1
|
Misra T, Tare M, Jha PN. Characterization of functional amyloid curli in biofilm formation of an environmental isolate Enterobacter cloacae SBP-8. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01843-y. [PMID: 37243862 DOI: 10.1007/s10482-023-01843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
The biofilm formation by bacteria is a complex process that is strongly mediated by various genetic and environmental factors. Biofilms contribute to disease infestation, especially in chronic infections. It is, therefore important to understand the factors affecting biofilm formation. This study reports the role of a functional amyloid curli in biofilm formation at various abiotic surfaces, including medical devices, by an environmental isolate of Enterobacter cloacae (SBP-8) which has been known for its pathogenic potential. A knockout mutant of csgA, the gene encoding the major structural unit of curli, was created to study the effect of curli on biofilm formation by E. cloacae SBP-8. Our findings confirm the production of curli at 25 °C and 37 °C in the wild-type strain. We further investigated the role of curli in the attachment of E. cloacae SBP-8 to glass, enteral feeding tube, and foley latex catheter. Contrary to the previous studies reporting the curli production below 30 °C in the majority of biofilm-forming bacterial species, we observed its production in E. cloacae SBP-8 at 37 °C. The formation of more intense biofilm in wild-type strain on various surfaces compared to curli-deficient strain (ΔcsgA) at both 25 °C and 37 °C suggested a prominent role of curli in biofilm formation. Further, electron and confocal microscopy studies demonstrated the formation of diffused monolayers of microbial cells on the abiotic surfaces by ΔcsgA strain as compared to the thick biofilm by respective wild-type strain, indicating the involvement of curli in biofilm formation by E. cloacae SBP-8. Overall, our findings provide insight into biofilm formation mediated by curli in E. cloacae SBP-8. Further, we show that it can be expressed at a physiological temperature on all surfaces, thereby indicating the potential role of curli in pathogenesis.
Collapse
Affiliation(s)
- Tripti Misra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
2
|
Biofilm production: A strategic mechanism for survival of microbes under stress conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
3
|
Interaction of Pseudomonas aeruginosa and Staphylococcus aureus with Listeria innocua in dual species biofilms and inactivation following disinfectant treatments. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Kocot AM, Olszewska MA. Interaction and inactivation of
Listeria
and
Lactobacillus
cells in single and mixed species biofilms exposed to different disinfectants. J Food Saf 2019. [DOI: 10.1111/jfs.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Aleksandra M. Kocot
- Department of Industrial and Food Microbiology, Faculty of Food ScienceUniversity of Warmia and Mazury in Olsztyn Olsztyn Poland
| | - Magdalena A. Olszewska
- Department of Industrial and Food Microbiology, Faculty of Food ScienceUniversity of Warmia and Mazury in Olsztyn Olsztyn Poland
| |
Collapse
|
5
|
Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Wojciech J, Kamila M, Wojciech B. Investigation of the population dynamics within a Pseudomonas aeruginosa biofilm using a flow based biofilm model system and flow cytometric evaluation of cellular physiology. BIOFOULING 2018; 34:835-850. [PMID: 30332894 DOI: 10.1080/08927014.2018.1508569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
In this study a flow based biofilm model system was used to simulate the formation of Pseudomonas aeruginosa biofilms on a stainless steel surface. To investigate the complexity of biofilm-associated P. aeruginosa populations a combination of microscopic observations and flow cytometric analysis (FCM) was adopted. Biofilm-associated P. aeruginosa cells were evaluated (1) under optimal vs reduced nutrient-availability at the initial adhesion stage, and (2) irrespective of nutrient-availability within a mature biofilm. Microscopic estimation of the extent of attachment revealed more effective colonization upon optimal vs starvation conditions. FCM allowed an in situ evaluation of P. aeruginosa vitality, using cellular redox potential measurements to discriminate active, mid-active and non-active sub-populations. Samples from recently attached cells and mature biofilms showed significant differences in the percentages of bacterial cells from the defined sub-populations. The approach demonstrated that distribution of individual P. aeruginosa sub-populations was influenced by the stage of the biofilm life-cycle and nutrient availability.
Collapse
Affiliation(s)
- Juzwa Wojciech
- a Department of Biotechnology and Food Microbiology , Poznan University of Life Sciences , Poznan , Poland
| | - Myszka Kamila
- a Department of Biotechnology and Food Microbiology , Poznan University of Life Sciences , Poznan , Poland
| | - Białas Wojciech
- a Department of Biotechnology and Food Microbiology , Poznan University of Life Sciences , Poznan , Poland
| |
Collapse
|
7
|
Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Front Microbiol 2016; 7:1641. [PMID: 27803696 PMCID: PMC5067414 DOI: 10.3389/fmicb.2016.01641] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 10/03/2016] [Indexed: 12/14/2022] Open
Abstract
Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing.
Collapse
Affiliation(s)
- Laura M. Coughlan
- Teagasc Food Research CentreCork, Ireland
- School of Microbiology, University College CorkCork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research CentreCork, Ireland
- APC Microbiome InstituteCork, Ireland
| | - Colin Hill
- School of Microbiology, University College CorkCork, Ireland
- APC Microbiome InstituteCork, Ireland
| | | |
Collapse
|
8
|
Myszka K, Schmidt MT, Białas W, Olkowicz M, Leja K, Czaczyk K. Role of gallic and p-coumaric acids in the AHL-dependent expression of flgA gene and in the process of biofilm formation in food-associated Pseudomonas fluorescens KM120. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4037-4047. [PMID: 26710926 DOI: 10.1002/jsfa.7599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND In the process of Pseudomonas fluorescens biofilm formation, N-acyl-l-homoserine lactone (AHL)-mediated flagella synthesis plays a key role. Inhibition of AHL production may attenuate P. fluorescens biofilm on solid surfaces. This work validated the anti-biofilm properties of p-coumaric and gallic acids via the ability of phenolics to suppress AHL synthesis in P. fluorescens KM120. The dependence between synthesis of AHL molecules, expression of flagella gene (flgA) and the ability of biofilm formation by P. fluorescens KM120 on a stainless steel surface (type 304L) was also investigated. RESULTS Research was carried out in a purpose-built flow cell device. Limitations on AHL synthesis in P. fluorescens KM120 were observed at concentrations of 120 and 240 µmol L(-1) of phenolic acids in medium. At such levels of gallic and p-coumaric acids the ability of P. fluorescens KM120 to synthesize 3-oxo-C6-homoserine lactone (HSL) was not observed. These concentrations caused decreased expression of flgA gene in P. fluorescens KM120. The changes in expression of AHL-dependent flgA gene significantly decreased the rate of microorganism colonization on the stainless steel surface. CONCLUSION Phenolic acids are able to inhibit biofilm formation. The results obtained in the work may help to develop alternative techniques for anti-biofilm treatment in the food industry. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kamila Myszka
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60-627, Poznan, Poland
| | - Marcin T Schmidt
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60-627, Poznan, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60-627, Poznan, Poland
| | - Mariola Olkowicz
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60-627, Poznan, Poland
| | - Katarzyna Leja
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60-627, Poznan, Poland
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60-627, Poznan, Poland
| |
Collapse
|
9
|
Juzwa W, Myszka K, Białas W, Dobrucka R, Konieczny P, Czaczyk K. Investigation of the effectiveness of disinfectants against planktonic and biofilm forms of P. aeruginosa and E. faecalis cells using a compilation of cultivation, microscopic and flow cytometric techniques. BIOFOULING 2015; 31:587-597. [PMID: 26313563 DOI: 10.1080/08927014.2015.1075126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study evaluated the effectiveness of selected disinfectants against bacterial cells within a biofilm using flow cytometry, the conventional total viable count test and scanning electron microscopy (SEM). A flow cytometric procedure based on measurement of the cellular redox potential (CRP) was demonstrated to have potential for the rapid evaluation of activity against biofilm and planktonic forms of microbes. Quaternary ammonium compound-based disinfectant (QACB) demonstrated a higher level of anti-microbial activity than a performic acid preparation (PAP), with mean CRP values against P. aeruginosa cells of 2 and 1.33 relative fluorescence units (RFU) vs 63.33 and 61.33 RFU for 8 and 24 h cultures respectively. Flow cytometric evaluation of the anti-biofilm activity demonstrated a higher efficacy of QACB compared to PAP for P. aeruginosa cells of 1 and 0.66 RFU vs 18.33 and 22.66 RFU for 8 and 24 h cultures respectively. SEM images of treated P. aeruginosa cells demonstrated disinfectant-specific effects on cell morphology.
Collapse
Affiliation(s)
- Wojciech Juzwa
- a Department of Biotechnology and Food Microbiology , Poznań University of Life Sciences , Poznań , Poland
| | | | | | | | | | | |
Collapse
|
10
|
Nowacka M, Modrzejewska-Sikorska A, Chrzanowski L, Ambrożewicz D, Rozmanowski T, Myszka K, Czaczyk K, Bula K, Jesionowski T. Electrokinetic and bioactive properties of CuO∙SiO2 oxide composites. Bioelectrochemistry 2012; 87:50-7. [PMID: 22503710 DOI: 10.1016/j.bioelechem.2012.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 03/12/2012] [Accepted: 03/18/2012] [Indexed: 11/29/2022]
Abstract
CuO∙SiO(2) hybrid oxide precipitated on a semi-technical scale was thoroughly characterised in terms of physicochemical properties. Its particle size distribution and SEM analysis were performed to establish dispersion and surface morphology. Chemical analysis provided information on the content of CuO and SiO(2) oxides in the hybrid systems. The oxide systems were also subjected to elemental analysis. Zeta potential determinations were evaluated to obtain information regarding the interactions between colloidal particles. The stability of copper silicates' water dispersions was estimated on the basis of zeta potential measurements. The obtained oxide systems were used as components of polymer composites with polyester resins, which were subjected to mechanical tests and bactericidal tests against Pseudomonas aeruginosa, a well known biofilm-forming microorganism. The anti-adhesive activity of the CuO·SiO(2) enriched polymers was assessed using a 9-degree scale of adhesion. A significant reduction in the P. aeruginosa biofilm development rate was achieved for Palatal A 400-01 resins enriched with both 2 and 8 phr of the filler. In the case of Aropol M 105 TB resins the introduction of CuO∙SiO(2) caused inhibition of bacterial colonisation but to a smaller extent. These results strongly indicate that the biological activity of Cu was maintained. The release of copper ions into the local environment was examined by atomic absorption spectrometry (AAS). Maximum values of 1.621 and 5.934 mg/dm(3) of released copper were detected. The surface composition of both resins studied by energy dispersive X-ray spectroscopy (EDS) contributed to the data suggesting homogenous distribution of Si; however copper seemed to form local aggregates. The presented results may be of great significance for those dealing with materials tailored for specific needs.
Collapse
Affiliation(s)
- Magdalena Nowacka
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Poznan, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Myszka K, Czaczyk K. Characterization of Adhesive Exopolysaccharide (EPS) Produced by Pseudomonas aeruginosa Under Starvation Conditions. Curr Microbiol 2009; 58:541-6. [DOI: 10.1007/s00284-009-9365-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/04/2008] [Accepted: 01/07/2009] [Indexed: 11/30/2022]
|
12
|
Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli. Appl Environ Microbiol 2009; 75:1723-33. [PMID: 19168650 DOI: 10.1128/aem.02171-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated.
Collapse
|
13
|
Ploux L, Beckendorff S, Nardin M, Neunlist S. Quantitative and morphological analysis of biofilm formation on self-assembled monolayers. Colloids Surf B Biointerfaces 2007; 57:174-81. [PMID: 17353117 DOI: 10.1016/j.colsurfb.2007.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/29/2007] [Accepted: 01/29/2007] [Indexed: 11/18/2022]
Abstract
In spite of intensive studies over the past two decades, the influence of surface properties on bacterial adhesion and biofilm formation remains unclear, particularly on late steps. In order to contribute to the elucidation of this point, we compared the impact of two different substrates on the formation of bacterial biofilm, by analysing bacterial amount and biofilm structure on hydrophilic and hydrophobic surfaces. The surfaces were constituted by NH(2)- and CH(3)-terminated self-assembled monolayers (SAMs) on silicon wafers, allowing to consider only the surface chemistry influence because wafers low roughness. A strain of Escherichia coli K12, able to produce biofilm on abiotic surfaces, was grown with culture durations varying from 4h to 336 h on both types of substrates. The amount of adhered bacteria was determined after detachment by both photometry at 630 nm and direct counting under light microscope, while the spatial distribution of adhered bacteria was observed by fluorescence microscopy. A general view of our results suggests a little influence of the surface chemistry on adherent bacteria amount, but a clear impact on dynamics of biofilm growth as well as on biofilm structure. This work points out how surface chemistry of substrates can influence the bacterial adhesion and the biofilm formation.
Collapse
Affiliation(s)
- Lydie Ploux
- Institut de Chimie des Surfaces et Interfaces, 15 rue Jean Starcky, BP 2488, Mulhouse Cedex, France.
| | | | | | | |
Collapse
|
14
|
Myszka K, Czaczyk K, Schmidt MT, Olejnik AM. Cell surface properties as factors involved in Proteus vulgaris adhesion to stainless steel under starvation conditions. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9406-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Lucas CE, Brown E, Fields BS. Type IV pili and type II secretion play a limited role in Legionella pneumophila biofilm colonization and retention. Microbiology (Reading) 2006; 152:3569-3573. [PMID: 17159209 DOI: 10.1099/mic.0.2006/000497-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionellae colonize biofilms in building water systems, yet little is known about their interaction with the organisms in these microbial communities. The role of Legionella pneumophila type IV pili and the type II secretion pre-pilin peptidase was evaluated in a model biofilm system. L. pneumophila strains 130b (wild-type), BS100 (a type IV pili mutant) and NU243 (a pre-pilin peptidase mutant) were assessed for attachment and retention in an established biofilm. Strains 130b and NU243 colonized the biofilm at a similar level while BS100 attached at a tenfold lower level. Over time, NU243 dropped below the level of detection while BS100 remained in the biofilm throughout the course of the experiment. The wild-type strain decreased but remained at a considerably higher level than either of the mutants. Inclusion of amoebae with BS100 allowed for attachment and retention at a level similar to 130b. NU243, which displays reduced intracellular replication, was able to establish itself and persist in the presence of amoebae. Thus, type IV pili and the pre-pilin peptidase facilitate L. pneumophila colonization of biofilms but are not required in the presence of a host for intracellular replication.
Collapse
Affiliation(s)
- Claressa E Lucas
- Respiratory Disease Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop G03, Atlanta, GA 30333, USA
| | - Ellen Brown
- Respiratory Disease Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop G03, Atlanta, GA 30333, USA
| | - Barry S Fields
- Respiratory Disease Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop G03, Atlanta, GA 30333, USA
| |
Collapse
|
16
|
Guerra NP, Araujo AB, Barrera AM, Agrasar AT, Macías CL, Carballo J, Pastrana L. Antimicrobial activity of nisin adsorbed to surfaces commonly used in the food industry. J Food Prot 2005; 68:1012-9. [PMID: 15895735 DOI: 10.4315/0362-028x-68.5.1012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adsorption isotherms of nisin to three food contact surfaces, stainless steel, polyethyleneterephthalate (PET), and rubber at 8, 25, 40, and 60 degrees C, were calculated. For all surfaces, the increase in temperature led to a decrease in the affinity between nisin and the surface. The rubber adsorbed a higher amount of nisin (0.697 microg/cm2) in comparison with PET (0.665 microg/cm2) and stainless steel (0.396 microg/cm2). Adsorption of nisin to the stainless steel surface described L-2 type curves for all temperatures assayed. However, for PET and rubber surfaces, the isotherms were L-2 type (at 40 and 60 degrees C) and L-4 type curves (at 8 and 25 degrees C). Nisin retained its antibacterial activity once adsorbed to the food contact surfaces and was able to inhibit the growth of Enterococcus hirae CECT 279 on Rothe agar medium. The attachment of three Listeria monocytogenes strains to the three surfaces was found to be dependent on the surface, the strain, and the initial bacterial suspension in contact with the surface. The adsorption of Nisaplin on surfaces reduced the attachment of all L. monocytogenes strains tested. The effect of PET-based bioactive packaging in food was very encouraging. When applied to a food system, nisin-adsorbed PET bottles reduced significantly (P < 0.05) the levels of the total aerobic plate counts in skim milk by approximately 1.4 log units after 24 days of refrigerated storage (4 degrees C), thus extending its shelf life.
Collapse
Affiliation(s)
- Nelson P Guerra
- Departamento de Bioquímica, Xenética, e Inmunoloxía, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas, 32004, Ourense, Spain
| | | | | | | | | | | | | |
Collapse
|