1
|
Ibarra‐Chávez R, Reboud J, Penadés JR, Cooper JM. Phage-Inducible Chromosomal Islands as a Diagnostic Platform to Capture and Detect Bacterial Pathogens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301643. [PMID: 37358000 PMCID: PMC10460865 DOI: 10.1002/advs.202301643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Phage-inducible chromosomal islands (PICIs) are a family of phage satellites that hijack phage components to facilitate their mobility and spread. Recently, these genetic constructs are repurposed as antibacterial drones, enabling a new toolbox for unorthodox applications in biotechnology. To illustrate a new suite of functions, the authors have developed a user-friendly diagnostic system, based upon PICI transduction to selectively enrich bacteria, allowing the detection and sequential recovery of Escherichia coli and Staphylococcus aureus. The system enables high transfer rates and sensitivities in comparison with phages, with detection down to ≈50 CFU mL-1 . In contrast to conventional detection strategies, which often rely on nucleic acid molecular assays, and cannot differentiate between dead and live organisms, this approach enables visual sensing of viable pathogens only, through the expression of a reporter gene encoded in the PICI. The approach extends diagnostic sensing mechanisms beyond cell-free synthetic biology strategies, enabling new synthetic biology/biosensing toolkits.
Collapse
Affiliation(s)
- Rodrigo Ibarra‐Chávez
- Department of BiologySection of MicrobiologyUniversity of CopenhagenUniversitetsparken 15, bldg. 1CopenhagenDK2100Denmark
- Institute of InfectionImmunity and InflammationCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowG12 8TAUK
- Division of Biomedical EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Julien Reboud
- Division of Biomedical EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - José R. Penadés
- Institute of InfectionImmunity and InflammationCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowG12 8TAUK
- Departamento de Ciencias BiomédicasUniversidad CEU Cardenal HerreraMoncada46113Spain
- Centre for Bacterial Resistance BiologyImperial College LondonSouth KensingtonSW7 2AZUK
| | - Jonathan M. Cooper
- Division of Biomedical EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
2
|
Zhang D, Coronel-Aguilera CP, Romero PL, Perry L, Minocha U, Rosenfield C, Gehring AG, Paoli GC, Bhunia AK, Applegate B. The Use of a Novel NanoLuc -Based Reporter Phage for the Detection of Escherichia coli O157:H7. Sci Rep 2016; 6:33235. [PMID: 27624517 PMCID: PMC5021930 DOI: 10.1038/srep33235] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/23/2016] [Indexed: 01/31/2023] Open
Abstract
Rapid detection of the foodborne pathogen Escherichia coli O157:H7 is of vital importance for public health worldwide. Among detection methods, reporter phages represent unique and sensitive tools for the detection of E. coli O157:H7 from food as they are host-specific and able to differentiate live cells from dead ones. Upon infection, target bacteria become identifiable since reporter genes are expressed from the engineered phage genome. The E. coli O157:H7 bacteriophage ΦV10 was modified to express NanoLuc luciferase (Nluc) derived from the deep-sea shrimp Oplophorus gracilirostris. Once infected by the ΦV10 reporter phage, E. coli O157:H7 produces a strong bioluminescent signal upon addition of commercial luciferin (Nano-Glo(®)). Enrichment assays using E. coli O157:H7 grown in LB broth with a reporter phage concentration of 1.76 × 10(2) pfu ml(-1) are capable of detecting approximately 5 CFU in 7 hours. Comparable detection was achieved within 9 hours using 9.23 × 10(3) pfu ml(-1) of phage in selective culture enrichments of ground beef as a representative food matrix. Therefore we conclude that this NanoLuc reporter phage assay shows promise for detection of E. coli O157:H7 from food in a simple, fast and sensitive manner.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | | | - Patricia L. Romero
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Lynda Perry
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Udit Minocha
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Carla Rosenfield
- Department of Biological Science, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew G. Gehring
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - George C. Paoli
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Cho IH, Radadia AD, Farrokhzad K, Ximenes E, Bae E, Singh AK, Oliver H, Ladisch M, Bhunia A, Applegate B, Mauer L, Bashir R, Irudayaraj J. Nano/micro and spectroscopic approaches to food pathogen detection. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:65-88. [PMID: 24896312 DOI: 10.1146/annurev-anchem-071213-020249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Despite continuing research efforts, timely and simple pathogen detection with a high degree of sensitivity and specificity remains an elusive goal. Given the recent explosion of sensor technologies, significant strides have been made in addressing the various nuances of this important global challenge that affects not only the food industry but also human health. In this review, we provide a summary of the various ongoing efforts in pathogen detection and sample preparation in areas related to Fourier transform infrared and Raman spectroscopy, light scattering, phage display, micro/nanodevices, and nanoparticle biosensors. We also discuss the advantages and potential limitations of the detection methods and suggest next steps for further consideration.
Collapse
Affiliation(s)
- Il-Hoon Cho
- Bindley Bioscience and Birck Nanotechnology Center; Departments of
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Detection of bacteria with bioluminescent reporter bacteriophage. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 144:155-71. [PMID: 25084997 DOI: 10.1007/978-3-662-43385-0_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacteriophages are viruses that exclusively infect bacteria. They are ideally suited for the development of highly specific diagnostic assay systems. Bioluminescent reporter bacteriophages are designed and constructed by integration of a luciferase gene in the virus genome. Relying on the host specificity of the phage, the system enables rapid, sensitive, and specific detection of bacterial pathogens. A bioluminescent reporter phage assay is superior to any other molecular detection method, because gene expression and light emission are dependent on an active metabolism of the bacterial cell, and only viable cells will yield a signal. In this chapter we introduce the concept of creating reporter phages, discuss their advantages and disadvantages, and illustrate the advances made in developing such systems for different Gram-negative and Gram-positive pathogens. The application of bioluminescent reporter phages for the detection of foodborne pathogens is emphasized.
Collapse
|
5
|
Schmelcher M, Loessner MJ. Application of bacteriophages for detection of foodborne pathogens. BACTERIOPHAGE 2014; 4:e28137. [PMID: 24533229 PMCID: PMC3919822 DOI: 10.4161/bact.28137] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/22/2022]
Abstract
Bacterial contamination of food products presents a challenge for the food industry and poses a high risk for the consumer. Despite increasing awareness and improved hygiene measures, foodborne pathogens remain a threat for public health, and novel methods for detection of these organisms are needed. Bacteriophages represent ideal tools for diagnostic assays because of their high target cell specificity, inherent signal-amplifying properties, easy and inexpensive production, and robustness. Every stage of the phage lytic multiplication cycle, from the initial recognition of the host cell to the final lysis event, may be harnessed in several ways for the purpose of bacterial detection. Besides intact phage particles, phage-derived affinity molecules such as cell wall binding domains and receptor binding proteins can serve for this purpose. This review provides an overview of existing phage-based technologies for detection of foodborne pathogens, and highlights the most recent developments in this field, with particular emphasis on phage-based biosensors.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Institute of Food, Nutrition and Health; ETH Zurich; Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health; ETH Zurich; Zurich, Switzerland
| |
Collapse
|
6
|
Lee YD, Chang HI, Park JH. Complete genomic sequence of virulent Cronobacter sakazakii phage ESSI-2 isolated from swine feces. Arch Virol 2011; 156:721-4. [PMID: 21311921 DOI: 10.1007/s00705-011-0934-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/22/2011] [Indexed: 11/28/2022]
Abstract
A newly identified virulent Cronobacter sakazakii phage, ESSI-2, was isolated from fecal samples from swine. The morphological characteristics evident under a transmission electron microscope indicated that phage ESSI-2 belonged to the family Myoviridae. The genome of phage ESSI-2 comprised a double-stranded DNA of 28,765 bp with a G+C content of 55.17%. Bioinformatic analysis of the phage genome identified 36 putative open reading frames (ORFs). The genome of phage ESSI-2 was not significantly similar to that of a previously reported bacteriophage of the members of Enterobacteriaceae. A lysogeny module was found within the genome of this virulent phage.
Collapse
Affiliation(s)
- Young-Duck Lee
- School of Life Science and Biotechnology, Korea University, Anam-Dong, Sungbuk-Gu, Seoul, South Korea
| | | | | |
Collapse
|
7
|
Kaittanis C, Santra S, Perez JM. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 2010; 62:408-23. [PMID: 19914316 DOI: 10.1016/j.addr.2009.11.013] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/14/2009] [Indexed: 01/04/2023]
Abstract
Infectious diseases are still a major healthcare problem. From food intoxication and contaminated water, to hospital-acquired diseases and pandemics, infectious agents cause disease throughout the world. Despite advancements in pathogens' identification, some of the gold-standard diagnostic methods have limitations, including laborious sample preparation, bulky instrumentation and slow data readout. In addition, new field-deployable diagnostic modalities are urgently needed in first responder and point-of-care applications. Apart from compact, these sensors must be sensitive, specific, robust and fast, in order to facilitate detection of the pathogen even in remote rural areas. Considering these characteristics, researchers have utilized innovative approaches by employing the unique properties of nanomaterials in order to achieve detection of infectious agents, even in complex media like blood. From gold nanoparticles and their plasmonic shifts to iron oxide nanoparticles and changes in magnetic properties, detection of pathogens, toxins, antigens and nucleic acids has been achieved with impressive detection thresholds. Additionally, as bacteria become resistant to antibiotics, nanotechnology has achieved the rapid determination of bacterial drug susceptibility and resistance using novel methods, such as amperometry and magnetic relaxation. Overall, these promising results hint to the adoption of nanotechnology-based diagnostics for the diagnosis of infectious diseases in diverse settings throughout the globe, preventing epidemics and safeguarding human and economic wellness.
Collapse
|
8
|
Abstract
Salmonellae are mammalian pathogens that are transmitted mainly through foodstuffs and their handlers. Rapid detection requires both specificity and sensitivity in samples containing other bacteria. A solution to this problem is the use of the great specificity conferred by bacteriophages. After implanting reporter genes in a phage genome, the reporter gene products can be measured with great sensitivity when a bacterial host is present. Bacteriophage Felix 01 infects almost all Salmonella strains and has been manipulated to contain the lux genes specifying bacterial luciferase, an enzyme that converts chemical energy to visible light. A widely applicable methodology for preventing the escape of such recombinant phage has also been developed.
Collapse
|
9
|
Girotti S, Ferri EN, Fumo MG, Maiolini E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 2007; 608:2-29. [PMID: 18206990 DOI: 10.1016/j.aca.2007.12.008] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/06/2007] [Accepted: 12/09/2007] [Indexed: 11/18/2022]
Abstract
This review deals with the applications of bioluminescent bacteria to the environmental analyses, published during the years 2000-2007. The ecotoxicological assessment, by bioassays, of the environmental risks and the luminescent approaches are reported. The review includes a brief introduction to the characteristics and applications of bioassays, a description of the characteristics and applications of natural bioluminescent bacteria (BLB), and a collection of the main applications to organic and inorganic pollutants. The light-emitting genetically modified bacteria applications, as well as the bioluminescent immobilized systems and biosensors are outlined. Considerations about commercially available BLB and BLB catalogues are also reported. Most of the environmental applications, here mentioned, of luminescent organisms are on wastewater, seawater, surface and ground water, tap water, soil and sediments, air. Comparison to other bioindicators and bioassay has been also made. Various tables have been inserted, to make easier to take a rapid glance at all possible references concerning the topic of specific interest.
Collapse
Affiliation(s)
- Stefano Girotti
- Department of Metallurgic Science, Electrochemistry and Chemical Techniques, University of Bologna, Via S. Donato 15, 40127 Bologna, Italy.
| | | | | | | |
Collapse
|
10
|
Hagens S, Loessner MJ. Application of bacteriophages for detection and control of foodborne pathogens. Appl Microbiol Biotechnol 2007; 76:513-9. [PMID: 17554535 DOI: 10.1007/s00253-007-1031-8] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 05/11/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
The incidence of foodborne infectious diseases is stable or has even increased in many countries. Consequently, our awareness regarding hygiene measures in food production has also increased dramatically over the last decades. However, even today's modern production techniques and intensive food-monitoring programs have not been able to effectively control the problem. At the same time, increased production volumes are distributed to more consumers, and if contaminated, potentially cause mass epidemics. Accordingly, research directed to improve food safety has also been taken forward, also exploring novel methods and technologies. Such an approach is represented by the use of bacteriophage for specific killing of unwanted bacteria. The extreme specificity of phages renders them ideal candidates for applications designed to increase food safety during the production process. Phages are the natural enemies of bacteria, and can be used for biocontrol of bacteria without interfering with the natural microflora or the cultures in fermented products. Moreover, phages or phage-derived proteins can also be used to detect the presence of unwanted pathogens in food or the production environments, which allows quick and specific identification of viable cells. This review intends to briefly summarize and explain the principles and current standing of these approaches.
Collapse
Affiliation(s)
- Steven Hagens
- Institute of Food Science and Nutrition, ETH Zurich, Schmelzbergstrasse 7, CH-8092, Zurich, Switzerland
| | | |
Collapse
|
11
|
Kuhn J, Suissa M, Wyse J, Cohen I, Weiser I, Reznick S, Lubinsky-Mink S, Stewart G, Ulitzur S. Detection of bacteria using foreign DNA: the development of a bacteriophage reagent for Salmonella. Int J Food Microbiol 2002; 74:229-38. [PMID: 11981973 DOI: 10.1016/s0168-1605(01)00683-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A phage-based reagent was developed for the detection of Salmonella in food samples. The parental phage was Felix 01, which lyses practically all Salmonella. Using data obtained about the molecular biology of the phage, a recombinant phage that carried the bacterial genes specifying luciferase was produced. The method involved the isolation of amber nonsense mutations and subsequent crosses to render doubly mutant phage with a very low reversion rate on strains lacking an amber suppressor. A plasmid was constructed that contained a segment of Felix 01 DNA with two adjacent genes, one dispensable and the other essential, and their flanking sequences. Recombinant DNA technology was used to remove the two genes and the luxA and luxB genes for luciferase, and a gene specifying a tRNA that recognizes amber codons (supF=tyrT) was put in their stead. This region could be transferred into the genome of the phage by homologous recombination. The recombinant phage cannot grow because it lacks an essential gene. However, it can grow in a host that synthesizes the missing protein. This technique allows the construction of "locked" recombinant phages that carry foreign DNA but which cannot propagate themselves in nature.
Collapse
Affiliation(s)
- Jonathan Kuhn
- Department of Biology Israel Institute of Technology, Technion, Haifa
| | | | | | | | | | | | | | | | | |
Collapse
|