1
|
Leih M, Plemel RL, West M, Angers CG, Merz AJ, Odorizzi G. Disordered hinge regions of the AP-3 adaptor complex promote vesicle budding from the late Golgi in yeast. J Cell Sci 2024; 137:jcs262234. [PMID: 39330471 PMCID: PMC11574352 DOI: 10.1242/jcs.262234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Vesicles bud from maturing Golgi cisternae in a programmed sequence. Budding is mediated by adaptors that recruit cargoes and facilitate vesicle biogenesis. In Saccharomyces cerevisiae, the AP-3 adaptor complex directs cargoes from the Golgi to the lysosomal vacuole. The AP-3 core consists of small and medium subunits complexed with two non-identical large subunits, β3 (Apl6) and δ (Apl5). The C-termini of β3 and δ were thought to be flexible hinges linking the core to ear domains that bind accessory proteins involved in vesicular transport. We found by computational modeling that the yeast β3 and δ hinges are intrinsically disordered and lack folded ear domains. When either hinge is truncated, AP-3 is recruited to the Golgi, but vesicle budding is impaired and cargoes normally sorted into the AP-3 pathway are mistargeted. This budding deficiency causes AP-3 to accumulate on ring-like Golgi structures adjacent to GGA adaptors that, in wild-type cells, bud vesicles downstream of AP-3 during Golgi maturation. Thus, each of the disordered hinges of yeast AP-3 has a crucial role in mediating transport vesicle formation at the Golgi.
Collapse
Affiliation(s)
- Mitchell Leih
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Rachael L Plemel
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Cortney G Angers
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
2
|
Wong Z, Ong EBB. Unravelling bacterial virulence factors in yeast: From identification to the elucidation of their mechanisms of action. Arch Microbiol 2024; 206:303. [PMID: 38878203 DOI: 10.1007/s00203-024-04023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.
Collapse
Affiliation(s)
- ZhenPei Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia.
| |
Collapse
|
3
|
Plemel RL, Odorizzi G, Merz AJ. Genetically encoded multimode reporter of adaptor complex 3 traffic in budding yeast. Traffic 2020; 22:38-44. [PMID: 33225520 DOI: 10.1111/tra.12772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022]
Abstract
AP-3 (adaptor complex 3) mediates traffic from the late Golgi or early endosomes to late endosomal compartments. In mammals, mutations in AP-3 cause Hermansky-Pudlak syndrome type 2, cyclic neutropenias, and a form of epileptic encephalopathy. In budding yeast, AP-3 carries cargo directly from the trans-Golgi to the lysosomal vacuole. Despite the pathway's importance and its discovery two decades ago, rapid screens and selections for AP-3 mutants have not been available. We now report GNSI, a synthetic, genetically encoded reporter that allows rapid plate-based assessment of AP-3 functional deficiency, using either chromogenic or growth phenotype readouts. This system identifies defects in both the formation and consumption of AP-3 carrier vesicles and is adaptable to high-throughput screening or selection in both plate array and liquid batch culture formats. Episomal and integrating plasmids encoding GNSI have been submitted to the Addgene repository.
Collapse
Affiliation(s)
- Rachael L Plemel
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Narayan P, Sienski G, Bonner JM, Lin YT, Seo J, Baru V, Haque A, Milo B, Akay LA, Graziosi A, Freyzon Y, Landgraf D, Hesse WR, Valastyan J, Barrasa MI, Tsai LH, Lindquist S. PICALM Rescues Endocytic Defects Caused by the Alzheimer's Disease Risk Factor APOE4. Cell Rep 2020; 33:108224. [PMID: 33027662 DOI: 10.1016/j.celrep.2020.108224] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
The ε4 allele of apolipoprotein E (APOE4) is a genetic risk factor for many diseases, including late-onset Alzheimer's disease (AD). We investigate the cellular consequences of APOE4 in human iPSC-derived astrocytes, observing an endocytic defect in APOE4 astrocytes compared with their isogenic APOE3 counterparts. Given the evolutionarily conserved nature of endocytosis, we built a yeast model to identify genetic modifiers of the endocytic defect associated with APOE4. In yeast, only the expression of APOE4 results in dose-dependent defects in both endocytosis and growth. We discover that increasing expression of the early endocytic adaptor protein Yap1802p, a homolog of the human AD risk factor PICALM, rescues the APOE4-induced endocytic defect. In iPSC-derived human astrocytes, increasing expression of PICALM similarly reverses endocytic disruptions. Our work identifies a functional interaction between two AD genetic risk factors-APOE4 and PICALM-centered on the conserved biological process of endocytosis.
Collapse
Affiliation(s)
- Priyanka Narayan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD 20814, USA
| | - Grzegorz Sienski
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Julia M Bonner
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuan-Ta Lin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinsoo Seo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Valeriya Baru
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Aftabul Haque
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Blerta Milo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leyla A Akay
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Agnese Graziosi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yelena Freyzon
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Dirk Landgraf
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - William R Hesse
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Julie Valastyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Pais SV, Key CE, Borges V, Pereira IS, Gomes JP, Fisher DJ, Mota LJ. CteG is a Chlamydia trachomatis effector protein that associates with the Golgi complex of infected host cells. Sci Rep 2019; 9:6133. [PMID: 30992493 PMCID: PMC6468002 DOI: 10.1038/s41598-019-42647-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
Chlamydia trachomatis is a bacterial pathogen causing ocular and genital infections in humans. C. trachomatis multiplies exclusively inside host cells within a characteristic vacuole, from where it manipulates host cells by injecting them with type III secretion effector proteins. Here, we identified CteG as the first C. trachomatiseffector associated with the Golgi. For this, C. trachomatis strains expressing candidate effectors fused to a double hemagglutinin (2HA) tag were constructed. Then, among these strains, immunofluorescence microscopy revealed that CteG-2HA was delivered into the cytoplasm of infected cells. Between 16–20 h post-infection, CteG-2HA mostly associated with the Golgi; however, CteG-2HA also appeared at the host cell plasma membrane, and at 30 or 40 h post-infection this was its predominant localization. This change in the main localization of CteG-2HA was independent of intact microfilaments or microtubules. Ectopic expression of different regions of CteG (656 amino acid residues) in uninfected cells revealed that its first 100 residues contain a Golgi targeting region. Although a C. trachomatis cteG mutant did not display a defect in intracellular multiplication, CteG induced a vacuolar protein sorting defect when expressed in Saccharomyces cerevisiae. This suggested that CteG might function by subverting host cell vesicular transport.
Collapse
Affiliation(s)
- Sara V Pais
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Charlotte E Key
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, USA
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Inês S Pereira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Derek J Fisher
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, USA
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
6
|
Raines SA, Hodgkinson MR, Dowle AA, Pryor PR. The Salmonella effector SseJ disrupts microtubule dynamics when ectopically expressed in normal rat kidney cells. PLoS One 2017; 12:e0172588. [PMID: 28235057 PMCID: PMC5325298 DOI: 10.1371/journal.pone.0172588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/07/2017] [Indexed: 11/18/2022] Open
Abstract
Salmonella effector protein SseJ is secreted by Salmonella into the host cell cytoplasm where it can then modify host cell processes. Whilst host cell small GTPase RhoA has previously been shown to activate the acyl-transferase activity of SseJ we show here an un-described effect of SseJ protein production upon microtubule dynamism. SseJ prevents microtubule collapse and this is independent of SseJ's acyl-transferase activity. We speculate that the effects of SseJ on microtubules would be mediated via its known interactions with the small GTPases of the Rho family.
Collapse
Affiliation(s)
- Sally A. Raines
- Department of Biology, Wentworth Way, University of York, York, United Kingdom
| | | | - Adam A. Dowle
- Technology Facility, Department of Biology, Wentworth Way, University of York, York, United Kingdom
| | - Paul R. Pryor
- Department of Biology, Wentworth Way, University of York, York, United Kingdom
- Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
7
|
Bean BDM, Davey M, Conibear E. Cargo selectivity of yeast sorting nexins. Traffic 2017; 18:110-122. [PMID: 27883263 DOI: 10.1111/tra.12459] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023]
Abstract
Sorting nexins are PX domain-containing proteins that bind phospholipids and often act in membrane trafficking where they help to select cargo. However, the functions and cargo specificities of many sorting nexins are unknown. Here, a high-throughput imaging screen was used to identify new sorting nexin cargo in the yeast Saccharomyces cerevisiae. Deletions of 9 different sorting nexins were screened for mislocalization of a set of green fluorescent protein (GFP)-tagged membrane proteins found at the plasma membrane, Golgi or endosomes. This identified 27 proteins that require 1 or more sorting nexins for their correct localization, 23 of which represent novel sorting nexin cargo. Nine hits whose sorting was dependent on Snx4, the sorting nexin-containing retromer complex, or both retromer and Snx3, were examined in detail to search for potential sorting motifs. We identified cytosolic domains of Ear1, Ymd8 and Ymr010w that conferred retromer-dependent sorting on a chimeric reporter and identified conserved residues required for this sorting in a functional assay. This work defined a consensus sequence for retromer and Snx3-dependent sorting.
Collapse
Affiliation(s)
- Björn D M Bean
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Michael Davey
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Elizabeth Conibear
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Bugalhão JN, Mota LJ, Franco IS. Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking. Microbiologyopen 2015; 5:118-33. [PMID: 26626407 PMCID: PMC4767423 DOI: 10.1002/mbo3.316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 02/02/2023] Open
Abstract
The Legionella pneumophila effector protein VipA is an actin nucleator that co‐localizes with actin filaments and early endosomes in infected macrophages and which interferes with organelle trafficking when expressed in yeast. To identify the regions of VipA involved in its subcellular localization and functions, we ectopically expressed specific VipA mutant proteins in eukaryotic cells. This indicated that the characteristic punctate distribution of VipA depends on its NH2‐terminal (amino acid residues 1–133) and central coiled‐coil (amino acid residues 133–206) regions, and suggested a role for the COOH‐terminal (amino acid residues 206–339) region in association with actin filaments and for the NH2‐terminal in co‐localization with early endosomes. Co‐immunoprecipitation and in vitro assays showed that the COOH‐terminal region of VipA is necessary and sufficient to mediate actin binding, and is essential but insufficient to induce microfilament formation. Assays in yeast revealed that the NH2 and the COOH‐terminal regions, and possibly an NPY motif within the NH2 region of VipA, are necessary for interference with organelle trafficking. Overall, this suggests that subversion of eukaryotic vesicular trafficking by VipA involves both its ability to associate with early endosomes via its NH2‐terminal region and its capacity to bind and polymerize actin through its COOH‐terminal region.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Irina S Franco
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
9
|
Nickerson DP, Merz AJ. LUCID: A Quantitative Assay of ESCRT-Mediated Cargo Sorting into Multivesicular Bodies. Traffic 2015; 16:1318-29. [PMID: 26424513 DOI: 10.1111/tra.12331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 11/30/2022]
Abstract
Endosomes are transportation nodes, mediating selective transport of soluble and transmembrane cargos to and from the Golgi apparatus, plasma membrane and lysosomes. As endosomes mature to become multivesicular bodies (MVBs), Endosomal Sorting Complexes Required for Transport (ESCRTs) selectively incorporate transmembrane cargos into vesicles that bud into the endosome lumen. Luminal vesicles and their cargoes are targeted for destruction when MVBs fuse with lysosomes. Common assays of endosomal luminal targeting, including fluorescence microscopy and monitoring of proteolytic cargo maturation, possess significant limitations. We present a quantitative assay system called LUCID (LUCiferase reporter of Intraluminal Deposition) that monitors exposure of chimeric luciferase-cargo reporters to cytosol. Luciferase-chimera signal increases when sorting to the endosome lumen is disrupted, and silencing of signal from the chimera depends upon luminal delivery of the reporter rather than proteolytic degradation. The system presents several advantages, including rapidity, microscale operation and a high degree of reproducibility that enables detection of subtle phenotypic differences. Luciferase reporters provide linear signal over an extremely broad dynamic range, allowing analysis of reporter traffic even at anemic levels of expression. Furthermore, LUCID reports transport kinetics when applied to inducible trafficking reporters.
Collapse
Affiliation(s)
- Daniel P Nickerson
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-7350, USA.,Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195-7350, USA
| |
Collapse
|
10
|
Shideler T, Nickerson DP, Merz AJ, Odorizzi G. Ubiquitin binding by the CUE domain promotes endosomal localization of the Rab5 GEF Vps9. Mol Biol Cell 2015; 26:1345-56. [PMID: 25673804 PMCID: PMC4454180 DOI: 10.1091/mbc.e14-06-1156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vps9 is a guanine nucleotide exchange factor that activates Rab5 GTPases in the yeast endolysosomal pathway. Ubiquitin binding by its CUE domain is dispensable for Vps9 function. The CUE domain is shown to target Vps9 to endosomes, supporting a model in which it senses ubiquitinated transmembrane proteins trafficking in the endolysosomal pathway. Vps9 and Muk1 are guanine nucleotide exchange factors (GEFs) in Saccharomyces cerevisiae that regulate membrane trafficking in the endolysosomal pathway by activating Rab5 GTPases. We show that Vps9 is the primary Rab5 GEF required for biogenesis of late endosomal multivesicular bodies (MVBs). However, only Vps9 (but not Muk1) is required for the formation of aberrant class E compartments that arise upon dysfunction of endosomal sorting complexes required for transport (ESCRTs). ESCRT dysfunction causes ubiquitinated transmembrane proteins to accumulate at endosomes, and we demonstrate that endosomal recruitment of Vps9 is promoted by its ubiquitin-binding CUE domain. Muk1 lacks ubiquitin-binding motifs, but its fusion to the Vps9 CUE domain allows Muk1 to rescue endosome morphology, cargo trafficking, and cellular stress-tolerance phenotypes that result from loss of Vps9 function. These results indicate that ubiquitin binding by the CUE domain promotes Vps9 function in endolysosomal membrane trafficking via promotion of localization.
Collapse
Affiliation(s)
- Tess Shideler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| | - Daniel P Nickerson
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| |
Collapse
|
11
|
Dalton L, Davey M, Conibear E. Large-scale analysis of membrane transport in yeast using invertase reporters. Methods Mol Biol 2015; 1270:395-409. [PMID: 25702131 DOI: 10.1007/978-1-4939-2309-0_27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transport of membrane proteins between cellular organelles requires the concerted action of many regulatory factors, which aid in cargo recognition and vesicle formation, targeting, and fusion. The yeast Saccharomyces cerevisiae is a useful model system for studying such regulators, due to the availability of genome-wide mutant collections and reporter proteins that provide sensitive biochemical readouts of individual transport pathways. Here, we describe an enzymatic invertase assay for evaluating endocytic recycling using a chimeric GFP-Snc1-Suc2 reporter. Cell surface levels of this reporter can be measured by a colorimetric assay that monitors sucrose hydrolysis at the plasma membrane, using two different methods. The first is a semiquantitative agar overlay assay followed by image densitometry that is suitable for high-throughput screening of arrayed yeast colonies. In the second, more quantitative assay, an enzymatic solution is added to yeast cultures in a multi-well plate and the absorbance is assessed by a plate reader. Furthermore, the modular nature of the chimeric reporter allows alternate transport signals to be introduced, thereby expanding the range of transport pathways that can be evaluated by this method. Together these techniques can be used to explore the function of genes involved in a variety of cellular trafficking pathways.
Collapse
Affiliation(s)
- Lauren Dalton
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, 950 W 28th Avenue, Vancouver, BC, Canada, V5Z 4H4
| | | | | |
Collapse
|
12
|
Suyama K, Hori M, Gomi K, Shintani T. Fusion of an intact secretory protein permits a misfolded protein to exit from the endoplasmic reticulum in yeast. Biosci Biotechnol Biochem 2014; 78:49-59. [PMID: 25036483 DOI: 10.1080/09168451.2014.877185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Upon exit from the endoplasmic reticulum (ER), the nascent polypeptides of secretory proteins undergo sorting events. If properly folded, they are directly or indirectly recognized by the coat proteins of budding vesicles for forward transport, while unfolded or misfolded proteins are retained in the ER by a quality control mechanism. To gain insight into the interplay between ER export and ER quality control, we fused a secretory protein invertase to the C-terminus of mutated carboxypeptidase Y (CPY*), a model ER-associated degradation (ERAD) substrate in Saccharomyces cerevisiae. This substrate, designated CPY*-Inv, was largely exported from the ER, although it was fully recognized by the ERAD-related lectin, Yos9, and hence degraded by the ERAD when it remained in the ER. CPY*-Inv relied primarily on the p24 complex, a putative ER export receptor for invertase, for escape from ERAD, suggesting that the ERAD and the ER export of soluble secretory proteins are competitive.
Collapse
Affiliation(s)
- Kengo Suyama
- a Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | | | | | | |
Collapse
|
13
|
Mageswaran SK, Dixon MG, Curtiss M, Keener JP, Babst M. Binding to any ESCRT can mediate ubiquitin-independent cargo sorting. Traffic 2013; 15:212-29. [PMID: 24148098 DOI: 10.1111/tra.12135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/18/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022]
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery is known to sort ubiquitinated transmembrane proteins into vesicles that bud into the lumen of multivesicular bodies (MVBs). Although the ESCRTs themselves are ubiquitinated they are excluded from the intraluminal vesicles and recycle back to the cytoplasm for further rounds of sorting. To obtain insights into the rules that distinguish ESCRT machinery from cargo we analyzed the trafficking of artificial ESCRT-like protein fusions. These studies showed that lowering ESCRT-binding affinity converts a protein from behaving like ESCRT machinery into cargo of the MVB pathway, highlighting the close relationship between machinery and the cargoes they sort. Furthermore, our findings give insights into the targeting of soluble proteins into the MVB pathway and show that binding to any of the ESCRTs can mediate ubiquitin-independent MVB sorting.
Collapse
Affiliation(s)
- Shrawan Kumar Mageswaran
- Center for Cell and Genome Science and Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | | | | | | | | |
Collapse
|
14
|
Shestakova A, Curtiss M, Davies BA, Katzmann DJ, Babst M. The linker region plays a regulatory role in assembly and activity of the Vps4 AAA ATPase. J Biol Chem 2013; 288:26810-9. [PMID: 23913684 DOI: 10.1074/jbc.m113.497032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The AAA-type ATPase Vps4 functions with components of the ESCRT (endosomal sorting complex required for transport) machinery in membrane fission events that are essential for endosomal maturation, cytokinesis, and the formation of retroviruses. A key step in these events is the assembly of monomeric Vps4 into the active ATPase complex, which is aided in part by binding of Vps4 via its N-terminal MIT (microtubule interacting and trafficking) domain to its substrate ESCRT-III. We found that the 40-amino acid linker region between the MIT and the ATPase domain of Vps4 is not required for proper function but plays a role in regulating Vps4 assembly and ATPase activity. Deletion of the linker is expected to bring the MIT domains into close proximity to the central pore of the Vps4 complex. We propose that this localization of the MIT domain in linker-deleted Vps4 mimics a repositioning of the MIT domain normally caused by binding of Vps4 to ESCRT-III. This structure would allow the Vps4 complex to engage ESCRT-III subunits with both the pore and the MIT domain simultaneously, which might be essential for the ATP-driven disassembly of ESCRT-III.
Collapse
Affiliation(s)
- Anna Shestakova
- From the Center for Cell and Genome Science and Department of Biology, University of Utah, Salt Lake City, Utah 84112 and
| | | | | | | | | |
Collapse
|
15
|
Paulsel AL, Merz AJ, Nickerson DP. Vps9 family protein Muk1 is the second Rab5 guanosine nucleotide exchange factor in budding yeast. J Biol Chem 2013; 288:18162-71. [PMID: 23612966 DOI: 10.1074/jbc.m113.457069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
VPS9 domains can act as guanosine nucleotide exchange factors (GEFs) against small G proteins of the Rab5 family. Saccharomyces cerevisiae vps9Δ mutants have trafficking defects considerably less severe than multiple deletions of the three cognate Rab5 paralogs (Vps21, Ypt52, and Ypt53). Here, we show that Muk1, which also contains a VPS9 domain, acts as a second GEF against Vps21, Ypt52, and Ypt53. Muk1 is partially redundant with Vps9 in vivo, with vps9Δ muk1Δ double mutant cells displaying hypersensitivity to temperature and ionic stress, as well as profound impairments in endocytic and Golgi endosome trafficking, including defects in sorting through the multivesicular body. Cells lacking both Vps9 and Muk1 closely phenocopy double and triple knock-out strains lacking Rab5 paralogs. Microscopy and overexpression experiments demonstrate that Vps9 and Muk1 have distinct localization determinants. These experiments establish Muk1 as the second Rab5 GEF in budding yeast.
Collapse
Affiliation(s)
- Andrew L Paulsel
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | |
Collapse
|
16
|
Defining the boundaries of species specificity for the Saccharomyces cerevisiae glycosylphosphatidylinositol transamidase using a quantitative in vivo assay. Biosci Rep 2012; 32:577-86. [PMID: 22938202 PMCID: PMC3497722 DOI: 10.1042/bsr20120064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In eukaryotes, GPI (glycosylphosphatidylinositol) lipid anchoring of proteins is an abundant post-translational modification. The attachment of the GPI anchor is mediated by GPI-T (GPI transamidase), a multimeric, membrane-bound enzyme located in the ER (endoplasmic reticulum). Upon modification, GPI-anchored proteins enter the secretory pathway and ultimately become tethered to the cell surface by association with the plasma membrane and, in yeast, by covalent attachment to the outer glucan layer. This work demonstrates a novel in vivo assay for GPI-T. Saccharomyces cerevisiae INV (invertase), a soluble secreted protein, was converted into a substrate for GPI-T by appending the C-terminal 21 amino acid GPI-T signal sequence from the S. cerevisiae Yapsin 2 [Mkc7p (Y21)] on to the C-terminus of INV. Using a colorimetric assay and biochemical partitioning, extracellular presentation of GPI-anchored INV was shown. Two human GPI-T signal sequences were also tested and each showed diminished extracellular INV activity, consistent with lower levels of GPI anchoring and species specificity. Human/fungal chimaeric signal sequences identified a small region of five amino acids that was predominantly responsible for this species specificity.
Collapse
|
17
|
Nickerson DP, Russell MRG, Lo SY, Chapin HC, Milnes J, Merz AJ. Termination of isoform-selective Vps21/Rab5 signaling at endolysosomal organelles by Msb3/Gyp3. Traffic 2012; 13:1411-1428. [PMID: 22748138 DOI: 10.1111/j.1600-0854.2012.01390.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 12/11/2022]
Abstract
Traffic through endosomes and lysosomes is controlled by small G-proteins of the Rab5 and Rab7 families. Like humans, Saccharomyces cerevisiae has three Rab5s (Vps21, Ypt52 and Ypt53) and one Rab7 (Ypt7). Here, we elucidate the functional roles and regulation of the yeast Rab5s. Using GFP-tagged cargoes, a novel quantitative multivesicular body (MVB) sorting assay, and electron microscopy, we show that MVB biogenesis and thus MVB cargo sorting is severely impaired in vps21Δ ypt52Δ double mutants. Ypt53, the third Rab5 paralog, is hardly expressed during normal growth but its transcription is strongly induced by cellular stress through the calcineurin-Crz1 pathway. The requirement for Rab5 activity in stress tolerance facilitated identification of Msb3/Gyp3 as the principal Rab5 GAP (GTPase accelerating protein). In vitro GAP assays verified that Vps21 is a preferred Gyp3 target. Moreover, we demonstrate that Gyp3 spatially restricts active Vps21 to intermediate endosomal compartments by preventing Vps21 accumulation on lysosomal vacuoles. Gyp3, therefore, operates as a compartmental insulator that helps to define the spatial domain of Vps21 signaling in the endolysosomal pathway.
Collapse
Affiliation(s)
- Daniel P Nickerson
- Department of Biochemistry University of Washington School of Medicine, Seattle WA 98195-3750
| | - Matthew R G Russell
- Department of Molecular, Cell and Developmental Biology University of Colorado, Boulder CO 80309-0347
| | - Shing-Yeng Lo
- Department of Biochemistry University of Washington School of Medicine, Seattle WA 98195-3750
| | - Hannah C Chapin
- Department of Biochemistry University of Washington School of Medicine, Seattle WA 98195-3750
| | - Joshua Milnes
- Department of Biochemistry University of Washington School of Medicine, Seattle WA 98195-3750
| | - Alexey J Merz
- Department of Biochemistry University of Washington School of Medicine, Seattle WA 98195-3750
| |
Collapse
|
18
|
Franco IS, Shohdy N, Shuman HA. The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 2012; 8:e1002546. [PMID: 22383880 PMCID: PMC3285593 DOI: 10.1371/journal.ppat.1002546] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/09/2012] [Indexed: 12/30/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, invades and replicates within macrophages and protozoan cells inside a vacuole. The type IVB Icm/Dot secretion system is necessary for the translocation of effector proteins that modulate vesicle trafficking pathways in the host cell, thus avoiding phagosome-lysosome fusion. The Legionella VipA effector was previously identified by its ability to interfere with organelle trafficking in the Multivesicular Body (MVB) pathway when ectopically expressed in yeast. In this study, we show that VipA binds actin in vitro and directly polymerizes microfilaments without the requirement of additional proteins, displaying properties distinct from other bacterial actin nucleators. Microscopy studies revealed that fluorescently tagged VipA variants localize to puncta in eukaryotic cells. In yeast these puncta are associated with actin-rich regions and components of the Multivesicular Body pathway such as endosomes and the MVB-associated protein Bro1. During macrophage infection, native translocated VipA associated with actin patches and early endosomes. When ectopically expressed in mammalian cells, VipA-GFP displayed a similar distribution ruling out the requirement of additional effectors for binding to its eukaryotic targets. Interestingly, a mutant form of VipA, VipA-1, that does not interfere with organelle trafficking is also defective in actin binding as well as association with early endosomes and shows a homogeneous cytosolic localization. These results show that the ability of VipA to bind actin is related to its association with a specific subcellular location as well as its role in modulating organelle trafficking pathways. VipA constitutes a novel type of actin nucleator that may contribute to the intracellular lifestyle of Legionella by altering cytoskeleton dynamics to target host cell pathways.
Collapse
Affiliation(s)
- Irina Saraiva Franco
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.
| | | | | |
Collapse
|
19
|
Plemel RL, Lobingier BT, Brett CL, Angers CG, Nickerson DP, Paulsel A, Sprague D, Merz AJ. Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic. Mol Biol Cell 2011; 22:1353-63. [PMID: 21325627 PMCID: PMC3078060 DOI: 10.1091/mbc.e10-03-0260] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Vps-C complexes, CORVET and HOPS, are key regulators of membrane traffic through late endosomes and lysosomes. In this study Vps-C intersubunit contacts, domain architecture, and interactions with Rab G proteins are systematically dissected using genetic and biochemical approaches. Traffic through late endolysosomal compartments is regulated by sequential signaling of small G proteins of the Rab5 and Rab7 families. The Saccharomyces cerevisiae Vps-C protein complexes CORVET (class C core vacuole/endosome tethering complex) and HOPS (homotypic fusion and protein transport) interact with endolysosomal Rabs to coordinate their signaling activities. To better understand these large and intricate complexes, we performed interaction surveys to assemble domain-level interaction topologies for the eight Vps-C subunits. We identified numerous intersubunit interactions and up to six Rab-binding sites. Functional modules coordinate the major Rab interactions within CORVET and HOPS. The CORVET-specific subunits, Vps3 and Vps8, form a subcomplex and physically and genetically interact with the Rab5 orthologue Vps21. The HOPS-specific subunits, Vps39 and Vps41, also form a subcomplex. Both subunits bind the Rab7 orthologue Ypt7, but with distinct nucleotide specificities. The in vivo functions of four RING-like domains within Vps-C subunits were analyzed and shown to have distinct functions in endolysosomal transport. Finally, we show that the CORVET- and HOPS-specific subunits Vps3 and Vps39 bind the Vps-C core through a common region within the Vps11 C-terminal domain (CTD). Biochemical and genetic experiments demonstrate the importance of these regions, revealing the Vps11 CTD as a key integrator of Vps-C complex assembly, Rab signaling, and endosomal and lysosomal traffic.
Collapse
Affiliation(s)
- Rachael L Plemel
- Department of Biochemistry, University of Washington, Seattle, WA 98195-3750, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shestakova A, Hanono A, Drosner S, Curtiss M, Davies BA, Katzmann DJ, Babst M. Assembly of the AAA ATPase Vps4 on ESCRT-III. Mol Biol Cell 2010; 21:1059-71. [PMID: 20110351 PMCID: PMC2836958 DOI: 10.1091/mbc.e09-07-0572] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A complex network of interactions mediates the recruitment of Vps4 to ESCRT-III and its subsequent assembly, two key steps in the ESCRT-dependent vesicle formation at the endosome. A model is presented depicting the order of events that lead to active, ESCRT-III–associated Vps4. Vps4 is a key enzyme that functions in endosomal protein trafficking, cytokinesis, and retroviral budding. Vps4 activity is regulated by its recruitment from the cytoplasm to ESCRT-III, where the protein oligomerizes into an active ATPase. The recruitment and oligomerization steps are mediated by a complex network of at least 12 distinct interactions between Vps4, ESCRT-III, Ist1, Vta1, and Did2. The order of events leading to active, ESCRT-III–associated Vps4 is poorly understood. In this study we present a systematic in vivo analysis of the Vps4 interaction network. The data demonstrated a high degree of redundancy in the network. Although no single interaction was found to be essential for the localization or activity of Vps4, certain interactions proved more important than others. The most significant among these were the binding of Vps4 to Vta1 and to the ESCRT-III subunits Vps2 and Snf7. In our model we propose the formation of a recruitment complex in the cytoplasm that is composed of Did2-Ist1-Vps4, which upon binding to ESCRT-III recruits Vta1. Vta1 in turn is predicted to cause a rearrangement of the Vps4 interactions that initiates the assembly of the active Vps4 oligomer.
Collapse
Affiliation(s)
- Anna Shestakova
- Department of Biology, University of Utah, Salt Lake City, UT 84112-9202, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Nickerson DP, West M, Henry R, Odorizzi G. Regulators of Vps4 ATPase activity at endosomes differentially influence the size and rate of formation of intralumenal vesicles. Mol Biol Cell 2010; 21:1023-32. [PMID: 20089837 PMCID: PMC2836955 DOI: 10.1091/mbc.e09-09-0776] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Disassembly of ESCRT-III requires Vps4 ATPase activity under the control of regulatory proteins. Described here are distinct spatiotemporal functions for Vps4 regulators, with Did2 playing a unique role in regulating MVB lumenal vesicle size and Vtal-Vps60 promoting efficient membrane scission and delivery of vesicles into the endosome lumen. Recruitment of endosomal sorting complexes required for transport (ESCRTs) to the cytosolic face of endosomes regulates selective inclusion of transmembrane proteins into the lumenal vesicles of multivesicular bodies (MVBs). ESCRT-0, -I, and -II bind directly to ubiquitinated transmembrane cargoes of the MVB pathway, whereas polymerization of ESCRT-III at endosomes is thought to bend the membrane and/or provide the energetic force that drives membrane scission and detachment of vesicles into the endosome lumen. Disassembly of the ESCRT-III polymer and dissociation of its subunits from endosomes requires the Vps4 ATPase, the activity of which is controlled in vivo by regulatory proteins. We identify distinct spatiotemporal roles for Vps4-regulating proteins through examinations of subcellular localization and endosome morphology. Did2 plays a unique role in the regulation of MVB lumenal vesicle size, whereas Vtal and Vps60 promote efficient membrane scission and delivery of membrane to the endosome lumen. These morphological effects probably result from Vps4-mediated manipulations of ESCRT-III, because we show dissociation of ESCRT-0, -I, and -II from endosomes is not directly dependent on Vps4 activity.
Collapse
Affiliation(s)
- Daniel P Nickerson
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | |
Collapse
|
22
|
Lyngsø C, Kjaerulff S, Müller S, Bratt T, Mortensen UH, Dal Degan F. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host. Protein Sci 2010; 19:579-92. [PMID: 20082307 DOI: 10.1002/pro.337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recombinant expression of native or modified eukaryotic proteins is pivotal for structural and functional studies and for industrial and pharmaceutical production of proteins. However, it is often impeded by the lack of proper folding. Here, we present a stringent and broadly applicable eukaryotic in vivo selection system for folded proteins. It is based on genetic complementation of the Schizosaccharomyces pombe growth marker gene invertase fused C-terminally to a protein library. The fusion proteins are directed to the secretion system, utilizing the ability of the eukaryotic protein quality-control systems to retain misfolded proteins in the ER and redirect them for cytosolic degradation, thereby only allowing folded proteins to reach the cell surface. Accordingly, the folding potential of the tested protein determines the ability of autotrophic colony growth. This system was successfully demonstrated using a complex insertion mutant library of TNF-alpha, from which different folding competent mutant proteins were uncovered.
Collapse
Affiliation(s)
- Christina Lyngsø
- The Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
23
|
Furgason MLM, MacDonald C, Shanks SG, Ryder SP, Bryant NJ, Munson M. The N-terminal peptide of the syntaxin Tlg2p modulates binding of its closed conformation to Vps45p. Proc Natl Acad Sci U S A 2009; 106:14303-8. [PMID: 19667197 PMCID: PMC2732825 DOI: 10.1073/pnas.0902976106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Indexed: 11/18/2022] Open
Abstract
The Sec1/Munc18 (SM) protein family regulates intracellular trafficking through interactions with individual SNARE proteins and assembled SNARE complexes. Revealing a common mechanism of this regulation has been challenging, largely because of the multiple modes of interaction observed between SM proteins and their cognate syntaxin-type SNAREs. These modes include binding of the SM to a closed conformation of syntaxin, binding to the N-terminal peptide of syntaxin, binding to assembled SNARE complexes, and/or binding to nonsyntaxin SNAREs. The SM protein Vps45p, which regulates endosomal trafficking in yeast, binds the conserved N-terminal peptide of the syntaxin Tlg2p. We used size exclusion chromatography and a quantitative fluorescent gel mobility shift assay to reveal an additional binding site that does not require the Tlg2p N-peptide. Characterization of Tlg2p mutants and truncations indicate that this binding site corresponds to a closed conformation of Tlg2p. Furthermore, the Tlg2p N-peptide competes with the closed conformation for binding, suggesting a fundamental regulatory mechanism for SM-syntaxin interactions in SNARE assembly and membrane fusion.
Collapse
Affiliation(s)
- Melonnie L. M. Furgason
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605; and
| | - Chris MacDonald
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular Biology, Davidson Building, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Scott G. Shanks
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular Biology, Davidson Building, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605; and
| | - Nia J. Bryant
- Henry Wellcome Laboratory of Cell Biology, Division of Molecular and Cellular Biology, Davidson Building, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605; and
| |
Collapse
|
24
|
Burston HE, Maldonado-Báez L, Davey M, Montpetit B, Schluter C, Wendland B, Conibear E. Regulators of yeast endocytosis identified by systematic quantitative analysis. J Cell Biol 2009; 185:1097-110. [PMID: 19506040 PMCID: PMC2711619 DOI: 10.1083/jcb.200811116] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 05/12/2009] [Indexed: 11/22/2022] Open
Abstract
Endocytosis of receptors at the plasma membrane is controlled by a complex mechanism that includes clathrin, adaptors, and actin regulators. Many of these proteins are conserved in yeast yet lack observable mutant phenotypes, which suggests that yeast endocytosis may be subject to different regulatory mechanisms. Here, we have systematically defined genes required for internalization using a quantitative genome-wide screen that monitors localization of the yeast vesicle-associated membrane protein (VAMP)/synaptobrevin homologue Snc1. Genetic interaction mapping was used to place these genes into functional modules containing known and novel endocytic regulators, and cargo selectivity was evaluated by an array-based comparative analysis. We demonstrate that clathrin and the yeast AP180 clathrin adaptor proteins have a cargo-specific role in Snc1 internalization. We additionally identify low dye binding 17 (LDB17) as a novel conserved component of the endocytic machinery. Ldb17 is recruited to cortical actin patches before actin polymerization and regulates normal coat dynamics and actin assembly. Our findings highlight the conserved machinery and reveal novel mechanisms that underlie endocytic internalization.
Collapse
Affiliation(s)
- Helen E. Burston
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, and Department of Medical Genetics, University of British Columbia, Vancouver V5Z 4H4, British Columbia, Canada
| | | | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, and Department of Medical Genetics, University of British Columbia, Vancouver V5Z 4H4, British Columbia, Canada
| | - Benjamen Montpetit
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, and Department of Medical Genetics, University of British Columbia, Vancouver V5Z 4H4, British Columbia, Canada
| | - Cayetana Schluter
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, and Department of Medical Genetics, University of British Columbia, Vancouver V5Z 4H4, British Columbia, Canada
| | - Beverly Wendland
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, and Department of Medical Genetics, University of British Columbia, Vancouver V5Z 4H4, British Columbia, Canada
| |
Collapse
|
25
|
Abstract
Vesicle tethers are long coiled-coil proteins or multisubunit complexes that provide specificity to the membrane fusion process by linking cargo-containing vesicles to target membranes. Transport protein particle (TRAPP) is a well-characterized multisubunit tethering complex that acts as a GTP exchange factor and is present in two cellular forms: a 7 subunit TRAPP I complex required for ER-to-Golgi transport, and a 10 subunit TRAPP II complex that mediates post-Golgi trafficking. In this work, we have identified Tca17, which is encoded by the non-essential ORF YEL048c, as a novel binding partner of the TRAPP complex. Loss of Tca17 or any of the non-essential TRAPP subunits (Trs33, Trs65 and Trs85) leads to defects in the Golgi-endosomal recycling of Snc1. We show that Tca17, a Sedlin_N family member similar to the TRAPP subunit Trs20, interacts with the TRAPP complex in a Trs33- and Trs65-dependent manner. Mutation of TCA17 or TRS33 perturbs the association of Trs65 with the rest of the TRAPP complex and alters the localization of the Rab GTPase Ypt31. These data support a model in which Tca17 acts with Trs33 and Trs65 to promote the assembly and/or stability of the TRAPP complex and regulate its activity in post-Golgi trafficking events.
Collapse
Affiliation(s)
- Ben Montpetit
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | |
Collapse
|
26
|
Curak J, Rohde J, Stagljar I. Yeast as a tool to study bacterial effectors. Curr Opin Microbiol 2009; 12:18-23. [DOI: 10.1016/j.mib.2008.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 11/30/2022]
|
27
|
de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 2008; 4:e1000117. [PMID: 18670632 PMCID: PMC2475511 DOI: 10.1371/journal.ppat.1000117] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 07/07/2008] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, evades phago-lysosome fusion in mammalian and protozoan hosts to create a suitable niche for intracellular replication. To modulate vesicle trafficking pathways, L. pneumophila translocates effector proteins into eukaryotic cells through a Type IVB macro-molecular transport system called the Icm-Dot system. In this study, we employed a fluorescence-based translocation assay to show that 33 previously identified Legionella eukaryotic-like genes (leg) encode substrates of the Icm-Dot secretion system. To assess which of these proteins may contribute to the disruption of vesicle trafficking, we expressed each gene in yeast and looked for phenotypes related to vacuolar protein sorting. We found that LegC3-GFP and LegC7/YlfA-GFP caused the mis-secretion of CPY-Invertase, a fusion protein normally restricted to the yeast vacuole. We also found that LegC7/YlfA-GFP and its paralog LegC2/YlfB-GFP formed large structures around the yeast vacuole while LegC3-GFP localized to the plasma membrane and a fragmented vacuole. In mammalian cells, LegC2/YlfB-GFP and LegC7/YlfA-GFP were found within large structures that co-localized with anti-KDEL antibodies but excluded the lysosomal marker LAMP-1, similar to what is observed in Legionella-containing vacuoles. LegC3-GFP, in contrast, was observed as smaller structures which had no obvious co-localization with KDEL or LAMP-1. Finally, LegC3-GFP caused the accumulation of many endosome-like structures containing undigested material when expressed in the protozoan host Dictyostelium discoideum. Our results demonstrate that multiple Leg proteins are Icm/Dot-dependent substrates and that LegC3, LegC7/YlfA, and LegC2/YlfB may contribute to the intracellular trafficking of L. pneumophila by interfering with highly conserved pathways that modulate vesicle maturation.
Collapse
Affiliation(s)
- Karim Suwwan de Felipe
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Robert T. Glover
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Xavier Charpentier
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - O. Roger Anderson
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, United States of America
| | - Moraima Reyes
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Christopher D. Pericone
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Howard A. Shuman
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
28
|
Richter C, West M, Odorizzi G. Dual mechanisms specify Doa4-mediated deubiquitination at multivesicular bodies. EMBO J 2007; 26:2454-64. [PMID: 17446860 PMCID: PMC1868904 DOI: 10.1038/sj.emboj.7601692] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 03/29/2007] [Indexed: 12/23/2022] Open
Abstract
Doa4 is a ubiquitin-specific protease in Saccharomyces cerevisiae that deubiquitinates integral membrane proteins sorted into the lumenal vesicles of late-endosomal multivesicular bodies (MVBs). We show that the non-catalytic N terminus of Doa4 mediates its recruitment to endosomes through its association with Bro1, which is one of several highly conserved class E Vps proteins that comprise the core MVB sorting machinery. In turn, Bro1 directly stimulates deubiquitination by interacting with a YPxL motif in the catalytic domain of Doa4. Mutations in either Doa4 or Bro1 that disrupt catalytic activation of Doa4 impair deubiquitination and sorting of MVB cargo proteins and lead to the formation of lumenal MVB vesicles that are predominantly small compared with the vesicles seen in wild-type cells. Thus, by recruiting Doa4 to late endosomes and stimulating its catalytic activity, Bro1 fulfills a novel dual role in coordinating deubiquitination in the MVB pathway.
Collapse
Affiliation(s)
- Caleb Richter
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Matthew West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
29
|
Shohdy N, Efe JA, Emr SD, Shuman HA. Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A 2005; 102:4866-71. [PMID: 15781869 PMCID: PMC555709 DOI: 10.1073/pnas.0501315102] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Legionella pneumophila invades and replicates intracellularly in human and protozoan hosts. The bacteria use the Icm/Dot type IVB secretion system to translocate effectors that inhibit phagosome maturation and modulate host vesicle trafficking pathways. To understand how L. pneumophila modulates organelle trafficking in host cells, we carried out pathogen effector protein screening in yeast, identifying L. pneumophila genes that produced membrane trafficking [vacuole protein sorting (VPS)] defects in yeast. We identified four L. pneumophila DNA fragments that perturb sorting of vacuolar proteins. Three encode ORFs of unknown function that are translocated via the Icm/Dot transporter from Legionella into macrophages. VPS inhibitor protein (Vip) A is a coiled-coil protein, VipD is a patatin domain-containing protein, and VipF contains an acetyltransferase domain. Processing studies in yeast indicate that VipA, VipD, and VipF inhibit lysosomal protein trafficking by different mechanisms; overexpressing VipA has an effect on carboxypeptidase Y trafficking, whereas VipD interferes with multivesicular body formation at the late endosome and endoplasmic reticulum-to-Golgi body transport. Such differences highlight the multiple strategies L. pneumophila effectors use to subvert host trafficking processes. Using yeast as an effector gene discovery tool allows for a powerful, genetic approach to both the identification of virulence factors and the study of their function.
Collapse
Affiliation(s)
- Nadim Shohdy
- Department of Microbiology, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
30
|
Luhtala N, Odorizzi G. Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes. ACTA ACUST UNITED AC 2004; 166:717-29. [PMID: 15326198 PMCID: PMC2172414 DOI: 10.1083/jcb.200403139] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ubiquitination directs the sorting of cell surface receptors and other integral membrane proteins into the multivesicular body (MVB) pathway. Cargo proteins are subsequently deubiquitinated before their enclosure within MVB vesicles. In Saccharomyces cerevisiae, Bro1 functions at a late step of MVB sorting and is required for cargo protein deubiquitination. We show that the loss of Bro1 function is suppressed by the overexpression of DOA4, which encodes the ubiquitin thiolesterase required for the removal of ubiquitin from MVB cargoes. Overexpression of DOA4 restores cargo protein deubiquitination and sorting via the MVB pathway and reverses the abnormal endosomal morphology typical of bro1 mutant cells, resulting in the restoration of multivesicular endosomes. We further demonstrate that Doa4 interacts with Bro1 on endosomal membranes and that the recruitment of Doa4 to endosomes requires Bro1. Thus, our results point to a key role for Bro1 in coordinating the timing and location of deubiquitination by Doa4 in the MVB pathway.
Collapse
Affiliation(s)
- Natalie Luhtala
- Molecular, Cellular, and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309-0347, USA
| | | |
Collapse
|
31
|
Proszynski TJ, Simons K, Bagnat M. O-glycosylation as a sorting determinant for cell surface delivery in yeast. Mol Biol Cell 2004; 15:1533-43. [PMID: 14742720 PMCID: PMC379253 DOI: 10.1091/mbc.e03-07-0511] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Little is known about the mechanisms that determine localization of proteins to the plasma membrane in Saccharomyces cerevisiae. The length of the transmembrane domains and association of proteins with lipid rafts have been proposed to play a role in sorting to the cell surface. Here, we report that Fus1p, an O-glycosylated integral membrane protein involved in cell fusion during yeast mating, requires O-glycosylation for cell surface delivery. In cells lacking PMT4, encoding a mannosyltransferase involved in the initial step of O-glycosylation, Fus1p was not glycosylated and accumulated in late Golgi structures. A chimeric protein lacking O-glycosylation motif was missorted to the vacuole and accumulated in late Golgi in wild-type cells. Exocytosis of this protein could be restored by addition of a 33-amino acid portion of an O-glycosylated sequence from Fus1p. Our data suggest that O-glycosylation functions as a sorting determinant for cell surface delivery of Fus1p.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | |
Collapse
|