1
|
Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300. mBio 2021; 12:e0209421. [PMID: 34399606 PMCID: PMC8406260 DOI: 10.1128/mbio.02094-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for coronavirus disease 2019 (COVID-19), encodes two proteases required for replication. The main protease (Mpro), encoded as part of two polyproteins, pp1a and pp1ab, is responsible for 11 different cleavages of these viral polyproteins to produce mature proteins required for viral replication. Mpro is therefore an attractive target for therapeutic interventions. Certain proteins in cells under oxidative stress undergo modification of reactive cysteines. We show Mpro is susceptible to glutathionylation, leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that modification of a single cysteine with glutathione is sufficient to block dimerization and inhibit its activity. Gel filtration studies as well as analytical ultracentrifugation confirmed that glutathionylated Mpro exists as a monomer. Tryptic and chymotryptic digestions of Mpro as well as experiments using a C300S Mpro mutant revealed that Cys300, which is located at the dimer interface, is a primary target of glutathionylation. Moreover, Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of a non-active site cysteine, Cys300, which itself is not required for Mpro activity, and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to the pathophysiology of SARS-CoV-2 and related bat coronaviruses.
Collapse
|
2
|
Davis DA, Bulut H, Shrestha P, Yaparla A, Jaeger HK, Hattori SI, Wingfield PT, Mitsuya H, Yarchoan R. Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33851157 PMCID: PMC8043447 DOI: 10.1101/2021.04.09.439169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 encodes main protease (Mpro), an attractive target for therapeutic interventions. We show Mpro is susceptible to glutathionylation leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that a single modification with glutathione is sufficient to block dimerization and loss of activity. Proteolytic digestions of Mpro revealed Cys300 as a primary target of glutathionylation, and experiments using a C300S Mpro mutant revealed that Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of Cys300 and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to human disease and the pathophysiology of SARS-CoV-2 in bats, which develop oxidative stress during flight.
Collapse
Affiliation(s)
- David A Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Haydar Bulut
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Amulya Yaparla
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Hannah K Jaeger
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Paul T Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hiroaki Mitsuya
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892.,Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
3
|
Lindhoud S, van den Berg WAM, van den Heuvel RHH, Heck AJR, van Mierlo CPM, van Berkel WJH. Cofactor binding protects flavodoxin against oxidative stress. PLoS One 2012; 7:e41363. [PMID: 22829943 PMCID: PMC3400614 DOI: 10.1371/journal.pone.0041363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/20/2012] [Indexed: 11/23/2022] Open
Abstract
In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification.
Collapse
Affiliation(s)
- Simon Lindhoud
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | | | - Robert H. H. van den Heuvel
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
4
|
Daniels SI, Davis DA, Soule EE, Stahl SJ, Tebbs IR, Wingfield P, Yarchoan R. The initial step in human immunodeficiency virus type 1 GagProPol processing can be regulated by reversible oxidation. PLoS One 2010; 5:e13595. [PMID: 21042582 PMCID: PMC2962637 DOI: 10.1371/journal.pone.0013595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/26/2010] [Indexed: 01/14/2023] Open
Abstract
Background Maturation of human immunodeficiency virus type 1 (HIV-1) occurs upon activation of HIV-1 protease embedded within GagProPol precursors and cleavage of Gag and GagProPol polyproteins. Although reversible oxidation can regulate mature protease activity as well as retrovirus maturation, it is possible that the effects of oxidation on viral maturation are mediated in whole, or part, through effects on the initial intramolecular cleavage event of GagProPol. In order assess the effect of reversible oxidation on this event, we developed a system to isolate the first step in protease activation involving GagProPol. Methodology/Principal Findings To determine if oxidation influences this step, we created a GagProPol plasmid construct (pGPfs-1C) that encoded mutations at all cleavage sites except p2/NC, the initial cleavage site in GagProPol. pGPfs-1C was used in an in vitro translation assay to observe the behavior of this initial step without interference from subsequent processing events. Diamide, a sulfhydral oxidizing agent, inhibited processing at p2/NC by >60% for pGPfs-1C and was readily reversed with the reductant, dithiothreitol. The ability to regulate processing by reversible oxidation was lost when the cysteines of the embedded protease were mutated to alanine. Unlike mature protease, which requires only oxidation of cys95 for inhibition, both cysteines of the embedded protease contributed to this inhibition. Conclusions/Significance We developed a system that can be used to study the first step in the cascade of HIV-1 GagProPol processing and show that reversible oxidation of cysteines of HIV-1 protease embedded in GagProPol can block this initial GagProPol autoprocessing. This type of regulation may be broadly applied to the majority of retroviruses.
Collapse
Affiliation(s)
- Sarah I. Daniels
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Erin E. Soule
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen J. Stahl
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Irene R. Tebbs
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Lim SY, Raftery MJ, Goyette J, Geczy CL. S-glutathionylation regulates inflammatory activities of S100A9. J Biol Chem 2010; 285:14377-88. [PMID: 20223829 PMCID: PMC2863208 DOI: 10.1074/jbc.m109.075242] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reactive oxygen species generated by activated neutrophils can cause oxidative stress and tissue damage. S100A8 (A8) and S100A9 (A9), abundant in neutrophil cytoplasm, are exquisitely sensitive to oxidation, which may alter their functions. Murine A8 is a neutrophil chemoattractant, but it suppresses leukocyte transmigration in the microcirculation when S-nitrosylated. Glutathione (GSH) modulates intracellular redox, and S-glutathionylation can protect susceptible proteins from oxidative damage and regulate function. We characterized S-glutathionylation of A9; GSSG and GSNO generated S-glutathionylated A8 (A8-SSG) and A9 (A9-SSG) in vitro, whereas only A9-SSG was detected in cytosol of neutrophils activated with phorbol myristate acetate (PMA) but not with fMLP or opsonized zymosan. S-Glutathionylation exposed more hydrophobic regions in Zn(2+)-bound A9 but did not alter Zn(2+) binding affinity. A9-SSG had reduced capacity to form heterocomplexes with A8, but the arachidonic acid binding capacities of A8/A9 and A8/A9-SSG were similar. A9 and A8/A9 bind endothelial cells; S-glutathionylation reduced binding. We found little effect of A9 or A9-SSG on neutrophil CD11b/CD18 expression or neutrophil adhesion to endothelial cells. However, A9, A9-SSG and A8/A9 promoted neutrophil adhesion to fibronectin but, in the presence of A8, A9-mediated adhesion was abrogated by glutathionylation. S-Glutathionylation of A9 may protect its oxidation to higher oligomers and reduce neutrophil binding to the extracellular matrix. This may regulate the magnitude of neutrophil migration in the extravasculature, and together with the functional changes we reported for S-nitrosylated A8, particular oxidative modifications of these proteins may limit tissue damage in acute inflammation.
Collapse
Affiliation(s)
- Su Yin Lim
- From the Centre for Infection and Inflammation Research and
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry Facility, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jesse Goyette
- From the Centre for Infection and Inflammation Research and
| | - Carolyn L. Geczy
- From the Centre for Infection and Inflammation Research and
- To whom correspondence should be addressed. Tel.: 612-9385-2777; E-mail:
| |
Collapse
|
6
|
Analysis and characterization of dimerization inhibition of a multi-drug-resistant human immunodeficiency virus type 1 protease using a novel size-exclusion chromatographic approach. Biochem J 2009; 419:497-506. [PMID: 19149765 DOI: 10.1042/bj20082068] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Active-site inhibitors of HIV-1 PR (protease) block viral replication by preventing viral maturation. However, HIV-1 often develops resistance to active-site inhibitors through multiple mutations in PR and therefore recent efforts have focused on inhibiting PR dimerization as an alternative approach. Dimerization inhibitors have been identified using kinetic analysis, but additional characterization of the effect of these inhibitors on PR by physical methods has been difficult. In the present study, we identified a PR(MDR) (multi-drug-resistant HIV-1 PR) that was highly resistant to autoproteolysis. Using this PR and a novel size-exclusion chromatographic approach that incorporated fluorescence and MS detection, we were able to demonstrate inhibition of dimerization using P27 (peptide 27), a peptide dimerization inhibitor of PR previously identified on the basis of kinetic analysis. Incubation of PR(MDR) with P27, or other dimerization inhibitors, led to a dose- and time-dependent formation of PR monomers based on the change in elution time by size exclusion and its similar elution time to engineered forms of monomeric PR, namely PR(T26A) and glutathionylated PR. In contrast, incubation of PR(MDR) with a potent active-site inhibitor did not change the elution time for the PR(MDR) dimer. The monomeric PR induced by P27 had fluorescent characteristics which were consistent with unfolded PR. Structure-activity studies identified the active regions of P27 and experiments were performed to examine the effect of other dimerization inhibitors on PR. The present study is the first characterization of dimerization inhibition of PR(MDR), a prime target for these inhibitors, using a novel size-exclusion chromatographic approach.
Collapse
|
7
|
Long LH, Liu J, Liu RL, Wang F, Hu ZL, Xie N, Fu H, Chen JG. Differential effects of methionine and cysteine oxidation on [Ca2+] i in cultured hippocampal neurons. Cell Mol Neurobiol 2009; 29:7-15. [PMID: 18581229 PMCID: PMC11506106 DOI: 10.1007/s10571-008-9289-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 06/06/2008] [Indexed: 12/23/2022]
Abstract
Methionine and cysteine residues in proteins are the major targets of reactive oxygen species (ROS). The present work was designed to characterize the impact of methionine and cysteine oxidation upon [Ca(2+)](i) in hippocampal neurons. We investigated the effects of H(2)O(2) and chloramine T(Ch-T) agents known to oxidize both cysteine and methionine residues, and 5, 5'-dithio-bis (2-nitrobenzoic acid) (DTNB)--a cysteine-specific oxidant, on the intracellular calcium in hippocampal neurons. The results showed that these three oxidants, 1 mM H(2)O(2), 1 mM Ch-T, and 500 microM DTNB, induced an sustained elevation of [Ca(2+)](i) by 76.1 +/- 3.9%, 86.5 +/- 5.0%, and 24.4 +/- 3.2% over the basal level, respectively. The elevation induced by H(2)O(2) and Ch-T was significantly higher than DTNB. Pretreatment with reductant DTT at 1 mM for 10 min completely prevented the action of DTNB on [Ca(2+)](i), but only partially reduced the effects of H(2)O(2) and Ch-T on [Ca(2+)](i), the reductions were 44.6 +/- 4.2% and 29.6 +/- 6.1% over baseline, respectively. The elevation of [Ca(2+)](i) induced by H(2)O(2) and Ch-T after pretreatment with DTT were statistically higher than that induced by single administration of DTNB. Further investigation showed that the elevation of [Ca(2+)](i) mainly resulted from internal calcium stores. From our data, we propose that methionine oxidation plays an important role in the regulation of intracellular calcium and this regulation may mainly be due to internal calcium stores.
Collapse
Affiliation(s)
- Li-Hong Long
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Jue Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Rui-Li Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Zhuang-Li Hu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Na Xie
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Hui Fu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030 China
- Hubei Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030 China
| |
Collapse
|
8
|
Oien DB, Moskovitz J. Substrates of the methionine sulfoxide reductase system and their physiological relevance. Curr Top Dev Biol 2007; 80:93-133. [PMID: 17950373 DOI: 10.1016/s0070-2153(07)80003-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Posttranslational modifications can change a protein's structure, function, and solubility. One specific modification caused by reactive oxygen species is the oxidation of the sulfur atom in the methionine (Met) side chain. This modified amino acid is denoted as methionine sulfoxide (MetO). MetOs in proteins are of considerable interest as they are involved in early posttranslational modification events. Thus, various organisms produce specific enzymes that can reverse these modifications. MetO reductases, known collectively as the methionine sulfoxide reductase (Msr) system, are the only known enzymes that can reduce MetOs. The current research field of Met redox cycles is consumed with elucidating its role in regulation, redox homeostasis, prevention of irreversible modifications, pathogenesis, and the aging process. Substrates of the Msr system can be loosely classified by the overall effect of the MetO on the protein. Regulated substrates utilize Met as a molecular switch to modulate activation; scavenging substrates use Mets to detoxify oxidants and protect important regions of the protein; and modified substrates are altered by Met oxidation resulting in various changes in their properties, including function, activity, structure, and degradation resistance.
Collapse
Affiliation(s)
- Derek B Oien
- Department of Pharmacology & Toxicology, School of Pharmacy University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
9
|
Moskovitz J. Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1703:213-9. [PMID: 15680229 DOI: 10.1016/j.bbapap.2004.09.003] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/03/2004] [Accepted: 09/03/2004] [Indexed: 10/26/2022]
Abstract
Oxidative damage to proteins is considered to be one of the major causes of aging and age-related diseases, and thus mechanisms have evolved to prevent or reverse these modifications. Methionine is one of the major targets of reactive oxygen species (ROS), where it is oxidized to methionine sulfoxide (MetO). Recently, evidence has accumulated suggesting that methionine (Met) oxidation may play an important role in the development and progression of neurodegenerative diseases like Alzheimer's and Parkinson's diseases. Oxidative alteration of Met to Met(O) is reversed by the methionine sulfoxide reductases (consisting of MsrA enzymes that reduce S-MetO and MsrB enzymes that reduce R-MetO, respectively). A major biological role of the Msr system is suggested by the fact that the MsrA null mouse (MT) exhibits a neurological disorder in the form of ataxia ("tip toe walking"), is more sensitive to oxidative stress, and has a shorter life span (by approximately 40%) than wild-type (WT) mice. By their action, the Msr enzymes can regulate protein function, be involved in signal-transduction pathways, and prevent cellular accumulation of faulty proteins. Malfunction of the Msr system can lead to cellular changes resulting in compromised antioxidant defense, enhanced age-associated diseases involving neurodegeneration, and shorter life span. In this review, the function and possible roles of the Msr system in prokaryotes and eukaryotes, in general, and in neurodegenerative diseases, in particular, will be discussed.
Collapse
Affiliation(s)
- Jackob Moskovitz
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
10
|
Sahaf B, Heydari K, Herzenberg LA, Herzenberg LA. The extracellular microenvironment plays a key role in regulating the redox status of cell surface proteins in HIV-infected subjects. Arch Biochem Biophys 2005; 434:26-32. [PMID: 15629105 DOI: 10.1016/j.abb.2004.11.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 09/20/2004] [Indexed: 02/06/2023]
Abstract
There is an overwhelming interest in the study of the redox status of the cell surface affecting redox signaling in the cells and also predicting the total redox status of the cells. Measuring the total surface thiols (cell surface molecule thiols, csm-SH) we have shown that the overall level of surface thiols is tightly controlled. In vitro, the total concentration of intracellular glutathione (iGSH) seems to play a regulatory role in determination of the amounts of reduced proteins on cells. In addition, short term exposure of the cell surface to glutathione disulfide (GSSG, oxidized GSH) seems to reduce the overall levels of csm-SH suggesting that the function of some cysteine containing proteins on the cell surface may be regulated by the amount of GSSG secreted from the cells or the GSSG available in the extracellular environment. Examination of peripheral blood mononuclear cells (PBMCs) from healthy or HIV-infected subjects failed to reveal a similar correlation between the intra- and extracellular thiol status of cells. Although there is a relatively wide variation between individuals in both csm-SH and iGSH there is no correlation between the iGSH and csm-SH levels measured for healthy and HIV-infected individuals. There are many reports suggesting different redox active proteins on the cell surface to be the key players in the total cell surface redox regulation. However, we suggest that the redox status of the cells is regulated through a complex and tightly regulated mechanism that needs further investigation. In the mean time, overall surface thiol measurements together with case specific protein determinations may offer the most informative approach. In this review, we discuss our own results as well as results from other laboratories to argue that the overall levels of surface thiols on the exofacial membrane are regulated primarily by redox status of the cell surface microenvironment.
Collapse
Affiliation(s)
- Bita Sahaf
- Herzenberg Laboratory, Department of Genetics, Beckman Center, B-007 Stanford University School of Medicine Stanford, CA 94304-5318, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Reactive (low pKa) cysteine residues in proteins are critical components in redox signaling. A particularly reactive and versatile reversibly oxidized form of cysteine, the sulfenic acid (Cys-SOH), has important roles as a catalytic center in enzymes and as a sensor of oxidative and nitrosative stress in enzymes and transcriptional regulators. Depending on environment, sometimes the sulfenic acid provides a metastable oxidized form, and other times it is a fleeting intermediate giving rise to more stable disulfide, sulfinic acid, or sulfenyl-amide forms.
Collapse
Affiliation(s)
- Leslie B Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|