1
|
Turner MB, Anderson BA, Samaan GN, Coste M, Burns DD, Purse BW. Synthesis of Fluorescence Turn-On DNA Hybridization Probe Using the DEA tC 2'-Deoxycytidine Analog. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2018; 75:e59. [PMID: 30369083 PMCID: PMC6284819 DOI: 10.1002/cpnc.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DEA tC is a tricyclic 2'-deoxycytidine analog that can be incorporated into oligonucleotides by solid-phase synthesis and that exhibits a large fluorescence enhancement when correctly base-paired with a guanine base in a DNA-DNA duplex. The synthesis of DEA tC begins with 5-amino-2-methylbenzothiazole and provides the DEA tC nucleobase analog over five synthetic steps. This nucleobase analog is then silylated using N,O-bis(trimethylsilyl)acetamide and conjugated to Hoffer's chlorosugar to provide the protected DEA tC nucleoside in good yield. Following protective-group removal and chromatographic isolation of the β-anomer, dimethoxytritylation and phosphoramidite synthesis offer the monomer for solid-phase DNA synthesis. Solid-phase DNA synthesis conditions using extended coupling of the DEA tC amidite and a short deprotection time are employed to maximize efficiency. By following the protocols described in this unit, the DEA tC fluorescent probe can be synthesized and can be incorporated into any desired synthetic DNA oligonucleotide. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- M Benjamin Turner
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California
| | - Brooke A Anderson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
| | - George N Samaan
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California
| | - Michael Coste
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California
| | - Dillon D Burns
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California
| | - Byron W Purse
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California
| |
Collapse
|
2
|
Roy NS, Debnath S, Chakraborty A, Chakraborty P, Bera I, Ghosh R, Ghoshal N, Chakrabarti S, Roy S. Enhanced basepair dynamics pre-disposes protein-assisted flips of key bases in DNA strand separation during transcription initiation. Phys Chem Chem Phys 2018; 20:9449-9459. [DOI: 10.1039/c8cp01119b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Localized separation of strands of duplex DNA is a necessary step in many DNA-dependent processes, including transcription and replication.
Collapse
Affiliation(s)
- Neeladri Sekhar Roy
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Subrata Debnath
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Abhijit Chakraborty
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | | | - Indrani Bera
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Raka Ghosh
- Department of Biophysics
- Bose Institute
- Kolkata 700054
- India
| | - Nanda Ghoshal
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Saikat Chakrabarti
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Siddhartha Roy
- Department of Biophysics
- Bose Institute
- Kolkata 700054
- India
| |
Collapse
|
3
|
Hubin EA, Fay A, Xu C, Bean JM, Saecker RM, Glickman MS, Darst SA, Campbell EA. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife 2017; 6. [PMID: 28067618 PMCID: PMC5302886 DOI: 10.7554/elife.22520] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/07/2017] [Indexed: 02/07/2023] Open
Abstract
RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the −10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD. DOI:http://dx.doi.org/10.7554/eLife.22520.001
Collapse
Affiliation(s)
| | - Allison Fay
- Immunology Program, Sloan-Kettering Institute, New York, United States
| | - Catherine Xu
- The Rockefeller University, New York, United States
| | - James M Bean
- Immunology Program, Sloan-Kettering Institute, New York, United States
| | | | - Michael S Glickman
- Immunology Program, Sloan-Kettering Institute, New York, United States.,Division of Infectious Diseases, Memorial Sloan-Kettering Cancer Center, New York, United States
| | - Seth A Darst
- The Rockefeller University, New York, United States
| | | |
Collapse
|
4
|
Singh V, Kumari B, Maity B, Seth D, Das P. Direct observation of preferential processing of clustered abasic DNA damages with APE1 in TATA box and CpG island by reaction kinetics and fluorescence dynamics. Mutat Res 2014; 766-767:56-65. [PMID: 25847273 DOI: 10.1016/j.mrfmmm.2014.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/16/2014] [Accepted: 06/16/2014] [Indexed: 06/04/2023]
Abstract
Sequences like the core element of TATA box and CpG island are frequently encountered in the genome and related to transcription. The fate of repair of clustered abasic sites in such sequences of genomic importance is largely unknown. This prompted us to investigate the sequence dependence of cleavage efficiency of APE1 enzyme at abasic sites within the core sequences of TATA box and CpG island using fluorescence dynamics and reaction kinetics. Simultaneous molecular dynamics study through steady state and time resolved fluorescence spectroscopy using unique ethidium bromide dye release assay confirmed an elevated amount of abasic site cleavage of the TATA box sequence as compared to the core CpG island. Reaction kinetics showed that catalytic efficiency of APE1 for abasic site cleavage of core CpG island sequence was ∼4 times lower as compared to that of the TATA box. Higher value of Km was obtained from the core CpG island sequence than the TATA box sequence. This suggests a greater binding effect of APE1 enzyme on TATA sequence that signifies a prominent role of the sequence context of the DNA substrate. Evidently, a faster response from APE1 was obtained for clustered abasic damage repair of TATA box core sequences than CpG island consensus sequences. The neighboring bases of the abasic sites in the complementary DNA strand were found to have significant contribution in addition to the flanking bases in modulating APE1 activity. The repair refractivity of the bistranded clustered abasic sites arise from the slow processing of the second abasic site, consequently resulting in decreased overall production of potentially lethal double strand breaks.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Bhavini Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Banibrata Maity
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India.
| |
Collapse
|
5
|
Mizuta M, Seio K, Ohkubo A, Sekine M. Fluorescence properties of pyrimidopyrimidoindole nucleoside dC(PPI) incorporated into oligodeoxynucleotides. J Phys Chem B 2009; 113:9562-9. [PMID: 19537698 DOI: 10.1021/jp807562c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of oligodeoxynucleotides labeled by a pyrimidopyrimidoindole deoxynucleoside (1a: dC(PPI)) and its derivatives 2a and 3a substituted with electron-donating and -withdrawing groups, respectively, were synthesized according to the phosphoramidite approach. The photophysical properties and quenching efficiencies of oligonucleotides incorporating dC(PPI) derivatives were studied in detail. The thermal denaturation experiments and molecular dynamics simulation of DNA duplexes incorporating dC(PPI) suggested that a modified base of dC(PPI) could form base pairs with guanine and adenine in canonical Watson-Crick and reverse-wobble geometries, respectively. The fluorescence of oligonucleotides incorporating dC(PPI) derivatives increased upon binding to the counter strands, except when dC(PPI) and guanine formed a base pair. It was revealed that dGMP quenched the fluorescence of the cyano derivative 3a most effectively, whereas it affected that of the methoxy derivative 2a least effectively. The involvement of the electron transfer from guanine to the dC(PPI) derivatives in the fluorescence quenching was supported by energy considerations.
Collapse
Affiliation(s)
- Masahiro Mizuta
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
6
|
Schroeder LA, Choi AJ, DeHaseth PL. The -11A of promoter DNA and two conserved amino acids in the melting region of sigma70 both directly affect the rate limiting step in formation of the stable RNA polymerase-promoter complex, but they do not necessarily interact. Nucleic Acids Res 2007; 35:4141-53. [PMID: 17567604 PMCID: PMC1919498 DOI: 10.1093/nar/gkm431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/20/2007] [Accepted: 05/14/2007] [Indexed: 11/13/2022] Open
Abstract
Formation of the stable, strand separated, 'open' complex between RNA polymerase and a promoter involves DNA melting of approximately 14 base pairs. The likely nucleation site is the highly conserved -11A base in the non-template strand of the -10 promoter region. Amino acid residues Y430 and W433 on the sigma70 subunit of the RNA polymerase participate in the strand separation. The roles of -11A and of the Y430 and W433 were addressed by employing synthetic consensus promoters containing base analog and other substitutions at -11 in the non-template strand, and sigma70 variants bearing amino acid substitutions at positions 430 and 433. Substitutions for -11A and for Y430 and W433 in sigma70 have small or no effects on formation of the initial RNA polymerase-promoter complex, but exert their effects on subsequent steps on the way to formation of the open complex. As substitutions for Y430 and W433 also affect open complex formation on promoter DNA lacking the -11A base, it is concluded that these amino acid residues have other (or additional) roles, not involving the -11A. The effects of the substitutions at -11A of the promoter and Y430 and W433 of sigma70 are cumulative.
Collapse
Affiliation(s)
- Lisa A Schroeder
- The Center for RNA Molecular Biology and The Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA.
| | | | | |
Collapse
|
7
|
Tinsley RA, Walter NG. Pyrrolo-C as a fluorescent probe for monitoring RNA secondary structure formation. RNA (NEW YORK, N.Y.) 2006; 12:522-9. [PMID: 16431979 PMCID: PMC1383589 DOI: 10.1261/rna.2165806] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pyrrolo-C (PC), or 3-[beta-D-2-ribofuranosyl]-6-methylpyrrolo[2,3-d]pyrimidin-2(3H)-one, is a fluorescent analog of the nucleoside cytidine that retains its Watson-Crick base-pairing capacity with G. Due to its red-shifted absorbance, it can be selectively excited in the presence of natural nucleosides, making it a potential site-specific probe for RNA structure and dynamics. Similar to 2-aminopurine nucleoside, which base-pairs with uridine (or thymidine), PC's fluorescence becomes reversibly quenched upon base-pairing, most likely due to stacking interactions with neighboring bases. To test its utility as an RNA probe, we examined PC's fluorescent properties over a wide range of ionic strengths, pH, organic cosolvents, and temperatures. Incorporation of PC into a single-stranded RNA results in an approximately 60% reduction of fluorescence intensity, while duplex formation reduces the fluorescence by approximately 75% relative to the free ribonucleoside. We find that the fluorescence intensity of PC is only moderately affected by ionic strength, pH, and temperature, while it is slightly enhanced by organic cosolvents, making it a versatile probe for a broad range of buffer conditions. We demonstrate two applications for PC: fluorescent measurements of the kinetics of formation and dissociation of an RNA/DNA complex, and fluorescent monitoring of the thermal denaturation of the central segment of an RNA duplex. Taken together, our data showcase the potential of pyrrolo-C as an effective fluorescent probe to study RNA structure, dynamics, and function, complementary to the popular 2-aminopurine ribonucleoside.
Collapse
Affiliation(s)
- Rebecca A Tinsley
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
8
|
Ghosh K, Lau CK, Guo F, Segall AM, Van Duyne GD. Peptide trapping of the Holliday junction intermediate in Cre-loxP site-specific recombination. J Biol Chem 2004; 280:8290-9. [PMID: 15591069 DOI: 10.1074/jbc.m411668200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cre recombinase is a prototypical member of the tyrosine recombinase family of site-specific recombinases. Members of this family of enzymes catalyze recombination between specific DNA sequences by cleaving and exchanging one pair of strands between the two substrate sites to form a 4-way Holliday junction (HJ) intermediate and then resolve the HJ intermediate to recombinant products by a second round of strand exchanges. Recently, hexapeptide inhibitors have been described that are capable of blocking the second strand exchange step in the tyrosine recombinase recombination pathway, leading to an accumulation of the HJ intermediate. These peptides are active in the lambda-integrase, Cre recombinase, and Flp recombinase systems and are potentially important tools for both in vitro mechanistic studies and as in vivo probes of cellular function. Here we present biochemical and crystallographic data that support a model where the peptide inhibitor binds in the center of the recombinase-bound DNA junction and interacts with solvent-exposed bases near the junction branch point. Peptide binding induces large conformational changes in the DNA strands of the HJ intermediate, which affect the active site geometries in the recombinase subunits.
Collapse
Affiliation(s)
- Kaushik Ghosh
- Department of Biochemistry & Biophysics and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|