1
|
Roumain M, Guillemot-Legris O, Ameraoui H, Alhouayek M, Muccioli GG. Identification and in vivo detection of side-chain hydroxylated metabolites of 4β-hydroxycholesterol. J Steroid Biochem Mol Biol 2023; 234:106376. [PMID: 37604319 DOI: 10.1016/j.jsbmb.2023.106376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Oxysterols are oxidized derivatives of cholesterol that are formed by enzymatic processes or through the action of reactive oxygen species. Several of these bioactive lipids have been shown to be affected and/or play a role in inflammatory processes. 4β-hydroxycholesterol is one of the major oxysterols in mice and humans and its levels are affected by inflammatory diseases. However, apart from its long half-life, little is known about its catabolism. By incubating 4β-hydroxycholesterol with mouse mitochondria-enriched liver fractions, as well as 25-hydroxycholesterol and 27-hydroxycholesterol with recombinant CYP3A4, we identified 4β,25-dihydroxycholesterol and 4β,27-dihydroxycholesterol as 4β-hydroxycholesterol metabolites. Supporting the biological relevance of this metabolism, we detected both metabolites after incubation of J774, primary mouse peritoneal macrophages and PMA-differentiated THP-1 cells with 4β-hydroxycholesterol. Across our experiments, the incubation of cells with lipopolysaccharides differentially affected the levels of the 25- and 27-hydroxylated metabolites of 4β-hydroxycholesterol. Finally, 4β,27-dihydroxycholesterol was also detected in mice liver and plasma after intraperitoneal administration of 4β-hydroxycholesterol. To our knowledge, this is the first report of the in vitro and in vivo detection and quantification of 4β-hydroxycholesterol metabolites.
Collapse
Affiliation(s)
- Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Belgium
| | - Hafsa Ameraoui
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Belgium.
| |
Collapse
|
2
|
Koch E, Bagci M, Kuhn M, Hartung NM, Mainka M, Rund KM, Schebb NH. GC-MS analysis of oxysterols and their formation in cultivated liver cells (HepG2). Lipids 2023; 58:41-56. [PMID: 36195466 DOI: 10.1002/lipd.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
Oxysterols play a key role in many (patho)physiological processes and they are potential biomarkers for oxidative stress in several diseases. Here we developed a rapid gas chromatographic-mass spectrometry-based method for the separation and quantification of 11 biologically relevant oxysterols bearing hydroxy, epoxy, and dihydroxy groups. Efficient chromatographic separation (resolution ≥ 1.9) was achieved using a medium polarity 35%-diphenyl/65%-dimethyl polysiloxane stationary phase material (30 m × 0.25 mm inner diameter and 0.25 μm film thickness). Based on thorough analysis of the fragmentation during electron ionization we developed a strategy to deduce structural information of the oxysterols. Optimized sample preparation includes (i) extraction with a mixture of n-hexane/iso-propanol, (ii) removal of cholesterol by solid phase extraction with unmodified silica, and (iii) trimethylsilylation. The method was successfully applied on the analysis of brain samples, showing consistent results with previous studies and a good intra- and interday precision of ≤20%. Finally, we used the method for the investigation of oxysterol formation during oxidative stress in HepG2 cells. Incubation with tert-butyl hydroperoxide led to a massive increase in free radical formed oxysterols (7-keto-chol > 7β-OH-chol >> 7α-OH-chol), while 24 h incubation with the glutathione peroxidase 4 inhibitor RSL3 showed no increase in oxidative stress based on the oxysterol pattern. Overall, the new method described here enables the robust analysis of a biologically meaningful pattern of oxysterols with high sensitivity and precision allowing us to gain new insights in the biological formation and role of oxysterols.
Collapse
Affiliation(s)
- Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Mustafa Bagci
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Michael Kuhn
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nicole M Hartung
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
3
|
Magomedova L, Cummins CL. Quantification of Oxysterol Nuclear Receptor Ligands by LC/MS/MS. Methods Mol Biol 2019; 1951:1-14. [PMID: 30825140 DOI: 10.1007/978-1-4939-9130-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative derivatives of cholesterol such as 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, 25-hydroxycholesterol, and (25S),26-hydroxycholesterol are endogenous ligands for the liver X receptors (LXRα and LXRβ). The LXRs are nuclear hormone receptors known as "intracellular cholesterol sensors" because of their ability to bind to and be activated by oxysterols at circulating concentrations. Oxysterols are expressed in a tissue-specific manner and are generally at least 104 to 106-fold less abundant than cholesterol. Thus, the extraction and measurement of oxysterols from plasma and tissues are facilitated by the removal of bulk sterols by solid phase extraction prior to quantitative analysis by mass spectrometry. In this chapter we describe step by step methods for extracting and quantitating oxysterols from biological samples using electrospray ionization LC/MS/MS.
Collapse
Affiliation(s)
- Lilia Magomedova
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
John C, Werner P, Worthmann A, Wegner K, Tödter K, Scheja L, Rohn S, Heeren J, Fischer M. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids. J Chromatogr A 2014; 1371:184-95. [DOI: 10.1016/j.chroma.2014.10.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/07/2023]
|
5
|
McDonald JG, Smith DD, Stiles AR, Russell DW. A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma. J Lipid Res 2012; 53:1399-409. [PMID: 22517925 DOI: 10.1194/jlr.d022285] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We describe the development of a method for the extraction and analysis of 62 sterols, oxysterols, and secosteroids from human plasma using a combination of HPLC-MS and GC-MS. Deuterated standards are added to 200 μl of human plasma. Bulk lipids are extracted with methanol:dichloromethane, the sample is hydrolyzed using a novel procedure, and sterols and secosteroids are isolated using solid-phase extraction (SPE). Compounds are resolved on C₁₈ core-shell HPLC columns and by GC. Sterols and oxysterols are measured using triple quadrupole mass spectrometers, and lathosterol is measured using GC-MS. Detection for each compound measured by HPLC-MS was ∪ 1 ng/ml of plasma. Extraction efficiency was between 85 and 110%; day-to-day variability showed a relative standard error of <10%. Numerous oxysterols were detected, including the side chain oxysterols 22-, 24-, 25-, and 27-hydroxycholesterol, as well as ring-structure oxysterols 7α- and 4β-hydroxycholesterol. Intermediates from the cholesterol biosynthetic pathway were also detected, including zymosterol, desmosterol, and lanosterol. This method also allowed the quantification of six secosteroids, including the 25-hydroxylated species of vitamins D₂ and D₃. Application of this method to plasma samples revealed that at least 50 samples could be extracted in a routine day.
Collapse
Affiliation(s)
- Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | |
Collapse
|
6
|
Honda A, Miyazaki T, Ikegami T, Iwamoto J, Yamashita K, Numazawa M, Matsuzaki Y. Highly sensitive and specific analysis of sterol profiles in biological samples by HPLC-ESI-MS/MS. J Steroid Biochem Mol Biol 2010; 121:556-64. [PMID: 20302936 DOI: 10.1016/j.jsbmb.2010.03.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/27/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) is a powerful method for the microanalysis of compounds in biological samples. Compared with gas chromatography-mass spectrometry (GC-MS), this method is more broadly applicable to various compounds and usually does not require a derivatization step before analysis. However, when neutral sterols are analyzed, the sensitivities of usual HPLC-MS/MS method are not superior to those of GC-MS because the sterols are relatively resistant to ionization. In this review, we introduce the recent development of HPLC-MS/MS analysis for the quantification of non-cholesterol sterols. By adding an effective derivatization step to the conventional procedure, sterol analysis by HPLC-MS/MS surpassed that obtained by GC-MS in sensitivity. In addition, sufficient specificity of this method was achieved by selected reaction monitoring (SRM) and thorough chromatographic separation of each sterol.
Collapse
Affiliation(s)
- Akira Honda
- Center for Collaborative Research, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki 300-0395, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Lo Sasso G, Celli N, Caboni M, Murzilli S, Salvatore L, Morgano A, Vacca M, Pagliani T, Parini P, Moschetta A. Down-regulation of the LXR transcriptome provides the requisite cholesterol levels to proliferating hepatocytes. Hepatology 2010; 51:1334-44. [PMID: 20044803 DOI: 10.1002/hep.23436] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholesterol homeostasis is critical for cellular proliferation. Liver X receptor (LXR) alpha and beta are the nuclear receptors responsible for regulation of cholesterol metabolism. In physiological conditions, high intracellular cholesterol levels cause increased synthesis of oxysterols, which activate LXR, thus triggering a transcriptional response for cholesterol secretion and catabolism. Here we employed a mouse model of partial hepatectomy (PH) to dissect the molecular pathways connecting cholesterol homeostasis, cellular proliferation, and LXR. First, we show that hepatic cholesterol content increases after PH, whereas the entire LXR transcriptome is down-regulated. Although LXR messenger RNA (mRNA) levels are unmodified, LXR target genes are significantly down-regulated on day 1 after PH and restored to control levels on day 7, when the liver reaches normal size. The inactivation of LXR following PH is related to the reduced oxysterol availability by way of decreased synthesis, and increased sulfation and secretion. On the contrary, cholesterol synthesis is up-regulated, and extracellular matrix remodeling is enhanced. Second, we show that reactivation of LXR by way of a synthetic ligand determines a negative modulation of hepatocyte proliferation. This effect is sustained by the reactivation of hepatic cholesterol catabolic and secretory pathways, coupled with a significant reduction of cholesterol biosynthesis. Our data unveil a previously unrecognized and apparently paradoxical scenario of LXR modulation. During liver regeneration LXR activity is abated in spite of increasing intracellular cholesterol levels. Turning off LXR-transcriptional pathways is crucial to guaranteeing the requisite intracellular cholesterol levels of regenerating hepatocytes. In line with this hypothesis, pharmacological LXR reactivation during PH significantly reduces liver regeneration capacity.
Collapse
Affiliation(s)
- Giuseppe Lo Sasso
- Laboratory of Lipid Metabolism and Cancer, Consorzio Mario Negri Sud, Chieti & Clinica Medica Murri, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Low-density lipoprotein and oxysterols suppress the transcription of CTP:Phosphoethanolamine cytidylyltransferase in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:487-95. [DOI: 10.1016/j.bbalip.2009.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 11/20/2022]
|
9
|
Griffiths WJ, Wang Y. Sterol lipidomics in health and disease: Methodologies and applications. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200800116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Umetani M, Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt NB, Korach KS, Shaul PW, Mangelsdorf DJ. 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat Med 2007; 13:1185-92. [PMID: 17873880 DOI: 10.1038/nm1641] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/08/2007] [Indexed: 01/18/2023]
Abstract
The cardioprotective effects of estrogen are mediated by receptors expressed in vascular cells. Here we show that 27-hydroxycholesterol (27HC), an abundant cholesterol metabolite that is elevated with hypercholesterolemia and found in atherosclerotic lesions, is a competitive antagonist of estrogen receptor action in the vasculature. 27HC inhibited both the transcription-mediated and the non-transcription-mediated estrogen-dependent production of nitric oxide by vascular cells, resulting in reduced estrogen-induced vasorelaxation of rat aorta. Furthermore, increasing 27HC levels in mice by diet-induced hypercholesterolemia, pharmacologic administration or genetic manipulation (by knocking out the gene encoding the catabolic enzyme CYP7B1) decreased estrogen-dependent expression of vascular nitric oxide synthase and repressed carotid artery reendothelialization. As well as antiestrogenic effects, there were proestrogenic actions of 27HC that were cell-type specific, indicating that 27HC functions as an endogenous selective estrogen receptor modulator (SERM). Taken together, these studies point to 27HC as a contributing factor in the loss of estrogen protection from vascular disease.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Binding, Competitive/drug effects
- Cardiotonic Agents/antagonists & inhibitors
- Cardiotonic Agents/metabolism
- Cardiotonic Agents/pharmacology
- Cell Culture Techniques
- Cell Line
- Cells, Cultured
- Cholesterol, Dietary/administration & dosage
- DNA, Complementary
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Estrogens/metabolism
- Estrogens/pharmacology
- Female
- Glutathione Transferase/metabolism
- Humans
- Hydroxycholesterols/administration & dosage
- Hydroxycholesterols/blood
- Hydroxycholesterols/pharmacology
- Inhibitory Concentration 50
- Injections, Subcutaneous
- Kidney/cytology
- Kinetics
- Male
- Mice
- Mice, Knockout
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide Synthase Type II/antagonists & inhibitors
- Nitric Oxide Synthase Type III
- RNA, Messenger/metabolism
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Recombinant Fusion Proteins/antagonists & inhibitors
- Selective Estrogen Receptor Modulators/administration & dosage
- Selective Estrogen Receptor Modulators/blood
- Selective Estrogen Receptor Modulators/pharmacology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Michihisa Umetani
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390-9050, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci U S A 2007; 104:6511-8. [PMID: 17428920 PMCID: PMC1851665 DOI: 10.1073/pnas.0700899104] [Citation(s) in RCA: 453] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholesterol synthesis in animals is controlled by the regulated transport of sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum to the Golgi, where the transcription factors are processed proteolytically to release active fragments. Transport is inhibited by either cholesterol or oxysterols, blocking cholesterol synthesis. Cholesterol acts by binding to the SREBP-escort protein Scap, thereby causing Scap to bind to anchor proteins called Insigs. Here, we show that oxysterols act by binding to Insigs, causing Insigs to bind to Scap. Mutational analysis of the six transmembrane helices of Insigs reveals that the third and fourth are important for Insig's binding to oxysterols and to Scap. These studies define Insigs as oxysterol-binding proteins, explaining the long-known ability of oxysterols to inhibit cholesterol synthesis in animal cells.
Collapse
Affiliation(s)
| | | | - Hyock Joo Kwon
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Michael S. Brown
- Departments of *Molecular Genetics and
- To whom correspondence may be addressed. E-mail: or
| | - Joseph L. Goldstein
- Departments of *Molecular Genetics and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
12
|
McDonald JG, Thompson BM, McCrum EC, Russell DW. Extraction and analysis of sterols in biological matrices by high performance liquid chromatography electrospray ionization mass spectrometry. Methods Enzymol 2007; 432:145-70. [PMID: 17954216 DOI: 10.1016/s0076-6879(07)32006-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We describe the development of a high performance liquid chromatography mass spectrometry (HPLC-MS) method that allows the identification and quantitation of sterols in mammalian cells and tissues. Bulk lipids are extracted from biological samples by a modified Bligh/Dyer procedure in the presence of eight deuterated sterol standards to allow subsequent quantitation and determination of extraction efficiency. Sterols and other lipids are resolved by HPLC on a reverse-phase C18 column using a binary gradient of methanol and water, both containing 5mM ammonium acetate. Sterol identification is performed using an Applied Biosystems (Foster City, CA) 4000 QTRAP mass spectrometer equipped with a TurboV electrospray ionization source and operated in the positive (+) selected reaction monitoring (SRM) mode. The total run time of the analysis is 30 min. Sterols are quantitated by comparison of the areas under the elution curves derived from the detection of endogenous compounds and isotopically labeled standards. The sensitivity of the method for sterol detection ranges between 10 and 2000 fmol on-column. Cultured RAW 264.7 mouse macrophages contain many different sterols, including the liver X receptor (LXR) ligand 24,25-epoxycholesterol. Tissues such as mouse brain also contain large numbers of sterols, including 24(s)-hydroxycholesterol, which is involved in cholesterol turnover in the brain. The extraction procedure described is flexible and can be tailored to sample type or information sought. The instrumental analysis method is similarly adaptable and offers high selectivity and sensitivity.
Collapse
Affiliation(s)
- Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | | | | |
Collapse
|
13
|
Cummins CL, Volle DH, Zhang Y, McDonald JG, Sion B, Lefrançois-Martinez AM, Caira F, Veyssière G, Mangelsdorf DJ, Lobaccaro JMA. Liver X receptors regulate adrenal cholesterol balance. J Clin Invest 2006; 116:1902-12. [PMID: 16823488 PMCID: PMC1483175 DOI: 10.1172/jci28400] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/18/2006] [Indexed: 11/17/2022] Open
Abstract
Cholesterol is the obligate precursor to adrenal steroids but is cytotoxic at high concentrations. Here, we show the role of the liver X receptors (LXRalpha and LXRbeta) in preventing accumulation of free cholesterol in mouse adrenal glands by controlling expression of genes involved in all aspects of cholesterol utilization, including the steroidogenic acute regulatory protein, StAR, a novel LXR target. Under chronic dietary stress, adrenal glands from Lxralphabeta-/- mice accumulated free cholesterol. In contrast, wild-type animals maintained cholesterol homeostasis through basal expression of genes involved in cholesterol efflux and storage (ABC transporter A1 [ABCA1], apoE, SREBP-1c) while preventing steroidogenic gene (StAR) expression. Upon treatment with an LXR agonist that mimics activation by oxysterols, expression of these target genes was increased. Basally, Lxralphabeta-/- mice exhibited a marked decrease in ABCA1 and a derepression of StAR expression, causing a net decrease in cholesterol efflux and an increase in steroidogenesis. These changes occurred under conditions that prevented the acute stress response and resulted in a phenotype more specific to the loss of LXRalpha, including hypercorticosteronemia, cholesterol ester accumulation, and adrenomegaly. These results imply LXRalpha provides a safety valve to limit free cholesterol levels as a basal protective mechanism in the adrenal gland, where cholesterol is under constant flux.
Collapse
Affiliation(s)
- Carolyn L. Cummins
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Physiologie Comparée et Endocrinologie Moléculaire, UMR CNRS 6547, Aubière, France.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Laboratoire de Biologie du Développement et de la Reproduction, Université d’Auvergne, Clermont-Ferrand, France
| | - David H. Volle
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Physiologie Comparée et Endocrinologie Moléculaire, UMR CNRS 6547, Aubière, France.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Laboratoire de Biologie du Développement et de la Reproduction, Université d’Auvergne, Clermont-Ferrand, France
| | - Yuan Zhang
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Physiologie Comparée et Endocrinologie Moléculaire, UMR CNRS 6547, Aubière, France.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Laboratoire de Biologie du Développement et de la Reproduction, Université d’Auvergne, Clermont-Ferrand, France
| | - Jeffrey G. McDonald
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Physiologie Comparée et Endocrinologie Moléculaire, UMR CNRS 6547, Aubière, France.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Laboratoire de Biologie du Développement et de la Reproduction, Université d’Auvergne, Clermont-Ferrand, France
| | - Benoît Sion
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Physiologie Comparée et Endocrinologie Moléculaire, UMR CNRS 6547, Aubière, France.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Laboratoire de Biologie du Développement et de la Reproduction, Université d’Auvergne, Clermont-Ferrand, France
| | - Anne-Marie Lefrançois-Martinez
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Physiologie Comparée et Endocrinologie Moléculaire, UMR CNRS 6547, Aubière, France.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Laboratoire de Biologie du Développement et de la Reproduction, Université d’Auvergne, Clermont-Ferrand, France
| | - Françoise Caira
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Physiologie Comparée et Endocrinologie Moléculaire, UMR CNRS 6547, Aubière, France.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Laboratoire de Biologie du Développement et de la Reproduction, Université d’Auvergne, Clermont-Ferrand, France
| | - Georges Veyssière
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Physiologie Comparée et Endocrinologie Moléculaire, UMR CNRS 6547, Aubière, France.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Laboratoire de Biologie du Développement et de la Reproduction, Université d’Auvergne, Clermont-Ferrand, France
| | - David J. Mangelsdorf
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Physiologie Comparée et Endocrinologie Moléculaire, UMR CNRS 6547, Aubière, France.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Laboratoire de Biologie du Développement et de la Reproduction, Université d’Auvergne, Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Physiologie Comparée et Endocrinologie Moléculaire, UMR CNRS 6547, Aubière, France.
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Laboratoire de Biologie du Développement et de la Reproduction, Université d’Auvergne, Clermont-Ferrand, France
| |
Collapse
|
14
|
Letzel T, Derks RJE, Martha CT, van Marle A, Irth H. Sensitive determination of G-protein-coupled receptor binding ligands by solid phase extraction–electrospray ionization–mass spectrometry. J Pharm Biomed Anal 2006; 40:744-51. [PMID: 16307861 DOI: 10.1016/j.jpba.2005.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/23/2005] [Accepted: 10/01/2005] [Indexed: 11/20/2022]
Abstract
High affinity Histamine H2-receptor binding ligands were assayed by automated solid phase extraction (SPE) coupled via electrospray ionization with a Quadrupole-Time-of-Flight mass spectrometer (Q-ToF-MS). The mass spectrometric behavior of these analytes was tested in aqueous solutions with several (nine) volatile salts, in different pH, and with various methanol contents. Out of the high amount of available ligands, three fluorescent-labeled molecules (5706, 5707, and 5708) were studied in detail. The limits of detection (LODs) for all three compounds obtained in mass spectrometric detection was 1 fmol (absolute) in continuous flow and FIA (flow injection analysis) measurements. The results obtained with FIA-fluorescence detection gave LODs a factor 10-100 times higher. A systematic investigation of sample solving conditions, loading flow conditions, and elution flow conditions made the automated SPE-MS coupling efficient. Ideally, the ligands were dissolved in MeOH-25 mM phosphate buffer (30:70 v/v; pH 11), the SPE loading flow comprised MeOH-25 mM phosphate buffer (30:70 v/v; pH 11) and the SPE elution flow contained MeOH-100 mM ammonium formate solution (90:10 v/v; pH 3). Using this method on a C18-modified silica cartridge (C18, 5 microm, 100 A, 300 microm i.d. x 5 mm, LC Packings) assures high recovery and achieved LODs for all three compounds of 5 fmol (absolute). As an absolute amount of ligands specifically bound on H2-receptors in biochemical experiments is, as will be published elsewhere, between 10 and 100 fmol, the SPE-MS method for the basic compounds can be directly applied for these Histamine H2-receptors.
Collapse
Affiliation(s)
- Thomas Letzel
- Leiden/Amsterdam Center for Drug Research, Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Exact Science, Vrije Universite it Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|