1
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
2
|
Rabionet M, Bernard P, Pichery M, Marsching C, Bayerle A, Dworski S, Kamani MA, Chitraju C, Gluchowski NL, Gabriel KR, Asadi A, Ebel P, Hoekstra M, Dumas S, Ntambi JM, Jacobsson A, Willecke K, Medin JA, Jonca N, Sandhoff R. Epidermal 1-O-acylceramides appear with the establishment of the water permeability barrier in mice and are produced by maturating keratinocytes. Lipids 2022; 57:183-195. [PMID: 35318678 DOI: 10.1002/lipd.12342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
1-O-Acylceramides (1-OACs) have a fatty acid esterified to the 1-hydroxyl of the sphingosine head group of the ceramide, and recently we identified these lipids as natural components of human and mouse epidermis. Here we show epidermal 1-OACs arise shortly before birth during the establishment of the water permeability barrier in mice. Fractionation of human epidermis indicates 1-OACs concentrate in the stratum corneum. During in vitro maturation into reconstructed human epidermis, human keratinocytes dramatically increase 1-OAC levels indicating they are one source of epidermal 1-OACs. In search of potential enzymes responsible for 1-OAC synthesis in vivo, we analyzed mutant mice with deficiencies of ceramide synthases (Cers2, Cers3, or Cers4), diacylglycerol acyltransferases (Dgat1 or Dgat2), elongase of very long fatty acids 3 (Elovl3), lecithin cholesterol acyltransferase (Lcat), stearoyl-CoA desaturase 1 (Scd1), or acidic ceramidase (Asah1). Overall levels of 1-OACs did not decrease in any mouse model. In Cers3 and Dgat2-deficient epidermis they even increased in correlation with deficient skin barrier function. Dagt2 deficiency reshapes 1-OAC synthesis with an increase in 1-OACs with N-linked non-hydroxylated fatty acids and a 60% decrease compared to control in levels of 1-OACs with N-linked hydroxylated palmitate. As none of the single enzyme deficiencies we examined resulted in a lack of 1-OACs, we conclude that either there is functional redundancy in forming 1-OAC and more than one enzyme is involved, and/or an unknown acyltransferase of the epidermis performs the final step of 1-OAC synthesis, the implications of which are discussed.
Collapse
Affiliation(s)
- Mariona Rabionet
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Pauline Bernard
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Melanie Pichery
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Christian Marsching
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany.,Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Aline Bayerle
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Shaalee Dworski
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina L Gluchowski
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katlyn R Gabriel
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Abolfazl Asadi
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Philipp Ebel
- Molecular Genetics, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Menno Hoekstra
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Leiden, Netherlands
| | - Sabrina Dumas
- Department of Nutritional sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James M Ntambi
- Department of Nutritional sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anders Jacobsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Klaus Willecke
- Molecular Genetics, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jeffrey A Medin
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nathalie Jonca
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France.,CHU Toulouse, Hôpital Purpan, Laboratoire de Biologie Cellulaire et Cytologie, Institut Fédératif de Biologie, Toulouse, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany
| |
Collapse
|
3
|
Hinkovska-Galcheva V, Treadwell T, Shillingford JM, Lee A, Abe A, Tesmer JJG, Shayman JA. Inhibition of lysosomal phospholipase A2 predicts drug-induced phospholipidosis. J Lipid Res 2021; 62:100089. [PMID: 34087196 PMCID: PMC8243516 DOI: 10.1016/j.jlr.2021.100089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Phospholipidosis, the excessive accumulation of phospholipids within lysosomes, is a pathological response observed following exposure to many drugs across multiple therapeutic groups. A clear mechanistic understanding of the causes and implications of this form of drug toxicity has remained elusive. We previously reported the discovery and characterization of a lysosome-specific phospholipase A2 (PLA2G15) and later reported that amiodarone, a known cause of drug-induced phospholipidosis, inhibits this enzyme. Here, we assayed a library of 163 drugs for inhibition of PLA2G15 to determine whether this phospholipase was the cellular target for therapeutics other than amiodarone that cause phospholipidosis. We observed that 144 compounds inhibited PLA2G15 activity. Thirty-six compounds not previously reported to cause phospholipidosis inhibited PLA2G15 with IC50 values less than 1 mM and were confirmed to cause phospholipidosis in an in vitro assay. Within this group, fosinopril was the most potent inhibitor (IC50 0.18 μM). Additional characterization of the inhibition of PLA2G15 by fosinopril was consistent with interference of PLA2G15 binding to liposomes. PLA2G15 inhibition was more accurate in predicting phospholipidosis compared with in silico models based on pKa and ClogP, measures of protonation, and transport-independent distribution in the lysosome, respectively. In summary, PLA2G15 is a primary target for cationic amphiphilic drugs that cause phospholipidosis, and PLA2G15 inhibition by cationic amphiphilic compounds provides a potentially robust screening platform for potential toxicity during drug development.
Collapse
Affiliation(s)
- Vania Hinkovska-Galcheva
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Taylour Treadwell
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan M Shillingford
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Angela Lee
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Akira Abe
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Pharmacology, Purdue University, West Lafayette, IN, USA
| | - James A Shayman
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Snider JM, Luberto C, Hannun YA. Approaches for probing and evaluating mammalian sphingolipid metabolism. Anal Biochem 2019; 575:70-86. [PMID: 30917945 DOI: 10.1016/j.ab.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
Abstract
Sphingolipid metabolism plays a critical role in regulating processes that control cellular fate. This dynamic pathway can generate and degrade the central players: ceramide, sphingosine and sphingosine-1-phosphate in almost any membrane in the cell, adding an unexpected level of complexity in deciphering signaling events. While in vitro assays have been developed for most enzymes in SL metabolism, these assays are setup for optimal activity conditions and can fail to take into account regulatory components such as compartmentalization, substrate limitations, and binding partners that can affect cellular enzymatic activity. Therefore, many in-cell assays have been developed to derive results that are authentic to the cellular situation which may give context to alteration in SL mass. This review will discuss approaches for utilizing probes for mammalian in-cell assays to interrogate most enzymatic steps central to SL metabolism. The use of inhibitors in conjunction with these probes can verify the specificity of cellular assays as well as provide valuable insight into flux in the SL network. The use of inhibitors specific to each of the central sphingolipid enzymes are also discussed to assist researchers in further interrogation of these pathways.
Collapse
Affiliation(s)
- Justin M Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Departments of Biochemistry, Pathology and Pharmacology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
5
|
Shayman JA, Abe A. Drug induced phospholipidosis: an acquired lysosomal storage disorder. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:602-11. [PMID: 22960355 DOI: 10.1016/j.bbalip.2012.08.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 12/30/2022]
Abstract
There is a strong association between lysosome enzyme deficiencies and monogenic disorders resulting in lysosomal storage disease. Of the more than 75 characterized lysosomal proteins, two thirds are directly linked to inherited diseases of metabolism. Only one lysosomal storage disease, Niemann-Pick disease, is associated with impaired phospholipid metabolism. However, other phospholipases are found in the lysosome but remain poorly characterized. A recent exception is lysosomal phospholipase A2 (group XV phospholipase A2). Although no inherited disorder of lysosomal phospholipid metabolism has yet been associated with a loss of function of this lipase, this enzyme may be a target for an acquired form of lysosomal storage, drug induced phospholipidosis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- James A Shayman
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
6
|
Group XV phospholipase A₂, a lysosomal phospholipase A₂. Prog Lipid Res 2010; 50:1-13. [PMID: 21074554 DOI: 10.1016/j.plipres.2010.10.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/29/2010] [Accepted: 10/30/2010] [Indexed: 12/21/2022]
Abstract
A phospholipase A₂ was identified from MDCK cell homogenates with broad specificity toward glycerophospholipids including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. The phospholipase has the unique ability to transacylate short chain ceramides. This phospholipase is calcium-independent, localized to lysosomes, and has an acidic pH optimum. The enzyme was purified from bovine brain and found to be a water-soluble glycoprotein consisting of a single peptide chain with a molecular weight of 45 kDa. The primary structure deduced from the DNA sequences is highly conserved between chordates. The enzyme was named lysosomal phospholipase A₂ (LPLA₂) and subsequently designated group XV phospholipase A₂. LPLA₂ has 49% of amino acid sequence identity to lecithin-cholesterol acyltransferase and is a member of the αβ-hydrolase superfamily. LPLA₂ is highly expressed in alveolar macrophages. A marked accumulation of glycerophospholipids and extensive lamellar inclusion bodies, a hallmark of cellular phospholipidosis, is observed in alveolar macrophages in LPLA₂(-/-) mice. This defect can also be reproduced in macrophages that are exposed to cationic amphiphilic drugs such as amiodarone. In addition, older LPLA₂(-/-) mice develop a phenotype similar to human autoimmune disease. These observations indicate that LPLA₂ may play a primary role in phospholipid homeostasis, drug toxicity, and host defense.
Collapse
|
7
|
Abe A, Kelly R, Kollmeyer J, Hiraoka M, Lu Y, Shayman JA. The secretion and uptake of lysosomal phospholipase A2 by alveolar macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7873-81. [PMID: 19017977 DOI: 10.4049/jimmunol.181.11.7873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Macrophages have long been known to secrete a Phospholipase A(2) with an acidic pH optimum in response to phagocytic stimuli. However, the enzyme or enzymes responsible for this activity have not been identified. We report that mouse alveolar macrophages release lysosomal phospholipase A(2) (LPLA(2)) into the medium of cultured cells following stimulation with zymosan. The release of the enzyme was detected by enzymatic activity assays as well as by Western blotting using an Ab against mouse LPLA(2). LPLA(2) is a high mannose type glycoprotein found in lysosomes, suggesting that the released enzyme might be reincorporated into alveolar macrophages via a mannose or mannose phosphate receptor. Recombinant glycosylated mouse LPLA(2) produced by HEK293 cells was applied to LPLA(2)-deficient (LPLA(2)(-/-)) mouse alveolar macrophages. The uptake of exogenous LPLA(2) into LPLA(2)(-/-) alveolar macrophages occurred in a concentration-dependent manner. The LPLA(2) taken into the alveolar macrophages colocalized with the lysosomal marker, Lamp-1. This uptake was significantly suppressed in the presence of alpha-methyl-mannoside but not in the presence of mannose 6-phosphate. Thus, the predominant pathway for uptake of exogenous LPLA(2) is via the mannose receptor, with subsequent translocation into acidic, Lamp-1-associated compartments. LPLA(2)(-/-) alveolar macrophages are characterized by marked accumulation of phosphatidylcholine and phosphatidylethanolamine. Treatment with the recombinant LPLA(2) rescued the LPLA(2)(-/-) alveolar macrophages by markedly decreasing the phospholipid accumulation. The application of a catalytically inactive LPLA(2) revealed that the enzymatic activity of LPLA(2) was required for the phospholipid reduction. These studies identify LPLA(2) as a high m.w.-secreted Phospholipase A(2).
Collapse
Affiliation(s)
- Akira Abe
- Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
8
|
Sullards MC, Allegood JC, Kelly S, Wang E, Haynes CA, Park H, Chen Y, Merrill AH. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: "inside-out" sphingolipidomics. Methods Enzymol 2007; 432:83-115. [PMID: 17954214 DOI: 10.1016/s0076-6879(07)32004-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Due to the large number of highly bioactive subspecies, elucidation of the roles of sphingolipids in cell structure, signaling, and function is beginning to require that one perform structure-specific and quantitative (i.e., "sphingolipidomic") analysis of all individual subspecies, or at least of those are relevant to the biologic system of interest. As part of the LIPID MAPS Consortium, methods have been developed and validated for the extraction, liquid chromatographic (LC) separation, and identification and quantitation by electrospray ionization (ESI), tandem mass spectrometry (MS/MS) using an internal standard cocktail that encompasses the signaling metabolites (e.g., ceramides, ceramide 1-phosphates, sphingoid bases, and sphingoid base 1-phosphates) as well as more complex species (sphingomyelins, mono- and di-hexosylceramides). The number of species that can be analyzed is growing rapidly with the addition of sulfatides and other complex sphingolipids as more internal standards become available. This review describes these methods as well as summarizes others from the published literature. Sphingolipids are an amazingly complex family of compounds that are found in all eukaryotes as well as some prokaryotes and viruses. The size of the sphingolipidome (i.e., all of the individual molecular species of sphingolipids) is not known, but must be immense considering mammals have over 400 headgroup variants (for a listing, see http://www.sphingomap.org), each of which is comprised of at least a few-and, in some cases, dozens-of lipid backbones. No methods have yet been developed that can encompass so many different compounds in a structurally specific and quantitative manner. Nonetheless, it is possible to analyze useful subsets of the sphingolipidome, such as the backbone sphingolipids involved in signaling (sphingoid bases, sphingoid base 1-phosphates, ceramides, and ceramide 1-phosphates) and metabolites at important branchpoints, such as the partitioning of ceramide into sphingomyelins, glucosylceramides, galactosylceramides, and ceramide 1-phosphate versus turnover to the backbone sphingoid base. This review describes methodology that has been developed as part of the LIPID MAPS Consortium (www.lipidmaps.org) as well as other methods that can be used for sphingolipidomic analysis to the extent that such is currently feasible. The focus of this review is primarily mammalian sphingolipids; hence, if readers are interested in methods to study other organisms, they should consult the excellent review by Stephen Levery in another volume of Methods in Enzymology (Levery, 2005), which covers additional species found in plants, fungi, and other organisms. It should be noted from the start that although many analytical challenges remain in the development of methods to analyze the full "sphingolipidome," the major impediment to progress is the limited availability of reliable internal standards for most of the compounds of interest. Because it is an intrinsic feature of mass spectrometry that ion yields tend to vary considerably among different compounds, sources, methods, and instruments, an analysis that purports to be quantitative will not be conclusive unless enough internal standards have been added to correct for these variables. Ideally, there should be some way of standardizing every compound in the unknown mixture; however, that is difficult, if not impossible, to do because the compounds are not available, and the inclusion of so many internal standards generates a spectrum that may be too complex to interpret. Therefore, a few representative internal standards are usually added, and any known differences in the ion yields of the analytes of interest versus the spiked standard are factored into the calculations. Identification of appropriate internal standards has been a major focus of the LIPID MAPS Consortium, and the methods described in this review are based on the development of a certified (i.e., compositionally and quantitatively defined by the supplier) internal standard cocktail that is now commercially available (Avanti Polar Lipids, Alabaster, AL). For practical and philosophical reasons, an internal standard cocktail was chosen over the process of an investigator adding individual standards for only the analytes of interest. On the practical level, addition of a single cocktail minimizes pipetting errors as well as keeping track of whether each internal standard is still usable (e.g., has it degraded while in solution?). Philosophically, the internal standard cocktail was chosen because an underlying premise of systems analysis asserts that, due to the high relevancy of unexpected interrelationships involving more distant components, one can only understand a biological system when factors outside the primary focus of the experiment have also been examined. Indeed, the first payoffs of "omics" and systems approaches involve the discoveries of interesting compounds in unexpected places when a "sphingolipidomic" analytical method was being used as routine practice instead of a simpler method that would have only measured the compound initially thought to be important (Zheng et al., 2006). Thus, routine addition of a broad internal standard cocktail at the outset of any analysis maximizes the opportunity for such discoveries, both at the time the original measurements are made and when one decides to return to the samples later, which can fortunately be done for many sphingolipids because they remain relatively stable in storage.
Collapse
Affiliation(s)
- M Cameron Sullards
- School of Biology, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- A H Merrill
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322-3050, USA
| |
Collapse
|