1
|
Transcription in the acetoin catabolic pathway is regulated by AcoR and CcpA in Bacillus thuringiensis. Microbiol Res 2020; 235:126438. [PMID: 32088504 DOI: 10.1016/j.micres.2020.126438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 01/04/2023]
Abstract
Acetoin (3-hydroxy-2-butanone) is an important physiological metabolic product in many microorganisms. Acetoin breakdown is catalyzed by the acetoin dehydrogenase enzyme system (AoDH ES), which is encoded by acoABCL operon. In this study, we analyzed transcription and regulation of the aco operon in Bacillus thuringiensis (Bt). RT-PCR analysis revealed that acoABCL forms one transcriptional unit. The Sigma 54 controlled consensus sequence was located 12 bp from the acoA transcriptional start site (TSS). β-galactosidase assay revealed that aco operon transcription is induced by acetoin, controlled by sigma 54, and positively regulated by AcoR. The HTH domain of AcoR recognized and specifically bound to a 13-bp inverted repeat region that participates in 30-bp fragment mapping 81 bp upstream of the acoA TSS. The GAF domain in AcoR represses enhancer transcriptional activity at the acoA promoter. Transcriptions of the aco operon and acoR were repressed by glucose via CcpA, and CcpA specifically bound to sequences within the acoR promoter fragment. In the acoABCL and acoR mutants, acetoin use was abolished, suggesting that the aco operon is essential for utilization of acetoin. The data presented here improve our understanding of the regulation of the aco gene cluster in bacteria.
Collapse
|
2
|
Siegel AR, Wemmer DE. Role of the σ 54 Activator Interacting Domain in Bacterial Transcription Initiation. J Mol Biol 2016; 428:4669-4685. [PMID: 27732872 DOI: 10.1016/j.jmb.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/05/2023]
Abstract
Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA+ ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ54 are primarily made through an N-terminal σ54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ54 alone. We identified a minimal construct of the Aquifex aeolicus σ54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1-σ54 AID complex using NMR spectroscopy. We show that the σ54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ54 bacterial transcription initiation.
Collapse
Affiliation(s)
- Alexander R Siegel
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - David E Wemmer
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Brown DR, Barton G, Pan Z, Buck M, Wigneshweraraj S. Nitrogen stress response and stringent response are coupled in Escherichia coli. Nat Commun 2014; 5:4115. [PMID: 24947454 PMCID: PMC4066584 DOI: 10.1038/ncomms5115] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023] Open
Abstract
Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an effector molecule of many processes including transcription to initiate global physiological changes, collectively termed the stringent response. The regulatory mechanisms leading to elevated ppGpp levels during nutritional stresses remain elusive. Here, we show that transcription of relA, a key gene responsible for the synthesis of ppGpp, is activated by NtrC during nitrogen starvation. The results reveal that NtrC couples these two major bacterial stress responses to manage conditions of nitrogen limitation, and provide novel mechanistic insights into how a specific nutritional stress leads to elevating ppGpp levels in bacteria.
Collapse
Affiliation(s)
- Daniel R. Brown
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Geraint Barton
- Centre for Systems Biology and Bioinformatics, Division of Biosciences, Imperial College London, London SW7 2AZ, UK
| | - Zhensheng Pan
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
4
|
Wiesler SC, Weinzierl ROJ, Buck M. An aromatic residue switch in enhancer-dependent bacterial RNA polymerase controls transcription intermediate complex activity. Nucleic Acids Res 2013; 41:5874-86. [PMID: 23609536 PMCID: PMC3675486 DOI: 10.1093/nar/gkt271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The formation of the open promoter complex (RPo) in which the melted DNA containing the transcription start site is located at the RNA polymerase (RNAP) catalytic centre is an obligatory step in the transcription of DNA into RNA catalyzed by RNAP. In the RPo, an extensive network of interactions is established between DNA, RNAP and the σ-factor and the formation of functional RPo occurs via a series of transcriptional intermediates (collectively 'RPi'). A single tryptophan is ideally positioned to directly engage with the flipped out base of the non-template strand at the +1 site. Evidence suggests that this tryptophan (i) is involved in either forward translocation or DNA scrunching and (ii) in σ(54)-regulated promoters limits the transcription activity of at least one intermediate complex (RPi) before the formation of a fully functional RPo. Limiting RPi activity may be important in preventing the premature synthesis of abortive transcripts, suggesting its involvement in a general mechanism driving the RPi to RPo transition for transcription initiation.
Collapse
Affiliation(s)
- Simone C Wiesler
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | | | | |
Collapse
|
5
|
Wiesler SC, Burrows PC, Buck M. A dual switch controls bacterial enhancer-dependent transcription. Nucleic Acids Res 2012; 40:10878-92. [PMID: 22965125 PMCID: PMC3505966 DOI: 10.1093/nar/gks844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022] Open
Abstract
Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ(54) factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation.
Collapse
Affiliation(s)
- Simone C. Wiesler
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | - Martin Buck
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| |
Collapse
|
6
|
Chakraborty A, Wang D, Ebright YW, Korlann Y, Kortkhonjia E, Kim T, Chowdhury S, Wigneshweraraj S, Irschik H, Jansen R, Nixon BT, Knight J, Weiss S, Ebright RH. Opening and closing of the bacterial RNA polymerase clamp. Science 2012; 337:591-5. [PMID: 22859489 DOI: 10.1126/science.1218716] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Joly N, Zhang N, Buck M. ATPase site architecture is required for self-assembly and remodeling activity of a hexameric AAA+ transcriptional activator. Mol Cell 2012; 47:484-90. [PMID: 22789710 PMCID: PMC3419264 DOI: 10.1016/j.molcel.2012.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 11/16/2022]
Abstract
AAA+ proteins (ATPases associated with various cellular activities) are oligomeric ATPases that use ATP hydrolysis to remodel their substrates. By similarity with GTPases, a dynamic organization of the nucleotide-binding pockets between ATPase protomers is proposed to regulate functionality. Using the transcription activator PspF as an AAA+ model, we investigated contributions of conserved residues for roles in ATP hydrolysis and intersubunit communication. We determined the R-finger residue and revealed that it resides in a conserved “R-hand” motif (RxDxxxR) needed for its “trans-acting” activity. Further, a divergent Walker A glutamic acid residue acts synergistically with a tyrosine residue to function in ADP-dependent subunit-subunit coordination, forming the “ADP-switch” motif. Another glutamic acid controls hexamer formation in the presence of nucleotides. Together, these results lead to a “residue-nucleotide” interaction map upon which to base AAA+ core regulation.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Corresponding author
| | - Nan Zhang
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Martin Buck
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Corresponding author
| |
Collapse
|
8
|
Reynolds J, Wigneshweraraj S. Molecular insights into the control of transcription initiation at the Staphylococcus aureus agr operon. J Mol Biol 2011; 412:862-81. [PMID: 21741390 DOI: 10.1016/j.jmb.2011.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/10/2011] [Accepted: 06/11/2011] [Indexed: 11/18/2022]
Abstract
The accessory gene regulatory (agr) operon of the opportunistic human pathogen Staphylococcus aureus is a prime pathogenesis factor in this bacterium. The agr operon consists of two transcription units, RNAII and RNAIII, which are transcribed from divergent promoters, P2 and P3, respectively. RNAII encodes a quorum-sensing system, including AgrA, the master transcription activator of the agr operon. RNAIII is the effector RNA molecule that regulates the expression of many virulence genes. Owing to the atypical spacer lengths of P2 and P3, it is widely considered that transcription from P2 and P3 only occurs in a strictly AgrA-dependent manner. Here, using a fully native S. aureus in vitro transcription system, we provide the first molecular and mechanistic characterisation of the regulation of transcription initiation at the agr operon. Surprisingly, the results demonstrate that RNA polymerase (RNAp) can interact with P2 and P3 equally well in the absence of AgrA. However, formation of a transcription-competent open promoter complex (RPo) occurs more readily at P2 than at P3 when AgrA is absent. Reducing the atypical P3 spacer region length to the optimal length of 17 nucleotides significantly improves promoter activity by facilitating the isomerisation of the initial RNAp-P3 complexes to RPo, and the extended -10-like element of P3 is required for optimal promoter activity. AgrA increases the occupancy of both promoters by RNAp and thereby increases the amount of transcription initiated at P2 and P3. However, the AgrA-mediated effect on transcription initiation is more prominent at P3 that at P2. The effect of AgrA at P2 and P3 appears to be restricted to events leading to the formation of RPo. The relevance of AgrA-independent and AgrA-dependent transcription initiation at P2 and P3 is presented in the context of our current understanding of the role of the agr operon in the pathobiology of S. aureus.
Collapse
Affiliation(s)
- Jonathan Reynolds
- Section of Microbiology, Faculty of Medicine and Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
9
|
Jovanovic M, Burrows PC, Bose D, Cámara B, Wiesler S, Zhang X, Wigneshweraraj S, Weinzierl ROJ, Buck M. Activity map of the Escherichia coli RNA polymerase bridge helix. J Biol Chem 2011; 286:14469-79. [PMID: 21357417 PMCID: PMC3077646 DOI: 10.1074/jbc.m110.212902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transcription, the synthesis of RNA from a DNA template, is performed by multisubunit RNA polymerases (RNAPs) in all cellular organisms. The bridge helix (BH) is a distinct feature of all multisubunit RNAPs and makes direct interactions with several active site-associated mobile features implicated in the nucleotide addition cycle and RNA and DNA binding. Because the BH has been captured in both kinked and straight conformations in different crystals structures of RNAP, recently supported by molecular dynamics studies, it has been proposed that cycling between these conformations is an integral part of the nucleotide addition cycle. To further evaluate the role of the BH, we conducted systematic alanine scanning mutagenesis of the Escherichia coli RNAP BH to determine its contributions to activities required for transcription. Combining our data with an atomic model of E. coli RNAP, we suggest that alterations in the interactions between the BH and (i) the trigger loop, (ii) fork loop 2, and (iii) switch 2 can help explain the observed changes in RNAP functionality associated with some of the BH variants. Additionally, we show that extensive defects in E. coli RNAP functionality depend upon a single previously not studied lysine residue (Lys-781) that is strictly conserved in all bacteria. It appears that direct interactions made by the BH with other conserved features of RNAP are lost in some of the E. coli alanine substitution variants, which we infer results in conformational changes in RNAP that modify RNAP functionality.
Collapse
Affiliation(s)
- Milija Jovanovic
- Division of Biology, Faculty of Medicine and Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kindgom
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nadratowska-Wesołowska B, Słomińska-Wojewódzka M, Łyzeń R, Wegrzyn A, Szalewska-Pałasz A, Wegrzyn G. Transcription regulation of the Escherichia coli pcnB gene coding for poly(A) polymerase I: roles of ppGpp, DksA and sigma factors. Mol Genet Genomics 2010; 284:289-305. [PMID: 20700605 PMCID: PMC2939334 DOI: 10.1007/s00438-010-0567-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 07/24/2010] [Indexed: 12/27/2022]
Abstract
Poly(A) polymerase I (PAP I), encoded by the pcnB gene, is a major enzyme responsible for RNA polyadenylation in Escherichia coli, a process involved in the global control of gene expression in this bacterium through influencing the rate of transcript degradation. Recent studies have suggested a complicated regulation of pcnB expression, including a complex promoter region, a control at the level of translation initiation and dependence on bacterial growth rate. In this report, studies on transcription regulation of the pcnB gene are described. Results of in vivo and in vitro experiments indicated that (a) there are three σ70-dependent (p1, pB, and p2) and two σS-dependent (pS1 and pS2) promoters of the pcnB gene, (b) guanosine tetraphosphate (ppGpp) and DksA directly inhibit transcription from pB, pS1 and pS2, and (c) pB activity is drastically impaired at the stationary phase of growth. These results indicate that regulation of the pcnB gene transcription is a complex process, which involves several factors acting to ensure precise control of PAP I production. Moreover, inhibition of activities of pS1 and pS2 by ppGpp and DksA suggests that regulation of transcription from promoters requiring alternative σ factors by these effectors of the stringent response might occur according to both passive and active models.
Collapse
|
11
|
A prehydrolysis state of an AAA+ ATPase supports transcription activation of an enhancer-dependent RNA polymerase. Proc Natl Acad Sci U S A 2010; 107:9376-81. [PMID: 20439713 DOI: 10.1073/pnas.1001188107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP hydrolysis-dependent molecular machines and motors often drive regulated conformational transformations in cell signaling and gene regulation complexes. Conformational reorganization of a gene regulation complex containing the major variant form of bacterial RNA polymerase (RNAP), Esigma(54), requires engagement with its cognate ATP-hydrolyzing activator protein. Importantly, this activated RNAP is essential for a number of adaptive responses, including those required for bacterial pathogenesis. Here we characterize the initial encounter between the enhancer-dependent Esigma(54) and its cognate activator AAA+ ATPase protein, before ADP+P(i) formation, using a small primed RNA (spRNA) synthesis assay. The results show that in a prehydrolysis state, sufficient activator-dependent rearrangements in Esigma(54) have occurred to allow engagement of the RNAP active site with single-stranded promoter DNA to support spRNA synthesis, but not to melt the promoter DNA. This catalytically competent transcription intermediate has similarity with the open promoter complex, in that the RNAP dynamics required for DNA scrunching should be occurring. Significantly, this work highlights that prehydrolysis states of ATPases are functionally important in the molecular transformations they drive.
Collapse
|
12
|
Joly N, Buck M. Engineered interfaces of an AAA+ ATPase reveal a new nucleotide-dependent coordination mechanism. J Biol Chem 2010; 285:15178-15186. [PMID: 20197281 DOI: 10.1074/jbc.m110.103150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homohexameric ring AAA(+) ATPases are found in all kingdoms of life and are involved in all cellular processes. To accommodate the large spectrum of substrates, the conserved AAA(+) core has become specialized through the insertion of specific substrate-binding motifs. Given their critical roles in cellular function, understanding the nucleotide-driven mechanisms of action is of wide importance. For one type of member AAA(+) protein (phage shock protein F, PspF), we identified and established the functional significance of strategically placed arginine and glutamate residues that form interacting pairs in response to nucleotide binding. We show that these interactions are critical for "cis" and "trans" subunit communication, which support coordination between subunits for nucleotide-dependent substrate remodeling. Using an allele-specific suppression approach for ATPase and substrate remodeling, we demonstrate that the targeted residues directly interact and are unlikely to make any other pairwise critical interactions. We then propose a mechanistic rationale by which the nucleotide-bound state of adjacent subunits can be sensed without direct involvement of R-finger residues. As the structural AAA(+) core is conserved, we propose that the functional networks established here could serve as a template to identify similar residue pairs in other AAA(+) proteins.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Martin Buck
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
13
|
T7 phage protein Gp2 inhibits the Escherichia coli RNA polymerase by antagonizing stable DNA strand separation near the transcription start site. Proc Natl Acad Sci U S A 2010; 107:2247-52. [PMID: 20133868 DOI: 10.1073/pnas.0907908107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the host RNA polymerase (RNAP)--a multi-subunit enzyme responsible for gene transcription--by a small ( approximately 7 kDa) phage-encoded protein called Gp2. Gp2 is also a potent inhibitor of E. coli RNAP in vitro. Here we describe the first atomic resolution structure of Gp2, which reveals a distinct run of surface-exposed negatively charged amino acid residues on one side of the molecule. Our comprehensive mutagenesis data reveal that two conserved arginine residues located on the opposite side of Gp2 are important for binding to and inhibition of RNAP. Based on a structural model of the Gp2-RNAP complex, we propose that inhibition of transcription by Gp2 involves prevention of RNAP-promoter DNA interactions required for stable DNA strand separation and maintenance of the "transcription bubble" near the transcription start site, an obligatory step in the formation of a transcriptionally competent promoter complex.
Collapse
|
14
|
Burrows PC, Joly N, Nixon BT, Buck M. Comparative analysis of activator-Esigma54 complexes formed with nucleotide-metal fluoride analogues. Nucleic Acids Res 2009; 37:5138-50. [PMID: 19553192 PMCID: PMC2731916 DOI: 10.1093/nar/gkp541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) containing the major variant σ54 factor forms open promoter complexes in a reaction in which specialized activator proteins hydrolyse ATP. Here we probe binding interactions between σ54-RNAP (Eσ54) and the ATPases associated with various cellular activities (AAA+) domain of the Escherichia coli activator protein, PspF, using nucleotide-metal fluoride (BeF and AlF) analogues representing ground and transition states of ATP, which allow complexes (that are otherwise too transient with ATP) to be captured. We show that the organization and functionality of the ADP–BeF- and ADP–AlF-dependent complexes greatly overlap. Our data support an activation pathway in which the initial ATP-dependent binding of the activator to the Eσ54 closed complex results in the re-organization of Eσ54 with respect to the transcription start-site. However, the nucleotide-dependent binding interactions between the activator and the Eσ54 closed complex are in themselves insufficient for forming open promoter complexes when linear double-stranded DNA is present in the initial closed complex.
Collapse
Affiliation(s)
- Patricia C Burrows
- Department of Life Sciences, Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
15
|
Burrows PC, Schumacher J, Amartey S, Ghosh T, Burgis TA, Zhang X, Nixon BT, Buck M. Functional roles of the pre-sensor I insertion sequence in an AAA+ bacterial enhancer binding protein. Mol Microbiol 2009; 73:519-33. [PMID: 19486295 PMCID: PMC2745333 DOI: 10.1111/j.1365-2958.2009.06744.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular machines belonging to the AAA+ superfamily of ATPases use NTP hydrolysis to remodel their versatile substrates. The presence of an insertion sequence defines the major phylogenetic pre-sensor I insertion (pre-SIi) AAA+ superclade. In the bacterial σ54-dependent enhancer binding protein phage shock protein F (PspF) the pre-SIi loop adopts different conformations depending on the nucleotide-bound state. Single amino acid substitutions within the dynamic pre-SIi loop of PspF drastically change the ATP hydrolysis parameters, indicating a structural link to the distant hydrolysis site. We used a site-specific protein–DNA proximity assay to measure the contribution of the pre-SIi loop in σ54-dependent transcription and demonstrate that the pre-SIi loop is a major structural feature mediating nucleotide state-dependent differential engagement with Eσ54. We suggest that much, if not all, of the action of the pre-SIi loop is mediated through the L1 loop and relies on a conserved molecular switch, identified in a crystal structure of one pre-SIi variant and in accordance with the high covariance between some pre-SIi residues and distinct residues outside the pre-SIi sequence.
Collapse
Affiliation(s)
- Patricia C Burrows
- Department of Life Sciences, Division of Biology, Imperial College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Janaszak A, Nadratowska-WesoÅowska B, Konopa G, Taylor A. The P1 promoter of theEscherichia coli rpoHgene is utilized by Ï70-RNAP or ÏS-RNAP depending on growth phase. FEMS Microbiol Lett 2009; 291:65-72. [DOI: 10.1111/j.1574-6968.2008.01436.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Burrows PC, Joly N, Cannon WV, Cámara BP, Rappas M, Zhang X, Dawes K, Nixon BT, Wigneshweraraj SR, Buck M. Coupling sigma factor conformation to RNA polymerase reorganisation for DNA melting. J Mol Biol 2009; 387:306-19. [PMID: 19356588 DOI: 10.1016/j.jmb.2009.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/24/2009] [Accepted: 01/26/2009] [Indexed: 11/18/2022]
Abstract
ATP-driven remodelling of initial RNA polymerase (RNAP) promoter complexes occurs as a major post recruitment strategy used to control gene expression. Using a model-enhancer-dependent bacterial system (sigma54-RNAP, Esigma54) and a slowly hydrolysed ATP analogue (ATPgammaS), we provide evidence for a nucleotide-dependent temporal pathway leading to DNA melting involving a small set of sigma54-DNA conformational states. We demonstrate that the ATP hydrolysis-dependent remodelling of Esigma54 occurs in at least two distinct temporal steps. The first detected remodelling phase results in changes in the interactions between the promoter specificity sigma54 factor and the promoter DNA. The second detected remodelling phase causes changes in the relationship between the promoter DNA and the core RNAP catalytic beta/beta' subunits, correlating with the loading of template DNA into the catalytic cleft of RNAP. It would appear that, for Esigma54 promoters, loading of template DNA within the catalytic cleft of RNAP is dependent on fast ATP hydrolysis steps that trigger changes in the beta' jaw domain, thereby allowing acquisition of the open complex status.
Collapse
Affiliation(s)
- Patricia C Burrows
- Division of Biology, Department of Life Sciences, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Protein-DNA interactions that govern AAA+ activator-dependent bacterial transcription initiation. J Mol Biol 2007; 375:43-58. [PMID: 18005983 DOI: 10.1016/j.jmb.2007.10.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/04/2007] [Accepted: 10/04/2007] [Indexed: 11/24/2022]
Abstract
Transcriptional control at the promoter melting step is not yet well understood. In this study, a site-directed photo-cross-linking method was used to systematically analyse component protein-DNA interactions that govern promoter melting by the enhancer-dependent Escherichia coli RNA polymerase (RNAP) containing the sigma(54) promoter specificity factor (E sigma(54)) at a single base pair resolution in three functional states. The sigma(54)-factor imposes tight control upon the RNAP by creating a regulatory switch where promoter melting nucleates, approximately 12 bp upstream of the transcription start site. Promoter melting by E sigma(54) is only triggered upon remodelling of this regulatory switch by a specialised activator protein in an ATP-hydrolysing reaction. We demonstrate that prior to DNA melting, only the sigma(54)-factor directly interacts with the promoter in the regulatory switch within the initial closed E sigma(54)-promoter complex and one intermediate E sigma(54)-promoter complex. We establish that activator-induced conformational rearrangements in the regulatory switch are a prerequisite to allow the promoter to enter the catalytic cleft of the RNAP and hence establish the transcriptionally competent open complex, where full promoter melting occurs. These results significantly advance our current understanding of the structural transitions occurring at bacterial promoters, where regulation occurs at the DNA melting step.
Collapse
|
19
|
Janaszak A, Majczak W, Nadratowska B, Szalewska-Palasz A, Konopa G, Taylor A. A sigma54-dependent promoter in the regulatory region of the Escherichia coli rpoH gene. MICROBIOLOGY-SGM 2007; 153:111-23. [PMID: 17185540 DOI: 10.1099/mic.0.2006/000463-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Escherichia coli rpoH gene is transcribed from four known and differently regulated promoters: P1, P3, P4 and P5. This study demonstrates that the conserved consensus sequence of the sigma54 promoter in the regulatory region of the rpoH gene, described previously, is a functional promoter, P6. The evidence for this conclusion is: (i) the specific binding of the sigma54-RNAP holoenzyme to P6, (ii) the location of the transcription start site at the predicted position (C, 30 nt upstream of ATG) and (iii) the dependence of transcription on sigma54 and on an ATP-dependent activator. Nitrogen starvation, heat shock, ethanol and CCCP treatment did not activate transcription from P6 under the conditions examined. Two activators of sigma54 promoters, PspF and NtrC, were tested but neither of them acted specifically. Therefore, PspFDeltaHTH, a derivative of PspF, devoid of DNA binding capability but retaining its ATPase activity, was used for transcription in vitro, taking advantage of the relaxed specificity of ATP-dependent activators acting in solution. In experiments in vivo overexpression of PspFDeltaHTH from a plasmid was employed. Thus, the sigma54-dependent transcription capability of the P6 promoter was demonstrated both in vivo and in vitro, although the specific conditions inducing initiation of the transcription remain to be elucidated. The results clearly indicate that the closed sigma54-RNAP-promoter initiation complex was formed in vitro and in vivo and needed only an ATP-dependent activator to start transcription.
Collapse
Affiliation(s)
- Anna Janaszak
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
20
|
Schumacher J, Joly N, Rappas M, Bradley D, Wigneshweraraj SR, Zhang X, Buck M. Sensor I threonine of the AAA+ ATPase transcriptional activator PspF is involved in coupling nucleotide triphosphate hydrolysis to the restructuring of sigma 54-RNA polymerase. J Biol Chem 2007; 282:9825-9833. [PMID: 17242399 DOI: 10.1074/jbc.m611532200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional initiation invariably involves the transition from a closed RNA polymerase (RNAP) promoter complex to a transcriptional competent open complex. Activators of the bacterial sigma(54)-RNAP are AAA+ proteins that couple ATP hydrolysis to restructure the sigma(54)-RNAP promoter complex. Structures of the sigma(54) activator PspF AAA+ domain (PspF(1-275)) bound to sigma(54) show two loop structures proximal to sigma(54) as follows: the sigma(54) contacting the GAFTGA loop 1 structure and loop 2 that classifies sigma(54) activators as pre-sensor 1 beta-hairpin AAA+ proteins. We report activities for PspF(1-275) mutated in the AAA+ conserved sensor I threonine/asparagine motif (PspF(1-275)(T148A), PspF(1-275)(N149A), and PspF(1-275)(N149S)) within the second region of homology. We show that sensor I asparagine plays a direct role in ATP hydrolysis. However, low hydrolysis rates are sufficient for functional output in vitro. In contrast, PspF(1-275)(T148A) has severe defects at the distinct step of sigma(54) promoter restructuring. This defect is not because of the failure of PspF(1-275)(T148A) to stably engage with the closed sigma(54) promoter, indicating (i) an important role in ATP hydrolysis-associated motions during energy coupling for remodeling and (ii) distinguishing PspF(1-275)(T148A) from PspF(1-275) variants involved in signaling to the GAFTGA loop 1, which fail to stably engage with the promoter. Activities of loop 2 PspF(1-275) variants are similar to those of PspF(1-275)(T148A) suggesting a functional signaling link between Thr(148) and loop 2. In PspF(1-275) this link relies on the conserved nucleotide state-dependent interaction between the Walker B residue Glu(108) and Thr(148). We propose that hydrolysis is relayed via Thr(148) to loop 2 creating motions that provide mechanical force to the GAFTGA loop 1 that contacts sigma(54).
Collapse
Affiliation(s)
- Jörg Schumacher
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Nicolas Joly
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mathieu Rappas
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dominic Bradley
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Xiaodong Zhang
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martin Buck
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
21
|
Dago AE, Wigneshweraraj SR, Buck M, Morett E. A role for the conserved GAFTGA motif of AAA+ transcription activators in sensing promoter DNA conformation. J Biol Chem 2006; 282:1087-97. [PMID: 17090527 DOI: 10.1074/jbc.m608715200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription from sigma54-dependent bacterial promoters can be regarded as a second paradigm for bacterial gene transcription. The initial sigma54-RNA polymerase (RNAP).promoter complex, the closed complex, is transcriptionally silent. The transcriptionally proficient sigma54-RNAP.promoter complex, the open complex, is formed upon remodeling of the closed complex by actions of a specialized activator protein that belongs to the AAA (ATPases associated with various cellular activities) protein family in an ATP hydrolysis-dependent reaction. The integrity of a highly conserved signature motif in the AAA activator (known as the GAFTGA motif) is important for the remodeling activity of the AAA activator and for open complex formation. We now provide evidence that the invariant threo-nine residue of the GAFTGA motif plays a role in sensing the DNA downstream of the sigma54-RNAP-binding site and in coupling this information to sigma54-RNAP via the conserved regulatory Region I domain of sigma54 during open complex formation.
Collapse
Affiliation(s)
- Angel Ernesto Dago
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62210, México
| | | | | | | |
Collapse
|
22
|
Joly N, Schumacher J, Buck M. Heterogeneous nucleotide occupancy stimulates functionality of phage shock protein F, an AAA+ transcriptional activator. J Biol Chem 2006; 281:34997-5007. [PMID: 16973614 DOI: 10.1074/jbc.m606628200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic AAA+ domain (PspF1-275) of an enhancer-binding protein is necessary and sufficient to contact sigma54-RNA polymerase holoenzyme (Esigma54), remodel it, and in so doing catalyze open promoter complex formation. Whether ATP binding and hydrolysis is coordinated between subunits of PspF and the precise nature of the nucleotide(s) bound to the oligomeric forms responsible for substrate remodeling are unknown. We demonstrate that ADP stimulates the intrinsic ATPase activity of PspF1-275 and propose that this heterogeneous nucleotide occupancy in a PspF1-275 hexamer is functionally important for specific activity. Binding of ADP and ATP triggers the formation of functional PspF1-275 hexamers as shown by a gain of specific activity. Furthermore, ATP concentrations congruent with stoichiometric ATP binding to PspF1-275 inhibit ATP hydrolysis and Esigma54-promoter open complex formation. Demonstration of a heterogeneous nucleotide-bound state of a functional PspF1-275.Esigma54 complex provides clear biochemical evidence for heterogeneous nucleotide occupancy in this AAA+ protein. Based on our data, we propose a stochastic nucleotide binding and a coordinated hydrolysis mechanism in PspF1-275 hexamers.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
23
|
Leach RN, Gell C, Wigneshweraraj S, Buck M, Smith A, Stockley PG. Mapping ATP-dependent activation at a sigma54 promoter. J Biol Chem 2006; 281:33717-26. [PMID: 16926155 DOI: 10.1074/jbc.m605731200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma(54) promoter specificity factor is distinct from other bacterial RNA polymerase (RNAP) sigma factors in that it forms a transcriptionally silent closed complex upon promoter binding. Transcriptional activation occurs through a nucleotide-dependent isomerization of sigma(54), mediated via its interactions with an enhancer-binding activator protein that utilizes the energy released in ATP hydrolysis to effect structural changes in sigma(54) and core RNA polymerase. The organization of sigma(54)-promoter and sigma(54)-RNAP-promoter complexes was investigated by fluorescence resonance energy transfer assays using sigma(54) single cysteine-mutants labeled with an acceptor fluorophore and donor fluorophore-labeled DNA sequences containing mismatches that mimic nifH early- and late-melted promoters. The results show that sigma(54) undergoes spatial rearrangements of functionally important domains upon closed complex formation. sigma(54) and sigma(54)-RNAP promoter complexes reconstituted with the different mismatched DNA constructs were assayed by the addition of the activator phage shock protein F in the presence or absence of ATP and of non-hydrolysable analogues. Nucleotide-dependent alterations in fluorescence resonance energy transfer efficiencies identify different functional states of the activator-sigma(54)-RNAP-promoter complex that exist throughout the mechano-chemical transduction pathway of transcriptional activation, i.e. from closed to open promoter complexes. The results suggest that open complex formation only occurs efficiently on replacement of a repressive fork junction with down-stream melted DNA.
Collapse
Affiliation(s)
- Robert N Leach
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
24
|
Wigneshweraraj SR, Savalia D, Severinov K, Buck M. Interplay between the beta' clamp and the beta' jaw domains during DNA opening by the bacterial RNA polymerase at sigma54-dependent promoters. J Mol Biol 2006; 359:1182-95. [PMID: 16725156 DOI: 10.1016/j.jmb.2006.04.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Revised: 04/17/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
The bacterial RNA polymerase (RNAP) is a multi-subunit, structurally flexible, complex molecular machine, in which activities associated with DNA opening for transcription-competent open promoter complex (OC) formation reside in the catalytic beta and beta' subunits and the dissociable sigma subunit. OC formation is a multi-step process that involves several structurally conserved mobile modules of beta, beta', and sigma. Here, we present evidence that two flexible modules of beta', the beta' jaw and the beta' clamp and a conserved regulatory Region I domain of sigma(54), jointly contribute to the maintenance of stable DNA strand separation around the trancription start site in OCs formed at sigma(54)-dependent promoters. Clearly, regulated interplay between the mobile modules of the beta' and the sigma subunits of the RNAP appears to be necessary for stable OC formation.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Imperial College London, Faculty of Life Sciences, Division of Biology, Sir Alexander Fleming Building, South Kensington Campus, UK
| | | | | | | |
Collapse
|
25
|
Rappas M, Schumacher J, Niwa H, Buck M, Zhang X. Structural basis of the nucleotide driven conformational changes in the AAA+ domain of transcription activator PspF. J Mol Biol 2006; 357:481-92. [PMID: 16430918 DOI: 10.1016/j.jmb.2005.12.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/20/2022]
Abstract
Bacterial enhancer-binding proteins (EBP) activate transcription by hydrolyzing ATP to restructure the sigma(54)-RNA polymerase-promoter complex. We compare six high resolution structures (<2.1 A) of the AAA(+) domain of EBP phage shock protein F (PspF) including apo, AMPPNP, Mg(2+)-ATP, and ADP forms. These structures permit a description of the atomic details underpinning the origins of the conformational changes occurring during ATP hydrolysis. Conserved regions of PspF's AAA(+) domain respond distinctively to nucleotide binding and hydrolysis, suggesting functional roles during the hydrolysis cycle, which completely agree with those derived from activities of PspF mutated at these positions. We propose a putative atomic switch that is responsible for coupling structural changes in the nucleotide-binding site to the repositioning of the sigma(54)-interacting loops. Striking similarities in nucleotide-specific conformational changes and atomic switch exist between PspF and the large T antigen helicase, suggesting conservation in the origin of those events amongst AAA(+) proteins.
Collapse
Affiliation(s)
- Mathieu Rappas
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
26
|
Ray P, Hall RJ, Finn RD, Chen S, Patwardhan A, Buck M, van Heel M. Conformational Changes of Escherichia coli σ54-RNA-Polymerase upon Closed–Promoter Complex Formation. J Mol Biol 2005; 354:201-5. [PMID: 16246367 DOI: 10.1016/j.jmb.2005.09.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
RNA polymerase from the mesophile Escherichia coli exists in two forms, the core enzyme and the holoenzyme. Using cryo-electron microscopy and single-particle analysis, we have obtained the structure of the complete RNA polymerase from E.coli containing the sigma54 factor within the closed-promoter complex. Comparisons with earlier reconstructions of the core enzyme and the sigma54 holoenzyme reveal the behaviour of this major variant RNA polymerase in defined functional states. The binding of DNA leads to significant conformational changes in the enzyme's catalytic subunits, apparently a necessity for the initiation of enhancer-dependent promoter-specific transcription.
Collapse
Affiliation(s)
- Pampa Ray
- Department of Biological Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Wigneshweraraj SR, Burrows PC, Severinov K, Buck M. Stable DNA opening within open promoter complexes is mediated by the RNA polymerase beta'-jaw domain. J Biol Chem 2005; 280:36176-84. [PMID: 16123036 DOI: 10.1074/jbc.m506416200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA opening for transcription-competent open promoter complex (OC) formation by the bacterial RNA polymerase (RNAP) relies upon a complex network of interactions between the structurally conserved and flexible modules of the catalytic beta and beta'-subunits, RNAP-associated sigma-subunit, and the DNA. Here, we show that one such module, the beta'-jaw, functions to stabilize the OC. In OCs formed by the major sigma70-RNAP, the stabilizing role of the beta'-jaw is not restricted to any particular melted DNA segment. In contrast, in OCs formed by the major variant sigma54-RNAP, the beta'-jaw and a conserved sigma54 regulatory domain co-operate to stabilize the melted DNA segment immediately upstream of the transcription start site. Clearly, regulated communication between the mobile modules of the RNAP and the functional domain(s) of the sigma subunit is required for stable DNA opening.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Division of Biology, Faculty of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
28
|
Lloyd LJ, Jones SE, Jovanovic G, Gyaneshwar P, Rolfe MD, Thompson A, Hinton JC, Buck M. Identification of a New Member of the Phage Shock Protein Response in Escherichia coli, the Phage Shock Protein G (PspG). J Biol Chem 2004; 279:55707-14. [PMID: 15485810 DOI: 10.1074/jbc.m408994200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phage shock protein operon (pspABCDE) of Escherichia coli is strongly up-regulated in response to overexpression of the filamentous phage secretin protein IV (pIV) and by many other stress conditions including defects in protein export. PspA has an established role in maintenance of the proton-motive force of the cell under stress conditions. Here we present evidence for a new member of the phage shock response in E. coli. Using transcriptional profiling, we show that the synthesis of pIV in E. coli leads to a highly restricted response limited to the up-regulation of the psp operon genes and yjbO. The psp operon and yjbO are also up-regulated in response to pIV in Salmonella enterica serovar Typhimurium. yjbO is a highly conserved gene found exclusively in bacteria that contain a psp operon but is physically unlinked to the psp operon. yjbO encodes a putative inner membrane protein that is co-controlled with the psp operon genes and is predicted to be an effector of the psp response in E. coli. We present evidence that yjbO expression is driven by sigma(54)-RNA polymerase, activated by PspF and integration host factor, and negatively regulated by PspA. PspF specifically regulates only members of the PspF regulon: pspABCDE and yjbO. We found that increased expression of YjbO results in decreased motility of bacteria. Because yjbO is co-conserved and co-regulated with the psp operon and is a member of the phage shock protein F regulon, we propose that yjbO be renamed pspG.
Collapse
Affiliation(s)
- Louise J Lloyd
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wigneshweraraj SR, Burrows PC, Nechaev S, Zenkin N, Severinov K, Buck M. Regulated communication between the upstream face of RNA polymerase and the beta' subunit jaw domain. EMBO J 2004; 23:4264-74. [PMID: 15470503 PMCID: PMC524387 DOI: 10.1038/sj.emboj.7600407] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 08/17/2004] [Indexed: 11/09/2022] Open
Abstract
We used bacteriophage T7-encoded transcription inhibitor gene protein 2 (gp2) as a probe to study the contribution of the Escherichia coli RNA polymerase (RNAP) beta' subunit jaw domain--the site of gp2 binding--to activator and ATP hydrolysis-dependent open complex formation by the sigma(54)-RNAP. We show that, unlike sigma(70)-dependent transcription, activated transcription by sigma(54)-RNAP is resistant to gp2. In contrast, activator and ATP hydrolysis-independent transcription by sigma(54)-RNAP is highly sensitive to gp2. We provide evidence that an activator- and ATP hydrolysis-dependent conformational change involving the beta' jaw domain and promoter DNA is the basis for gp2-resistant transcription by sigma(54)-RNAP. Our results establish that accessory factors bound to the upstream face of the RNAP, communicate with the beta' jaw domain, and that such communication is subjected to regulation.
Collapse
Affiliation(s)
| | | | | | - Nikolay Zenkin
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
| | - Konstantin Severinov
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ 08904, USA. Tel.: +1 732 445 6095; Fax: +1 732 445 573; E-mail:
| | - Martin Buck
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 207 594 5442; Fax: +44 207 594 5419; E-mail:
| |
Collapse
|