Cortical bone. J HARD TISSUE BIOL 2012. [DOI: 10.2485/jhtb.21.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
YOSHIDA Y, YOSHIHARA K, NAGAOKA N, HANABUSA M, MATSUMOTO T, MOMOI Y. X-ray diffraction analysis of three-dimensional self-reinforcing monomer and its chemical interaction with tooth and hydroxyapatite. Dent Mater J 2012; 31:697-702. [DOI: 10.4012/dmj.2012-074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Rabadjieva D, Tepavitcharova S, Gergulova R, Sezanova K, Titorenkova R, Petrov O, Dyulgerova E. Mg- and Zn-modified calcium phosphates prepared by biomimetic precipitation and subsequent treatment at high temperature. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2187-2196. [PMID: 21870084 DOI: 10.1007/s10856-011-4415-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/06/2011] [Indexed: 05/31/2023]
Abstract
Powders of magnesium-modified as well as zinc-modified calcium phosphates (Me-β-TCP and HA) with a (Ca(2+)+Mg(2+)+Zn(2+)+Na(+)+K(+))/P ratio of 1.3-1.4 and various Me(2+)/(Me(2+)+Ca(2+)) ratios (from 0.005 to 0.16) were prepared in biomimetic electrolyte systems at pH 8, mother liquid maturation and further syntering at 600-1000°C. Some differences in zinc and magnesium modifications have been prognosed on the basis of thermodynamic modeling of the studied systems and explained by the Mg(2+) and Zn(2+) ion chemical behaviour. The temperature as well as the degree of Zn(2+) and Mg(2+) ions substitutions were found to stabilize the β-TCP structure and this effect was more prononced for zinc. Thus, zinc-modified β-TCP powders consisting of idiomorphic crystals were obtained through sintering of Zn(2+) ion substituted calcium phosphates precursors at 800-1000°C. The Mg(2+) ion substitution leads to obtaining magnesium-modified β-TCP with spherical grains.
Collapse
Affiliation(s)
- D Rabadjieva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str., Bl.11, 1113, Sofia, Bulgaria.
| | | | | | | | | | | | | |
Collapse
|
32
|
Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. BIOMATTER 2011; 1:121-164. [PMID: 23507744 PMCID: PMC3549886 DOI: 10.4161/biom.18790] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
33
|
Yoshihara K, Yoshida Y, Hayakawa S, Nagaoka N, Irie M, Ogawa T, Van Landuyt KL, Osaka A, Suzuki K, Minagi S, Van Meerbeek B. Nanolayering of phosphoric acid ester monomer on enamel and dentin. Acta Biomater 2011; 7:3187-95. [PMID: 21575747 DOI: 10.1016/j.actbio.2011.04.026] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/06/2011] [Accepted: 04/27/2011] [Indexed: 11/25/2022]
Abstract
Following the "adhesion-decalcification" concept, specific functional monomers possess the capacity to primary chemically interact with hydroxyapatite (HAp). Such ionic bonding with synthetic HAp has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), manifest as self-assembled "nanolayering". In continuation of that basic research this study aimed to explore whether nanolayering also occurs on enamel and dentin when a 10-MDP primer is applied following a common clinical application protocol. Therefore, the interaction of an experimental 10-MDP primer and a control, commercially available, 10-MDP-based primer (Clearfil SE Bond primer (C-SE), Kuraray) with enamel and dentin was characterized by X-ray diffraction (XRD), complemented with transmission electron microscopy interfacial ultrastructural data upon their reaction with enamel and dentin. In addition, XRD was used to study the effect of the concentration of 10-MDP on nanolayering on dentin. Finally, the stability of the nanolayers was determined by measuring the bond strength to enamel and dentin when a photoinitiator was added to the experimental primer or when interfacial polymerization depended solely on the photoinitiator supplied with the subsequently applied adhesive resin. XRD confirmed nanolayering on enamel and dentin, which was significantly greater on dentin than on enamel, and also when the surface was actively rubbed with the primer. Nanolayering was also proportional to the concentration of 10-MDP in the primer. Finally, the experimental primer needed the photoinitiator to obtain a tensile bond strength to dentin comparable with that of the control C-SE primer (which also contains a photoinitiator), but not when bonded to enamel. It is concluded that self-assembled nanolayering occurs on enamel and dentin, even when following a clinically used application protocol. The lower bonding effectiveness of mild self-etch adhesives to enamel should be ascribed in part to a lower chemical reactivity (nanolayering) with enamel HAp.
Collapse
|
34
|
Kannan S, Vieira SI, Olhero SM, Torres PMC, Pina S, da Cruz e Silva OAB, Ferreira JMF. Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomater 2011; 7:1835-43. [PMID: 21146640 DOI: 10.1016/j.actbio.2010.12.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 11/17/2022]
Abstract
The influence of ionic substituents in calcium phosphates intended for bone and tooth replacement biomedical applications is an important research topic, owing to the essential roles played by trace elements in biological processes. The present study investigates the mechanical and biological evaluation of ionic doped hydroxyapatite/β-tricalcium phosphate mixtures which have been prepared by a simple aqueous precipitation method. Heat treating the resultant calcium phosphates in a carbonated atmosphere led to the formation of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures containing the essential ions of biological apatite. The structural analysis determined by Rietveld refinement confirmed the presence of hydroxyapatite as the main phase, together with a considerable amount of β-tricalcium phosphate. Such phase assemblage is essentially due to the influence of substituted ions during synthesis. The results from mechanical tests proved that carbonate substitutions are detrimental for the mechanical properties of apatite-based ceramics. In vitro proliferation assays of osteoblastic-like cells (MC3T3-E1 cell line) to powders revealed that carbonate incorporation can either delay or accelerate MC3T3 proliferation, although reaching the same proliferation levels as control cells after 2 weeks in culture. Further, the powders enable pre-osteoblastic differentiation in a similar manner to control cells, as indirectly measured by ALP activity and Type-I collagen medium secretion.
Collapse
Affiliation(s)
- S Kannan
- Department of Ceramics and Glass Engineering, University of Aveiro, CICECO, Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
35
|
Quillard S, Paris M, Deniard P, Gildenhaar R, Berger G, Obadia L, Bouler JM. Structural and spectroscopic characterization of a series of potassium- and/or sodium-substituted β-tricalcium phosphate. Acta Biomater 2011; 7:1844-52. [PMID: 21185410 DOI: 10.1016/j.actbio.2010.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/10/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
Abstract
In this paper, we report X-ray diffraction investigations as well as Raman and solid-state (31)P and (23)Na magic angle spinning nuclear magnetic resonance (NMR) characterization of three series of calcium orthophosphates. The general formulae of the studied compounds are Ca(10.5-x/2)M(x)(PO(4))(7), where M=K or Na and x=0, 0.25, 0.50, 0.75, 1.0; and Ca(10)K(x)Na(1-x)(PO(4))(7), where x=0, 0.25, 0.5, 0.75, 1.0. These calcium orthophosphates are found to be isostructural with β-tricalcium phosphate (β-TCP, Ca(3)(PO(4))(2)) with the substitution of some calcium sites by potassium and/or sodium cations. The unit cell parameters vary continuously with the level of substitution, a characteristic of these solid solutions. The Raman spectra show the different vibrational bands of the phosphate groups PO(4), while the NMR chemical shifts are sensitive to the non-equivalent phosphorus and sodium ions present in these substituted samples. As both Raman and NMR spectroscopies are local probes, they offer tools to distinguish between these different phosphorus and phosphate groups, according to their structural site and local environment, especially the type of cation substituent. A convenient decomposition of the Raman and NMR spectra into Gaussian-Lorentzian components leads us to propose an assignment of the main observed bands of these substituted β-TCPs.
Collapse
|
36
|
Su K, Shi X, Varshney RR, Wang DA. Transplantable delivery systems for in situ controlled release of bisphosphonate in orthopedic therapy. Expert Opin Drug Deliv 2011; 8:113-26. [PMID: 21174607 DOI: 10.1517/17425247.2011.541438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Bisphosphonates (BPs), structurally similar to pyrophosphates and functionally superior in restraining osteoclast-induced bone resorption, have been widely used as clinical drugs in the treatment of osteoporosis, bone voids and associated inflammation. However, owing to their high aqueous solubility and the consequently high rate of loss during oral administration, the loading and targeting of BPs pose major challenges in practice. Alternative delivery routes such as nasal, subcutaneous/intramuscular injection have contributed little to improving the bioavailiability and efficacy of BPs. To improve and optimize the delivery efficiency and efficacy of BPs, numerous strategies have been developed and adopted. Studies on controlled release of BPs provide important information on the fabrication of BP delivery systems for in situ treatment. As BPs play an important therapeutic role in osteoporosis and similar diseases, it has become essential and vital to survey various reported fabrication methodologies of these systems and the consequential orthopedic treatments so as to keep abreast with advances in their clinical use. AREAS COVERED IN THIS REVIEW Transplantable delivery systems for controlled release of BP are reviewed from literature published since 2000. The fabrication pathways and the release of BPs from various material systems are discussed in case studies. Recent progress in CaP models based on the strong and specific chelation between BPs and calcium phosphate crystals is highlighted. WHAT THE READER WILL GAIN This review offers an outline of the advances in BP controlled release and delivery systems for orthopedic therapy. TAKE HOME MESSAGE Understanding the cutting-edge BP controlled release and delivery systems for in situ treatment is key to the successful design of a more promising and perfect delivery system for orthopedic therapy. Moreover, developing such delivery systems incorporating the numerous advantages of BPs and controlled release environment requires substantially more flexible models to control better the fate of BP drugs.
Collapse
Affiliation(s)
- Kai Su
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Division of Bioengineering, 70 Nanyang Drive, N1.3-B2-13, Singapore 637457, Republic of Singapore
| | | | | | | |
Collapse
|
37
|
Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater 2010; 1:22-107. [PMID: 24955932 PMCID: PMC4030894 DOI: 10.3390/jfb1010022] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/16/2010] [Accepted: 11/25/2010] [Indexed: 12/18/2022] Open
Abstract
In the late 1960s, much interest was raised in regard to biomedical applications of various ceramic materials. A little bit later, such materials were named bioceramics. This review is limited to bioceramics prepared from calcium orthophosphates only, which belong to the categories of bioactive and bioresorbable compounds. There have been a number of important advances in this field during the past 30-40 years. Namely, by structural and compositional control, it became possible to choose whether calcium orthophosphate bioceramics were biologically stable once incorporated within the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of calcium orthophosphate bioceramics-which is able to promote regeneration of bones-was developed. Presently, calcium orthophosphate bioceramics are available in the form of particulates, blocks, cements, coatings, customized designs for specific applications and as injectable composites in a polymer carrier. Current biomedical applications include artificial replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery. Exploratory studies demonstrate potential applications of calcium orthophosphate bioceramics as scaffolds, drug delivery systems, as well as carriers of growth factors, bioactive peptides and/or various types of cells for tissue engineering purposes.
Collapse
|
38
|
Roveri N, Iafisco M. Evolving application of biomimetic nanostructured hydroxyapatite. Nanotechnol Sci Appl 2010; 3:107-25. [PMID: 24198477 PMCID: PMC3781698 DOI: 10.2147/nsa.s9038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical-physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical-physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical-physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.
Collapse
Affiliation(s)
- Norberto Roveri
- Laboratory of Environmental and Biological Structural Chemistry (LEBSC), Dipartimento di Chimica ‘G. Ciamician’, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | - Michele Iafisco
- Laboratory of Environmental and Biological Structural Chemistry (LEBSC), Dipartimento di Chimica ‘G. Ciamician’, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| |
Collapse
|
39
|
Verron E, Khairoun I, Guicheux J, Bouler JM. Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today 2010; 15:547-52. [DOI: 10.1016/j.drudis.2010.05.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/31/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
|
40
|
Ichinohe N, Nakano T, Mitaka T, Umakoshi Y, Tabata Y. Proliferation and osteogenic differentiation of rat bone marrow stromal cells on bioapatite with different crystalline facets. J Biomed Mater Res A 2010; 93:646-55. [PMID: 19591234 DOI: 10.1002/jbm.a.32569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this study is to investigate the attachment, osteogenic differentiation, and collagen matrix secretion of rat bone marrow stromal cells (MSC) and MC3T3-E1 cells on the biological apatite (Ap) with different crystalline facets. The Ap samples with a-facet and c-facet surfaces were prepared by cutting the heat-treated cortical bone of bovine femurs parallel and perpendicular to the longitudinal direction, respectively. MC3T3-E1 cells attached spreading on the a-Ap sample whereas their shape of cells was round on the c-Ap. No difference in the proliferation profile of MSC and MC3T3-E1 cells was observed between the two samples. The activity of alkaline phosphatase was significantly higher for both the cells on the a-Ap sample than that of c-Ap one. The matrix of collagen secreted from MC3T3-E1 cells on the a-Ap sample oriented along the c-axis of Ap, in contrast to those of c-Ap. The cells tended to align along the collagen orientation. It is concluded that the alignment of cells is influenced by the collagen fibril orientation of Ap samples.
Collapse
Affiliation(s)
- Norihisa Ichinohe
- Department of Pathophysiology, Cancer Research Institute, Sapporo Medical University, South 1, West 17, Chuo-ku, Sapporo 060-8556
| | | | | | | | | |
Collapse
|
41
|
Abstract
The use of bone grafts is constantly increasing, their employ is principally linked to bone trauma, prosthesis revision surgery, and arthrodesis applications. In the case of biological bone grafts and depending on the origin of the graft, these grafts are classified as autografts, allografts, or xenografts. The autograft is the most commonly used and corresponds to a fresh bone graft harvesting taken from a second operating site, i.e. iliac crest, parietal bone, tibial plateaux or the fibula. The autograft has many advantages in terms of biotolerance and osteogenic potential, which justify its widespread utilization in reconstructive surgery[1]. From a practical point of view, sampling and grafting take place during the same surgical session. However, the longer exposure to the anesthetic and the surgical operation per se increases the risk of complications. For example, this procedure results in sever post-operation pain, iliac hernias, or even haemorrhages[2]. Furthermore, the volume of the bone graft taken is generally limited to 20 cm3. In the case of allografts, it generally leads to an acute inflammatory reaction which participates to the resorption/substitution process. Xenografts are less used since it involves a donor and a recipient from different species.
Collapse
|
42
|
Lindgren C, Mordenfeld A, Hallman M. A Prospective 1-Year Clinical and Radiographic Study of Implants Placed after Maxillary Sinus Floor Augmentation with Synthetic Biphasic Calcium Phosphate or Deproteinized Bovine Bone. Clin Implant Dent Relat Res 2010; 14:41-50. [DOI: 10.1111/j.1708-8208.2010.00224.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Abstract
A strong interest in use of ceramics for biomedical applications appeared in the late 1960's. Used initially as alternatives to metals in order to increase a biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics, bioactive (or surface reactive) and bioresorbable ones. Furthermore, any type of bioceramics could be porous to provide tissue ingrowth. This review is devoted to bioceramics prepared from calcium orthophosphates, which belong to the categories of bioresorbable and bioactive compounds. During the past 30-40 years, there have been a number of major advances in this field. Namely, after the initial work on development of bioceramics that was tolerated in the physiological environment, emphasis was shifted towards the use of bioceramics that interacted with bones by forming a direct chemical bond. By the structural and compositional control, it became possible to choose whether the bioceramics of calcium orthophosphates was biologically stable once incorporated within the skeletal structure or whether it was resorbed over time. At the turn of the millennium, a new concept of calcium orthophosphate bioceramics, which is able to regenerate bone tissues, has been developed. Current biomedical applications of calcium orthophosphate bioceramics include replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery. Potential future applications of calcium orthophosphate bioceramics will include drug-delivery systems, as well as they will become effective carriers of growth factors, bioactive peptides and/or various types of cells for tissue engineering purposes.
Collapse
|
44
|
Ramaswamy Y, Wu C, Zreiqat H. Orthopedic coating materials: considerations and applications. Expert Rev Med Devices 2009; 6:423-30. [PMID: 19572797 DOI: 10.1586/erd.09.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The host response to titanium and its alloys is not always favorable, as a fibrous layer may form at the skeletal tissue-device interface, causing aseptic loosening. Therefore, a great deal of current orthopedic research is focused on developing implants with improved osseointegration properties in order to increase their clinical success. Promising new studies have been reported regarding coating the currently available implants with various coating materials and techniques so as to improve the long-term stability of implants. This article will discuss various coating materials developed, their advantages and disadvantages as coating materials and their biological performance.
Collapse
Affiliation(s)
- Yogambha Ramaswamy
- Tissue Engineering and Biomaterials Research Unit, Biomedical Engineering, School of Aerospace, Mechanical, Mechatronic Engineering, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
45
|
Paderni S, Terzi S, Amendola L. Major bone defect treatment with an osteoconductive bone substitute. Musculoskelet Surg 2009; 93:89-96. [PMID: 19711008 DOI: 10.1007/s12306-009-0028-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
Abstract
A bone defect can be provoked by several pathological conditions (e.g. bone tumours, infections, major trauma with bone stock loss) or by surgical procedures, required for the appropriate treatment. Surgical techniques currently used for treating bone defects may count on different alternatives, including autologous vascularized bone grafts, homologous bone graft provided by musculoskeletal tissue bank, heterologous bone graft (xenograft), or prostheses, each one of them dealing with both specific advantages and complications and drawbacks. The main concerns related to these techniques respectively are: donor site morbidity and limited available amount; possible immune response and viral transmission; possible animal-derived pathogen transmission and risk of immunogenic rejection; high invasiveness and surgery-related systemic risks, long post-operative. physical recovery and prostheses revision need. Nowadays, an ideal alternative is the use of osteoconductive synthetic bone substitutes. Many synthetic substitutes are available, used either alone or in combination with other bone graft. Synthetic bone graft materials available as alternatives to autogeneous bone include calcium sulphates, special glass ceramics (bioactive glasses) and calcium phosphates (calcium hydroxyapatite, HA; tricalcium phosphate, TCP; and biphasic calcium phosphate, BCP). These materials differ in composition and physical properties fro each other and from bone (De Groot in Bioceramics of calcium phosphate, pp 100-114, 1983; Hench in J Am Ceram Soc 74:1487-1510, 1994; Jarcho in Clin Orthop 157:259-278, 1981; Daculsi et al. in Int Rev Cytol 172:129-191, 1996). Both stoichiometric and non-stoichiometric HA-based substitutes represent the current first choice in orthopedic surgery, in that they provide an osteoconductive scaffold to which chemotactic, circulating proteins and cells (e.g. mesenchymal stem cells, osteoinductive growth factors) can migrate and adhere, and within which progenitor cells can differentiate into functioning osteoblasts (Szpalski and Gunzburg in Orthopedics 25S:601-609, 2002). Indeed, HA may be extemporarily combined either with whole autologous bone marrow or PRP (platelet rich plasma) gel inside surgical theatre in order to favour and accelerate bone regeneration. A case of bifocal ulnar bone defect treated with stoichiometric HA-based bone substitute combined with PRP is reported in here, with a 12-month-radiographic follow-up.
Collapse
|
46
|
Faucheux C, Verron E, Soueidan A, Josse S, Arshad MD, Janvier P, Pilet P, Bouler JM, Bujoli B, Guicheux J. Controlled release of bisphosphonate from a calcium phosphate biomaterial inhibits osteoclastic resorption in vitro. J Biomed Mater Res A 2009; 89:46-56. [PMID: 18404716 DOI: 10.1002/jbm.a.31989] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Calcium phosphate biomaterials such as calcium deficient apatite (CDA) have been contemplated as carrier for delivery of bisphosphonate in bone tissues. In the present work, we have investigated the in vitro biological properties of Zoledronate-loaded CDA. CDA was loaded with zoledronate according to a previously described coating process. 31P MAS NMR spectra demonstrated the effective loading of zoledronate onto CDA. Using 14C labeled zoledronate, we then demonstrated the in vitro release of zoledronate from CDA. In a first set of experiments, we confirmed that Zoledronate reduced the number of TRAP-, vitronectin receptor-, and F-actin ring-positive cells as well as the resorption activity of osteoclasts obtained from a total rabbit bone cell culture. Interestingly, Zoledronate-loaded CDA and its extractive solutions decreased the osteoclastic resorption. Finally, zoledronate-loaded CDA did not affect the viability and alkaline phosphatase activity of primary osteoblastic cells. These data demonstrate that CDA is effective for loading and release of zoledronate. The released zoledronate inhibited osteoclastic resorption without affecting osteoblasts. Our findings therefore suggest that such a drug delivery system would allow an increase in the efficiency of bisphosphonates by being locally available. Further experiments are now required to evaluate the in vivo antiresorptive activity of this concept.
Collapse
Affiliation(s)
- C Faucheux
- INSERM, U791, LIOAD, Nantes, F-44042 France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Calcium Orthophosphates in Nature, Biology and Medicine. MATERIALS 2009; 2:399-498. [PMCID: PMC5445702 DOI: 10.3390/ma2020399] [Citation(s) in RCA: 517] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/09/2009] [Accepted: 04/20/2009] [Indexed: 02/07/2023]
Abstract
The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. These materials are of the special significance because they represent the inorganic part of major normal (bones, teeth and dear antlers) and pathological (i.e. those appearing due to various diseases) calcified tissues of mammals. Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium ortho-phosphates. For example, self-setting hydraulic cements made of calcium orthophosphates are helpful in bone repair, while titanium substitutes covered by a surface layer of calcium orthophosphates are used for hip joint endoprostheses and as tooth substitutes. Porous scaffolds made of calcium orthophosphates are very promising tools for tissue engineering applications. In addition, technical grade calcium orthophosphates are very popular mineral fertilizers. Thus ere calcium orthophosphates are of great significance for humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
48
|
Enkel B, Dupas C, Armengol V, Akpe Adou J, Bosco J, Daculsi G, Jean A, Laboux O, LeGeros RZ, Weiss P. Bioactive materials in endodontics. Expert Rev Med Devices 2008; 5:475-94. [PMID: 18573047 DOI: 10.1586/17434440.5.4.475] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endodontic treatment in dentistry is a delicate procedure and many treatment attempts fail. Despite constant development of new root canal filling techniques, the clinician is confronted with both a complex root canal system and the use of filling materials that are harmful for periapical tissues. This paper evaluates reported studies on biomaterials used in endodontics, including calcium hydroxide, mineral trioxide aggregate, calcium phosphate ceramics and calcium phosphate cements. Special emphasis is made on promising new biomaterials, such as injectable bone substitute and injectable calcium phosphate cements. These materials, which combine biocompatibility, bioactivity and rheological properties, could be good alternatives in endodontics as root canal fillers. They could also be used as drug-delivery vehicles (e.g., for antibiotics and growth factors) or as scaffolds in pulp tissue engineering.
Collapse
Affiliation(s)
- Bénédicte Enkel
- Nantes University Hospital, Pôle Odontologie, ERT 10-51 Equipe de Recherche Clinique en Odontologie et Chirurgie Osseuse, Faculté de Chirurgie Dentaire 1 Place Alexis Ricordeau, Nantes Cedex 01, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Otsuka M, Oshinbe A, Legeros RZ, Tokudome Y, Ito A, Otsuka K, Higuchi WI. Efficacy of the injectable calcium phosphate ceramics suspensions containing magnesium, zinc and fluoride on the bone mineral deficiency in ovariectomized rats. J Pharm Sci 2008; 97:421-32. [PMID: 17879990 DOI: 10.1002/jps.21131] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to evaluate the therapeutic efficacy of a new calcium phosphate (CaP)-based formulation in improving the bone mineral deficiency in ovariectomized (OVX) rats. The ions release experiments for CaP preparations (G2: 0.46% Mg, 5.78% Zn, and 2.5% F; G3:3.1% Mg, 0.03% Zn, and 3.01% F; G4: 1.25% Mg, 1.77% Zn, 1.35% F) and of a Zn-TCP (G1: 6.17% Zn) powders, the initial Mg and Zn ion release rates of MZF-CaPs were performed in acetate buffer at pH 4.5 (37 degrees C). Wistar rats were divided into six groups including a normal (not OVX) group (GN) and a control, OVX group (GC). Rats in groups GC, G1, G2, G3, G4 were OVX. Suspensions consisting of CaP preparations (G2, G3, G4) and of a Zn-TCP (G1) powders were injected in the right thighs of OVX rats in all groups except for GN and GC, once a week for 4 weeks. GN and GC rats were injected with saline solutions. Plasma was analyzed for Zn land alkaline phosphatase levels. The bone mineral density (BMD) was measured using DEXA and the bone (femur) strength determined using three-point-bending analysis. G1 and G2 groups showed high plasma Zn levels. The area under the curve of plasma Zn was significantly greater in the G1, G2, and GN groups than in the G3, G4, and GC groups (p < 0.05). The BMD and bone mechanical strength of the right femur were significantly higher in the G1, G2, G3, and G4 groups than GC group on day 28. The right femur had significantly greater BMD and bone mechanical strength than the left femur in G1, G2, G3, and G4 groups. However, there was no significant difference in the BMD of the right femur between the G1, G2, G3, and G4 groups. Results indicate that the new injectable CaP formulations are effective in improving bone properties of OVX rats and may be useful in osteoporosis therapy.
Collapse
Affiliation(s)
- Makoto Otsuka
- Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, Shinmachi 1-1-20, Nishi-Tokyo 202-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Katz JL, Misra A, Spencer P, Wang Y, Bumrerraj S, Nomura T, Eppell SJ, Tabib-Azar M. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces. MATERIALS SCIENCE & ENGINEERING. A, STRUCTURAL MATERIALS : PROPERTIES, MICROSTRUCTURE AND PROCESSING 2007; 27:450-468. [PMID: 18270549 PMCID: PMC2239254 DOI: 10.1016/j.msec.2006.05.055] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin-enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level.
Collapse
Affiliation(s)
- J. Lawrence Katz
- School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO, USA
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Anil Misra
- School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Paulette Spencer
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yong Wang
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | | - Steven J. Eppell
- Case School of Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Massood Tabib-Azar
- Case School of Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|