1
|
Liu Y, Wang C, Fu X, Ren M. The Progress and Evolving Trends in Nucleic-Acid-Based Therapies. Biomolecules 2025; 15:376. [PMID: 40149911 PMCID: PMC11940734 DOI: 10.3390/biom15030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Nucleic-acid-based therapies have emerged as a pivotal domain within contemporary biomedical science, marked by significant advancements in recent years. These innovative treatments primarily operate through the precise binding of DNA or RNA molecules to discrete target genes, subsequently suppressing the expression of the target proteins. The spectrum of nucleic-acid-based therapies encompasses antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs), etc. Compared to more traditional medicinal approaches, nucleic-acid-based therapies stand out for their highly targeted action on specific genes, as well as their potential for chemical modification to improve resistance to nucleases, ensuring sustained therapeutic activity and mitigating immunogenicity concerns. Nevertheless, these molecules' limited cellular permeability necessitates the deployment of delivery vectors to enhance their intracellular uptake and stability. As nucleic-acid-based therapies progressively display promising pharmacodynamic profiles, there has been a burgeoning interest in these treatments for applications in clinical research. This review aims to summarize the variety of nucleic acid drugs and their mechanisms, evaluate the present status in research and application, discourse on prospective trends, and potential challenges ahead. These innovative therapeutics are anticipated to assume a pivotal role in the management of a wide array of diseases.
Collapse
Affiliation(s)
| | | | - Xiuping Fu
- School of Chemistry and School of Life Sciences, Tiangong University, Tianjin 300387, China; (Y.L.); (C.W.)
| | - Mengtian Ren
- School of Chemistry and School of Life Sciences, Tiangong University, Tianjin 300387, China; (Y.L.); (C.W.)
| |
Collapse
|
2
|
Efficient siRNA transfection to the inner ear through the intact round window by a novel proteidic delivery technology in the chinchilla. Gene Ther 2013; 21:10-8. [PMID: 24108151 PMCID: PMC3881030 DOI: 10.1038/gt.2013.49] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/21/2013] [Accepted: 08/27/2013] [Indexed: 12/27/2022]
Abstract
The use of small-interfering RNA (siRNA) has great potential for the development of drugs designed to knock down the expression of damage- or disease-causing genes. However, because of the high molecular weight and negative charge of siRNA, it is restricted from crossing the blood-cochlear barrier, which limits the concentration and size of molecules that are able to gain access to cells of the inner ear. Intratympanic approaches, which deliver siRNA to the middle ear, rely on permeation through the round window for access to the structures of the inner ear. We developed an innovative siRNA delivery recombination protein, TAT double-stranded RNA-binding domains (TAT-DRBDs), which can transfect Cy3-labeled siRNA into cells of the inner ear, including the inner and outer hair cells, crista ampullaris, macula utriculi and macula sacculi, through intact round-window permeation in the chinchilla in vivo, and there were no apparent morphological damages for the time of observation. We also found that Cy3-labeled siRNA could directly enter spiral ganglion neurons and the epithelium of the stria vascularis independently; however, the mechanism is unknown. Therefore, as a non-viral vector, TAT-DRBD is a good candidate for the delivery of double-stranded siRNAs for treating various inner ear ailments and preservation of hearing function.
Collapse
|
3
|
Jain ML, Bruice PY, Szabó IE, Bruice TC. Incorporation of positively charged linkages into DNA and RNA backbones: a novel strategy for antigene and antisense agents. Chem Rev 2011; 112:1284-309. [PMID: 22074477 DOI: 10.1021/cr1004265] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Moti L Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
4
|
Kumar R, Garneau P, Nguyen N, William Lown J, Pelletier J. Methionine Sustituted Polyamides are RNAse Mimics that Inhibit Translation. J Drug Target 2008; 12:125-34. [PMID: 15203891 DOI: 10.1080/1061186042000220728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RNAse mimics are small molecules that can cleave RNA in a fashion similar to ribonucleases. These compounds would be very useful as gene specific reagents if their activities could be regulated and targeted. We demonstrate here that polyamides with methionine substituents show enhanced RNA cleavage activity relative to other polyamides. Conjugation of these compounds to aminoglycosides produced RNAse mimics that are capable of inhibiting eukaryotic protein synthesis. As a new class of compounds capable of interacting with nucleic acids, these novel aminoglycoside-polyamides constitute promising scaffolds for the construction of nuclease mimics with biological activity.
Collapse
Affiliation(s)
- Rohtash Kumar
- Department of Chemistry University of Alberta Edmonton Alta. Canada
| | | | | | | | | |
Collapse
|
5
|
Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 2007; 59:164-82. [PMID: 17481774 DOI: 10.1016/j.addr.2007.03.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 03/04/2007] [Indexed: 01/05/2023]
Abstract
RNA interference (RNAi) is an evolutionary conserved cellular process for the regulation of gene expression. In mammalian cells, RNAi is induced via short (21-23 nt) duplexes of RNA, termed small interfering RNA (siRNA), that can elicit highly sequence-specific gene silencing. However, synthetic siRNA duplexes are polyanionic macromolecules that do not readily enter cells and typically require the use of a delivery vector for effective gene silencing in vitro and in vivo. Choice of delivery system is usually made on its ability to enhance cellular uptake of siRNA. However, recent gene expression profiling (toxicogenomics) studies have shown that separate from their effects on cellular uptake, delivery systems can also elicit wide ranging gene changes in target cells that may impact on the 'off-target' effects of siRNA. Furthermore, if delivery systems also alter the expression of genes targeted for silencing, then siRNA activity may be compromised or enhanced depending on whether the target gene is up-regulated or down-regulated respectively. Citing recent examples from the literature, this article therefore reviews the toxicogenomics of non-viral delivery systems and highlights the importance of understanding the genomic signature of siRNA delivery reagents in terms of their impact on gene silencing activity and specificity. Such information will be essential in the selection of optimally acting siRNA-delivery system combinations for the many applications of RNA interference.
Collapse
Affiliation(s)
- Saghir Akhtar
- SA Pharma, Vesey Road 1, Sutton Coldfield, West Midlands, B73 5NP, United Kingdom.
| | | |
Collapse
|
6
|
Gilmore IR, Fox SP, Hollins AJ, Sohail M, Akhtar S. The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J Drug Target 2005; 12:315-40. [PMID: 15545082 DOI: 10.1080/10611860400006257] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RNA interference (RNAi) is a natural cellular process that effects post-transcriptional gene silencing in eukaryotic systems. Small interfering RNA (siRNA) molecules are the key intermediaries in this process which when exogenously administered can inhibit or "silence" the expression of any given target gene. Thus, siRNA molecules hold great promise as biological tools and as potential therapeutic agents for targeted inhibition of disease-causing genes. However, key challenges to the effective and widespread use of these polyanionic, macromolecular duplexes of RNA are their appropriate design and efficient delivery to cells in vitro and in vivo. This review highlights the current strategies used in the design of effective siRNA molecules and also summarises the main strategies being considered for the exogenous delivery of siRNA for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Ian R Gilmore
- Centre for Genome-based Therapeutics, The Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3XF, UK
| | | | | | | | | |
Collapse
|
7
|
Wickstrom E, Urtishak KA, Choob M, Tian X, Sternheim N, Cross LM, Rubinstein A, Farber SA. Downregulation of gene expression with negatively charged peptide nucleic acids (PNAs) in zebrafish embryos. Methods Cell Biol 2005; 77:137-58. [PMID: 15602910 DOI: 10.1016/s0091-679x(04)77008-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
We found that negatively charged, highly soluble PNA analogs with alternating phosphonates (HypNA-pPNAs) are effective and specific antisense agents in zebrafish embryos, showing comparable potency and greater specificity against chordin, ntl and uroD. In addition, we successfully phenocopied a dharma mutant that had not been found susceptible to MO knockdown. Both MO and HypNA-pPNAs against a tumor suppressor gene induced comparable upregulation of p53, illustrating similar effects on transcription profiles. HypNA-pPNAs are therefore a valuable alternative for reverse genetic studies, enabling the targeting of previously inaccessible genes in zebrafish or validating newly identified orthologs, and perhaps for reverse genetic studies in other organisms.
Collapse
Affiliation(s)
- Eric Wickstrom
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wickstrom E, Thakur ML, Sauter ER. Receptor-specific targeting with complementary peptide nucleic acids conjugated to peptide analogs and radionuclides. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Miyano-Kurosaki N, Barnor JS, Takeuchi H, Owada T, Nakashima H, Yamamoto N, Matsuzaki T, Shimada F, Takaku H. In vitro and in vivo transport and delivery of phosphorothioate oligonucleotides with cationic liposomes. Antivir Chem Chemother 2004; 15:93-100. [PMID: 15185727 DOI: 10.1177/095632020401500205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A recent strategy in gene therapy has been using antiviral genes that are delivered to uninfected cells, either as RNA or DNA, to provide intracellular protection from human immunodeficiency virus type-1 (HIV-1) infection. Antisense oligonucleotides that are complementary to specific target genes suppress gene expression. A variety of techniques are available to enhance the cellular uptake and pharmacological effectiveness of antisense oligonucleotides, both in vitro and in vivo. We investigated the intracellular and tissue uptake of an oligonucleotide/cationic lipid complex, using a fluorescently labeled oligonucleotide. The antisense oligonucleotide was designed against the HIV-1 gag gene sequence. A T-cell line (MT-4) and PHA-stimulated peripheral blood mononuclear cells (PBMCs) were both infected with HIV-1(NL432) at an MOI of 0.01. One h later, both cultures were washed and treated with medium containing 1 microM antisense oligonucleotide. After a 3-day interval, the HIV-1 antigen expression was monitored by an indirect immunofluorescence assay. At 3 days post infection, we confirmed that p24 antigen production was inhibited by the antisense oligonucleotide/cationic lipid complex at a 1/10 ratio in the PBMCs, using enzyme-linked immunosorbent assay (ELISA). We also confirmed the intracellular existence of the complex by fluorescent microscopy. We investigated different means of transporting the antisense oligonucleotide/cationic lipid complex to mouse tissues by intravenous, intraperitoneal and subcutaneous injections. We observed that the anti-HIV-1 activity of the antisense oligonucleotide/cationic lipid complex was the result of enhanced cellular uptake, both in vitro and in vivo. Therefore, the antisense oligonucleotide/cationic lipid complex is an excellent system for the transport and delivery of genes to target cells, as it is effective both in vitro and in vivo.
Collapse
|
10
|
Arnedo A, Irache JM, Merodio M, Espuelas Millán MS. Albumin nanoparticles improved the stability, nuclear accumulation and anticytomegaloviral activity of a phosphodiester oligonucleotide. J Control Release 2004; 94:217-27. [PMID: 14684285 DOI: 10.1016/j.jconrel.2003.10.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The goal of this study was to evaluate the potential of albumin nanoparticles as a delivery system for antisense oligonucleotides. Nanoparticles were prepared by a coacervation process and cross-linkage with glutaraldehyde. Phosphodiester (PO) and phosphorotioate (PS) oligonucleotides were either adsorbed on the surface of nanoparticles (PO-NPA and PS-NPA) or incorporated in the nanoparticle matrix (PO-NPB and PS-NPB). When PO-loaded nanoparticles were incubated with phosphodiesterase, only NPB was able to keep the oligonucleotide hybridization capability for at least 60 min. The antiviral activity was evaluated in MRC-5 fibroblasts infected with human cytomegalovirus at a MOI of 0.0035. Both PO nanoparticle formulations significantly increased the antiviral activity of free PO (P<0.001) and NPB showed slightly higher efficacies than NPA (P<0.05). On the other hand, PS exhibited significant higher activity than free PO (P<0.001), however, no significant differences were found between PS-nanoparticle and PO-nanoparticle formulations. These findings were well correlated with the intracellular distribution observed for fluorescent oligonucleotide-loaded albumin nanoparticles. Even these carriers delayed and decreased the uptake of PO by MRC-5 cells, they finally induced a diffused cytoplasmic distribution and major nuclear accumulation. In summary, albumin nanoparticles partially protected a PO against enzymatic degradation and improved their presence in the nucleus and thus, increased its efficiency.
Collapse
Affiliation(s)
- A Arnedo
- Centro Galénico, Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Navarra, Irunlarrea 1, Ap. 177, 31080 Pamplona, Spain
| | | | | | | |
Collapse
|
11
|
Abstract
The use of antisense (AS) oligonucleotides as therapeutic agents was proposed as far back as the 1960s/1970s when the AS strategy was initially developed. However, it has taken almost a quarter of a century for this potential to be realized. The last few years has seen a rapid increase in the number of AS molecules progressing past Phase I in clinical trials, due in part to our increased knowledge of their structure and chemistry. Here, we describe the most prominent of these modifications with respect to clinical applicability. However, the main focus of this review is clinical application, with a focus on cancer. We will discuss in detail both the status of the current AS clinical trials and the molecules that are likely to be the targets of the next group of AS molecules entering the clinic.
Collapse
Affiliation(s)
- Kathleen F Pirollo
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
12
|
Krötz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U, Plank C. Magnetofection--a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 2003; 7:700-10. [PMID: 12718913 DOI: 10.1016/s1525-0016(03)00065-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Delivery of antisense oligodesoxynucleotides (ODN) into primary cells is a specific strategy for research with therapeutic perspectives but transfection-associated difficulties. We established the technique of magnetofection to enhance ODN delivery at low toxicity and procedure time in vitro and in vivo. In vitro, target knockout was assessed at protein and mRNA levels and by measuring superoxide generation after antisense magnetofection against the p22(phox) subunit of endothelial NAD(P)H-oxidase. Under magnetic field guidance, low-dose magnetic particle-bound ODN were transfected to 84% human umbilical vein endothelial cells within 15 min followed by nuclear accumulation within 2 h, which required 24 h using standard methods. Antisense magnetofection against p22(phox) significantly decreased basal and prevented stimulated superoxide release due to loss of NAD(P)H-oxidase activity by mRNA knockout as assessed after 24 h. Knockout of endothelial phosphatase SHP-1 and connexin 37 proteins confirmed the method's efficiency. Transfection-associated toxicity was minimal. Twenty-four hours after injection of fluorescence-labeled ODN into femoral arteries of male mice, there was specific ODN uptake only into cremaster vessels exposed to magnetic fields during injection. Magnetofection is an ideal tool for delivery of functionally active ODN to difficult-to-transfect cells to study gene/protein function and a promising strategy for targeted ODN delivery in vivo.
Collapse
|
13
|
Wickstrom E, Thakur ML, Sauter ER. Receptor-specific targeting with complementary peptide nucleic acids conjugated to peptide analogs and radionuclides. Int J Pept Res Ther 2003. [DOI: 10.1007/bf02484559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Dias N, Stein CA. Potential roles of antisense oligonucleotides in cancer therapy. The example of Bcl-2 antisense oligonucleotides. Eur J Pharm Biopharm 2002; 54:263-9. [PMID: 12445555 DOI: 10.1016/s0939-6411(02)00060-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antisense oligonucleotides have been widely used to specifically and selectively downregulate gene expression at the messenger RNA level. Even though oligonucleotides are commonly used in laboratories and clinical trials, they can induce non-specific effects that can lead to misinterpretation of experimentally-derived results. This review summarizes precautions one should take when using oligonucleotides. In addition, the role of one oligonucleotide, G3139, which is targeted to the coding region of bcl-2 messenger RNA, in inhibiting tumor progression in vitro and in clinical trials, is described.
Collapse
|
15
|
Tumor-targeting, Systemically Delivered Antisense HER-2 Chemosensitizes Human Breast Cancer Xenografts Irrespective of HER-2 Levels. Mol Med 2002. [DOI: 10.1007/bf03402027] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
16
|
Manoharan M. Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:103-28. [PMID: 12074364 DOI: 10.1089/108729002760070849] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review summarizes the effect of conjugating small molecules and large biomacromolecules to antisense oligonucleotides to improve their therapeutic potential. In many cases, favorable changes in pharmacokinetic and pharmacodynamic properties were observed. Opportunities exist to change the terminating mechanism of antisense action or to enhance the RNase H mode of action via conjugate formation.
Collapse
Affiliation(s)
- Muthiah Manoharan
- Department of Medicinal Chemistry, Isis Pharmaceuticals, Inc, Carlsbad, CA 92008, USA.
| |
Collapse
|
17
|
Silhol M, Tyagi M, Giacca M, Lebleu B, Vivès E. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:494-501. [PMID: 11856307 DOI: 10.1046/j.0014-2956.2001.02671.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Translocation through the plasma membrane is a major limiting step for the cellular delivery of macromolecules. A promising strategy to overcome this problem consists in the chemical conjugation (or fusion) to cell penetrating peptides (CPP) derived from proteins able to cross the plasma membrane. A large number of different cargo molecules such as oligonucleotides, peptides, peptide nucleic acids, proteins or even nanoparticles have been internalized in cells by this strategy. One of these translocating peptides was derived from the HIV-1 Tat protein. The mechanisms by which CPP enter cells remain unknown. Recently, convincing biochemical and genetic findings has established that the full-length Tat protein was internalized in cells via the ubiquitous heparan sulfate (HS) proteoglycans. We demonstrate here that the short Tat CPP is taken up by a route that does not involve the HS proteoglycans.
Collapse
Affiliation(s)
- Michelle Silhol
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5124, BP5051, Montpellier, France
| | | | | | | | | |
Collapse
|
18
|
Hughes MD, Hussain M, Nawaz Q, Sayyed P, Akhtar S. The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov Today 2001; 6:303-315. [PMID: 11257582 DOI: 10.1016/s1359-6446(00)00326-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The design and development of antisense oligonucleotides and ribozymes for the treatment of diseases arising from genetic abnormalities has become a real possibility over the past few years. Improvements in oligonucleotide chemistry have led to the synthesis of nucleic acids that are relatively stable in the biological milieu. However, advances in cellular targeting and intracellular delivery will probably lead to more widespread clinical applications. This review looks at recent advances in the in vitro and in vivo delivery of antisense oligodeoxynucleotides and ribozymes.
Collapse
Affiliation(s)
- M D. Hughes
- Aston Centre for Gene-based Therapeutics (ACGT), Pharmaceutical Sciences Research Institute, Aston University, Aston Triangle, B4 7ET, Birmingham, UK
| | | | | | | | | |
Collapse
|
19
|
Akhtar S, Hughes MD, Khan A, Bibby M, Hussain M, Nawaz Q, Double J, Sayyed P. The delivery of antisense therapeutics. Adv Drug Deliv Rev 2000; 44:3-21. [PMID: 11035194 DOI: 10.1016/s0169-409x(00)00080-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antisense oligonucleotides, ribozymes and DNAzymes have emerged as novel, highly selective inhibitors or modulators of gene expression. Indeed, their use in the treatment of diseases arising from genetic abnormalities has become a real possibility over the past few years. The first antisense drug molecule is now available for clinical use in Europe and USA. However, their successful application in the clinic will require improvements in cellular targeting and intracellular delivery. This review aims to look at recent advances in the in vitro and in vivo delivery of antisense oligodeoxynucleotides and ribozymes.
Collapse
Affiliation(s)
- S Akhtar
- Aston Centre for Gene-based Therapeutics (ACGT), Pharmaceutical Sciences Research Institute, Aston University, Aston Triangle, B4 7ET, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mignet N, Brun A, Degert C, Delord B, Roux D, Hélène C, Laversanne R, François JC. The spherulites(TM): a promising carrier for oligonucleotide delivery. Nucleic Acids Res 2000; 28:3134-42. [PMID: 10931929 PMCID: PMC108452 DOI: 10.1093/nar/28.16.3134] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Concentric multilamellar microvesicles, named spherulites(TM), were evaluated as an oligonucleotide carrier. Up to 80% oligonucleotide was encapsulated in these vesicles. The study was carried out on two different spherulite(TM) formulations. The spherulite(TM) size and stability characteristics are presented. Delivery of encapsulated oligonucleotide was performed on a rat hepatocarcinoma and on a lymphoblastoid T cell line, both expressing the luciferase gene. We showed that spherulites(TM) were able to transfect both adherent and suspension cell lines and deliver the oligonucleotide to the nucleus. Moreover, 48-62% luciferase inhibition was obtained in the rat hepatocarcinoma cell line when the antisense oligonucleotide targeted to the luciferase coding region was encapsulated at 500 nM concentration in spherulites(TM) of different compositions.
Collapse
Affiliation(s)
- N Mignet
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U201, CNRS UMR 8646, 43 rue Cuvier, 75231 PARIS Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|