1
|
Guitot K, Drujon T, Burlina F, Sagan S, Beaupierre S, Pamlard O, Dodd RH, Guillou C, Bolbach G, Sachon E, Guianvarc'h D. A direct label-free MALDI-TOF mass spectrometry based assay for the characterization of inhibitors of protein lysine methyltransferases. Anal Bioanal Chem 2017; 409:3767-3777. [PMID: 28389916 DOI: 10.1007/s00216-017-0319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/27/2022]
Abstract
Histone lysine methylation is associated with essential biological functions like transcription activation or repression, depending on the position and the degree of methylation. This post-translational modification is introduced by protein lysine methyltransferases (KMTs) which catalyze the transfer of one to three methyl groups from the methyl donor S-adenosyl-L-methionine (AdoMet) to the amino group on the side chain of lysines. The regulation of protein lysine methylation plays a primary role not only in the basic functioning of normal cells but also in various pathologies and KMT deregulation is associated with diseases including cancer. These enzymes are therefore attractive targets for the development of new antitumor agents, and there is still a need for direct methodology to screen, identify, and characterize KMT inhibitors. We report here a simple and robust in vitro assay to quantify the enzymatic methylation of KMT by MALDI-TOF mass spectrometry. Following this protocol, we can monitor the methylation events over time on a peptide substrate. We detect in the same spectrum the modified and unmodified substrates, and the ratios of both signals are used to quantify the amount of methylated substrate. We first demonstrated the validity of the assay by determining inhibition parameters of two known inhibitors of the KMT SET7/9 ((R)-PFI-2 and sinefungin). Next, based on structural comparison with these inhibitors, we selected 42 compounds from a chemical library. We applied the MALDI-TOF assay to screen their activity as inhibitors of the KMT SET7/9. This study allowed us to determine inhibition constants as well as kinetic parameters of a series of SET7/9 inhibitors and to initiate a structure activity discussion with this family of compounds. This assay is versatile and can be easily adapted to other KMT substrates and enzymes as well as automatized.
Collapse
Affiliation(s)
- Karine Guitot
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Thierry Drujon
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Fabienne Burlina
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Sandrine Sagan
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Sandra Beaupierre
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Olivier Pamlard
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Robert H Dodd
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Catherine Guillou
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Gérard Bolbach
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.,UPMC Univ Paris 06, IBPS/FR3631, Plateforme de Spectrométrie de Masse et Protéomique, 7-9 Quai Saint Bernard, 75005, Paris, France
| | - Emmanuelle Sachon
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.,UPMC Univ Paris 06, IBPS/FR3631, Plateforme de Spectrométrie de Masse et Protéomique, 7-9 Quai Saint Bernard, 75005, Paris, France
| | - Dominique Guianvarc'h
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005, Paris, France. .,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.
| |
Collapse
|
2
|
Guitot K, Scarabelli S, Drujon T, Bolbach G, Amoura M, Burlina F, Jeltsch A, Sagan S, Guianvarc’h D. Label-free measurement of histone lysine methyltransferases activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 2014; 456:25-31. [DOI: 10.1016/j.ab.2014.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 11/28/2022]
|
3
|
Hart-Smith G, Low JKK, Erce MA, Wilkins MR. Enhanced methylarginine characterization by post-translational modification-specific targeted data acquisition and electron-transfer dissociation mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1376-1389. [PMID: 22673836 DOI: 10.1007/s13361-012-0417-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/27/2012] [Accepted: 05/12/2012] [Indexed: 06/01/2023]
Abstract
When localizing protein post-translational modifications (PTMs) using liquid-chromatography (LC)-tandem mass spectrometry (MS/MS), existing implementations are limited by inefficient selection of PTM-carrying peptides for MS/MS, particularly when PTM site occupancy is sub-stoichiometric. The present contribution describes a method by which peptides carrying specific PTMs of interest-in this study, methylarginines-may be selectively targeted for MS/MS: peptide features are extracted from high mass accuracy single-stage MS data, searched against theoretical PTM-carrying peptide masses, and matching features are subjected to targeted data acquisition LC-MS/MS. Using trypsin digested Saccharomyces cerevisiae Npl3, in which evidence is presented for 18 methylarginine sites-17 of which fall within a glycine-arginine-rich (GAR) domain spanning <120 amino acids-it is shown that this approach outperforms conventional data dependent acquisition (DDA): when applied to a complex protein mixture featuring in vivo methylated Npl3, 95% more (P=0.030) methylarginine-carrying peptides are selected for MS/MS than DDA, leading to an 86% increase (P=0.044) in the number of methylated peptides producing Mascot ion scores ≥20 following electron-transfer dissociation (ETD). Notably, significantly more low abundance arginine methylated peptides (maximum ion intensities <6×10(4) cps) are selected for MS/MS using this approach relative to DDA (50% more in a digest of purified in vitro methylated Npl3). It is also demonstrated that relative to collision-induced dissociation (CID), ETD facilitates a 586% increase (P=0.016) in average Mascot ion scores of methylarginine-carrying peptides. The present PTM-specific targeted data acquisition approach, though described using methylarginine, is applicable to any ionizable PTM of known mass.
Collapse
Affiliation(s)
- Gene Hart-Smith
- NSW Systems Biology Initiative, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
4
|
Minaker SA, Daze KD, Ma MCF, Hof F. Antibody-Free Reading of the Histone Code Using a Simple Chemical Sensor Array. J Am Chem Soc 2012; 134:11674-80. [DOI: 10.1021/ja303465x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Samuel A. Minaker
- Department
of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Kevin D. Daze
- Department
of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Manuel C. F. Ma
- Department
of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Fraser Hof
- Department
of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
5
|
Fuchs SM, Strahl BD. Antibody recognition of histone post-translational modifications: emerging issues and future prospects. Epigenomics 2012; 3:247-9. [PMID: 22122332 DOI: 10.2217/epi.11.23] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Florea M, Kudithipudi S, Rei A, González-Álvarez MJ, Jeltsch A, Nau WM. A Fluorescence-Based Supramolecular Tandem Assay for Monitoring Lysine Methyltransferase Activity in Homogeneous Solution. Chemistry 2012; 18:3521-8. [DOI: 10.1002/chem.201103397] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Indexed: 11/06/2022]
|
7
|
Lau ATY, Lee SY, Xu YM, Zheng D, Cho YY, Zhu F, Kim HG, Li SQ, Zhang Z, Bode AM, Dong Z. Phosphorylation of histone H2B serine 32 is linked to cell transformation. J Biol Chem 2011; 286:26628-37. [PMID: 21646345 DOI: 10.1074/jbc.m110.215590] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Various types of post-translational modifications of the histone tails have been revealed, but a few modifications have been found within the histone core sequences. Histone core post-translational modifications have the potential to modulate nucleosome structure and DNA accessibility. Here, we studied the histone H2B core domain and found that phosphorylation of H2B serine 32 occurs in normal cycling and mitogen-stimulated cells. Notably, this phosphorylation is elevated in skin cancer cell lines and tissues compared with normal counterparts. The JB6 Cl41 mouse skin epidermal cell line is a well established model for tumor promoter-induced cell transformation and was used to study the function of H2B during EGF-induced carcinogenesis. Remarkably, cells overexpressing a nonphosphorylatable H2BS32A mutant exhibited suppressed growth and EGF-induced cell transformation, possibly because of decreased activation of activator protein-1, compared with control cells overexpressing wild type H2B. We identified ribosomal S6 kinase 2 (RSK2) as the kinase responsible for H2BS32 phosphorylation. Serum-starved JB6 cells contain very little endogenous H2BS32 phosphorylation, and EGF treatment induced this phosphorylation. The phosphorylation was attenuated in RSK2 knock-out MEFs and RSK2 knockdown JB6 cells. Taken together, our results demonstrate a novel role for H2B phosphorylation in cell transformation and show that H2BS32 phosphorylation is critical for controlling activator protein-1 activity, which is a major driver in cell transformation.
Collapse
Affiliation(s)
- Andy T Y Lau
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dhayalan A, Dimitrova E, Rathert P, Jeltsch A. A Continuous Protein Methyltransferase (G9a) Assay for Enzyme Activity Measurement and Inhibitor Screening. ACTA ACUST UNITED AC 2009; 14:1129-33. [DOI: 10.1177/1087057109345528] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors describe a continuous protein methylation assay using the G9a protein lysine methyltransferase and its substrate protein WIZ (widely interspaced zinc finger motifs). The assay is based on the coupling of the biotinylated substrate protein to streptavidin-coated FlashPlates and the transfer of radioactive methyl groups from the S-adenosyl-L-methionine to the substrate. The reaction progress is monitored continuously by proximity scintillation counting. The assay is very accurate, convenient, well suited for automation, and highly reproducible with standard errors in the range of 5%. Because of few pipetting steps and continuous data readout, it is ideal for high-throughput applications such as screening of inhibitors, testing many enzyme variants, or analyzing differences in methylation rates of different substrates under various conditions. By using this new assay, the IC 50 of AdoHcy and the G9a inhibitor BIX-01294 were determined for methylation of the G9a nonhistone substrate WIZ. ( Journal of Biomolecular Screening 2009:1129-1133)
Collapse
Affiliation(s)
- Arunkumar Dhayalan
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Emilia Dimitrova
- Biochemistry and Cell Biology Program, School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Philipp Rathert
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Albert Jeltsch
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Bremen, Germany,
| |
Collapse
|
9
|
Goens G, Rusu D, Bultot L, Goval JJ, Magdalena J. Characterization and quality control of antibodies used in ChIP assays. Methods Mol Biol 2009; 567:27-43. [PMID: 19588083 DOI: 10.1007/978-1-60327-414-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We present here the very robust characterization and quality control (QC) process that we have established for our polyclonal antibodies, which are mainly directed against targets relevant to the epigenetics field such as modified histones, modifying enzymes, and chromatin-interacting proteins. The final purpose of the characterization and QC is to label antibodies as chromatin immunoprecipitation (ChIP) grade. Indeed, the ChIP method is extensively used in epigenetics to study gene regulation and relies on the use of antibodies to select the protein of interest and then precipitate and identify the DNA associated to it. We have optimized in-house all protocols and reagents needed from the first to the last step of antibody characterization. First, following immunizations, the rabbit crude serum is tested for immune response. Whether or not the antibody is specific is determined in further characterizations. Then, only specific antibodies are tested in ChIP using an optimized method which is ideal for antibody screening. Once QC is established for one antibody, it is used to similarly characterize each antibody batch in order to supply researchers in a reproducible manner with validated antibodies. All in all, this demonstrates that we develop epigenetics research tools based on everyday's researcher's needs by providing batch-specific fully characterized ChIP-grade antibodies.
Collapse
|
10
|
van Oevelen C, Wang J, Asp P, Yan Q, Kaelin WG, Kluger Y, Dynlacht BD. A role for mammalian Sin3 in permanent gene silencing. Mol Cell 2008; 32:359-70. [PMID: 18995834 PMCID: PMC3100182 DOI: 10.1016/j.molcel.2008.10.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/19/2008] [Accepted: 10/17/2008] [Indexed: 12/29/2022]
Abstract
The multisubunit Sin3 corepressor complex regulates gene transcription through deacetylation of nucleosomes. However, the full range of Sin3 activities and targets is not well understood. Here, we have investigated genome-wide binding of mouse Sin3 and RBP2 as well as histone modifications and nucleosome positioning as a function of myogenic differentiation. Remarkably, we find that Sin3 complexes spread immediately downstream of the transcription start site on repressed and transcribed genes during differentiation. We show that RBP2 is part of a Sin3 complex and that on a subset of E2F4 target genes, the coordinated activity of Sin3 and RBP2 leads to deacetylation, demethylation, and repositioning of nucleosomes. Our work provides evidence for coordinated binding of Sin3, chromatin modifications, and chromatin remodeling within discrete regulatory regions, suggesting a model in which spreading of Sin3 binding is ultimately linked to permanent gene silencing on a subset of E2F4 target genes.
Collapse
Affiliation(s)
- Chris van Oevelen
- New York University School of Medicine, NYU Cancer Institute, 522 1st Avenue, New York, NY 10016
| | - Jinhua Wang
- New York University School of Medicine, NYU Cancer Institute, 522 1st Avenue, New York, NY 10016
| | - Patrik Asp
- New York University School of Medicine, NYU Cancer Institute, 522 1st Avenue, New York, NY 10016
| | - Qin Yan
- Department of Medical Oncology, Dana Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115
| | - William G. Kaelin
- Department of Medical Oncology, Dana Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115
| | - Yuval Kluger
- New York University School of Medicine, NYU Cancer Institute, 522 1st Avenue, New York, NY 10016
| | - Brian David Dynlacht
- New York University School of Medicine, NYU Cancer Institute, 522 1st Avenue, New York, NY 10016
| |
Collapse
|
11
|
Luco RF, Maestro MA, Sadoni N, Zink D, Ferrer J. Targeted deficiency of the transcriptional activator Hnf1alpha alters subnuclear positioning of its genomic targets. PLoS Genet 2008; 4:e1000079. [PMID: 18497863 PMCID: PMC2375116 DOI: 10.1371/journal.pgen.1000079] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 04/23/2008] [Indexed: 12/18/2022] Open
Abstract
DNA binding transcriptional activators play a central role in gene-selective regulation. In part, this is mediated by targeting local covalent modifications of histone tails. Transcriptional regulation has also been associated with the positioning of genes within the nucleus. We have now examined the role of a transcriptional activator in regulating the positioning of target genes. This was carried out with primary β-cells and hepatocytes freshly isolated from mice lacking Hnf1α, an activator encoded by the most frequently mutated gene in human monogenic diabetes (MODY3). We show that in Hnf1a−/− cells inactive endogenous Hnf1α-target genes exhibit increased trimethylated histone H3-Lys27 and reduced methylated H3-Lys4. Inactive Hnf1α-targets in Hnf1a−/− cells are also preferentially located in peripheral subnuclear domains enriched in trimethylated H3-Lys27, whereas active targets in wild-type cells are positioned in more central domains enriched in methylated H3-Lys4 and RNA polymerase II. We demonstrate that this differential positioning involves the decondensation of target chromatin, and show that it is spatially restricted rather than a reflection of non-specific changes in the nuclear organization of Hnf1a-deficient cells. This study, therefore, provides genetic evidence that a single transcriptional activator can influence the subnuclear location of its endogenous genomic targets in primary cells, and links activator-dependent changes in local chromatin structure to the spatial organization of the genome. We have also revealed a defect in subnuclear gene positioning in a model of a human transcription factor disease. All cells in an organism share a common genome, yet distinct subsets of genes are transcribed in different cells. Selectivity of gene transcription is largely determined by transcription factors that bind to target genes and promote local changes in chromatin. Such changes are thought to be instrumental for transcription. Emerging evidence indicates that the position of genes in the 3-dimensional structure of the nucleus may also be important in transcriptional regulation. However, the role of transcription factors in gene positioning, and its possible relationship with chromatin modifications, is poorly understood. To examine this, we employed a genetic approach. We used mice lacking Hnf1α, a transcription factor gene that is mutated in an inherited form of diabetes. We studied genes that are directly bound by Hnf1α, as well as various control genomic regions, and determined their position in nuclear space in liver and insulin-producing β-cells. The results showed that the absence of Hnf1α causes local changes in the chromatin of target genes. At the same time, it modifies the position of target genes in nuclear space. The findings of this study lead us to propose a model whereby transcription factor dependent local chromatin modifications are linked to subnuclear gene positioning. They also revealed abnormal subnuclear positioning in a model of a human transcription factor disease.
Collapse
Affiliation(s)
- Reini F. Luco
- Genomic Programming of Beta-cells Laboratory, Institut d'Investigacions August Pi i Sunyer, Barcelona, Spain
| | - Miguel A. Maestro
- Genomic Programming of Beta-cells Laboratory, Institut d'Investigacions August Pi i Sunyer, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Nicolas Sadoni
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Visitron Systems GmbH, Puchheim, Germany
| | - Daniele Zink
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore
| | - Jorge Ferrer
- Genomic Programming of Beta-cells Laboratory, Institut d'Investigacions August Pi i Sunyer, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Endocrinology, Hospital Clinic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
12
|
Zhao X, Jankovic V, Gural A, Huang G, Pardanani A, Menendez S, Zhang J, Dunne R, Xiao A, Erdjument-Bromage H, Allis CD, Tempst P, Nimer SD. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev 2008; 22:640-53. [PMID: 18316480 DOI: 10.1101/gad.1632608] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RUNX1/AML1 is required for the development of definitive hematopoiesis, and its activity is altered by mutations, deletions, and chromosome translocations in human acute leukemia. RUNX1 function can be regulated by post-translational modifications and protein-protein interactions. We show that RUNX1 is arginine-methylated in vivo by the arginine methyltransferase PRMT1, and that PRMT1 serves as a transcriptional coactivator for RUNX1 function. Using mass spectrometry, and a methyl-arginine-specific antibody, we identified two arginine residues (R206 and R210) within the region of RUNX1 that interact with the corepressor SIN3A and are methylated by PRMT1. PRMT1- dependent methylation of RUNX1 at these arginine residues abrogates its association with SIN3A, whereas shRNA against PRMT1 (or use of a methyltransferase inhibitor) enhances this association. We find arginine-methylated RUNX1 on the promoters of two bona fide RUNX1 target genes, CD41 and PU.1 and show that shRNA against PRMT1 or RUNX1 down-regulates their expression. These arginine methylation sites and the dynamic regulation of corepressor binding are lost in the leukemia-associated RUNX1-ETO fusion protein, which likely contributes to its dominant inhibitory activity.
Collapse
Affiliation(s)
- Xinyang Zhao
- Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Blais A, van Oevelen CJC, Margueron R, Acosta-Alvear D, Dynlacht BD. Retinoblastoma tumor suppressor protein-dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. ACTA ACUST UNITED AC 2008; 179:1399-412. [PMID: 18166651 PMCID: PMC2373492 DOI: 10.1083/jcb.200705051] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The retinoblastoma tumor suppressor protein (pRb) is involved in mitotic exit, promoting the arrest of myoblasts, and myogenic differentiation. However, it is unclear how permanent cell cycle exit is maintained in differentiated muscle. Using RNA interference, expression profiling, and chromatin immunoprecipitations, we show that pRb is essential for cell cycle exit and the differentiation of myoblasts and is also uniquely required to maintain this arrest in myotubes. Remarkably, we also uncover a function for the pRb-related proteins p107 and p130 as enforcers of a G2/M phase checkpoint that prevents progression into mitosis in cells that have lost pRb. We further demonstrate that pRb effects permanent cell cycle exit in part by maintaining trimethylation of histone H3 lysine 27 (H3K27) on cell cycle genes. H3K27 trimethylation silences other genes, including Cyclin D1, in a pRb-independent but polycomb-dependent manner. Thus, our data distinguish two distinct chromatin-based regulatory mechanisms that lead to terminal differentiation.
Collapse
Affiliation(s)
- Alexandre Blais
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
14
|
Rathert P, Cheng X, Jeltsch A. Continuous enzymatic assay for histone lysine methyltransferases. Biotechniques 2007; 43:602, 604, 606 passim. [PMID: 18072589 PMCID: PMC2703000 DOI: 10.2144/000112623] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We describe a continuous peptide methylation assay using the Neurospora crassa Dim-5 histone H3 lysine 9 (H3K9) methyltransferase as a model system. The assay uses streptavidin FlashPlates coated with target peptide. Since no washing and pipeting steps were required after the addition of the enzyme/S-adenosyl-L-methionine (AdoMet) mixture to the microplate, a continuous readout of the reaction progress was possible. We show that this assay is highly reproducible (with errors in the order of +/- 3%). The continuous assay is well suited for the simultaneous analysis of up to 384 samples, thus allowing for a rapid screening of methylation rates of different substrates under different conditions or in the presence of inhibitors.
Collapse
|
15
|
Sampath SC, Marazzi I, Yap KL, Sampath SC, Krutchinsky AN, Mecklenbräuker I, Viale A, Rudensky E, Zhou MM, Chait BT, Tarakhovsky A. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell 2007; 27:596-608. [PMID: 17707231 DOI: 10.1016/j.molcel.2007.06.026] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/19/2007] [Accepted: 06/12/2007] [Indexed: 12/31/2022]
Abstract
Epigenetic gene silencing in eukaryotes is regulated in part by lysine methylation of the core histone proteins. While histone lysine methylation is known to control gene expression through the recruitment of modification-specific effector proteins, it remains unknown whether nonhistone chromatin proteins are targets for similar modification-recognition systems. Here we show that the histone H3 methyltransferase G9a contains a conserved methylation motif with marked sequence similarity to H3 itself. As with methylation of H3 lysine 9, autocatalytic G9a methylation is necessary and sufficient to mediate in vivo interaction with the epigenetic regulator heterochromatin protein 1 (HP1), and this methyl-dependent interaction can be reversed by adjacent G9a phosphorylation. NMR analysis indicates that the HP1 chromodomain recognizes methyl-G9a through a binding mode similar to that used in recognition of methyl-H3K9, demonstrating that the chromodomain functions as a generalized methyl-lysine binding module. These data reveal histone-like modification cassettes - or "histone mimics" - as a distinct class of nonhistone methylation targets and directly extend the principles of the histone code to the regulation of nonhistone proteins.
Collapse
|
16
|
Abstract
Post-translational histone modifications and histone variants generate complexity in chromatin to enable the many functions of the chromosome. Recent studies have mapped histone modifications across the Saccharomyces cerevisiae genome. These experiments describe how combinations of modified and unmodified states relate to each other and particularly to chromosomal landmarks that include heterochromatin, subtelomeric chromatin, centromeres, origins of replication, promoters and coding regions. Such patterns might be important for the regulation of heterochromatin-mediated silencing, chromosome segregation, DNA replication and gene expression.
Collapse
Affiliation(s)
- Catherine B Millar
- Department of Biological Chemistry, Geffen School of Medicine and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
17
|
Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 2005; 19:381-91. [PMID: 16061184 DOI: 10.1016/j.molcel.2005.06.011] [Citation(s) in RCA: 552] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/19/2005] [Accepted: 06/10/2005] [Indexed: 11/17/2022]
Abstract
Methylation of histones modulates chromatin structure and function. Whereas methylation of histone H3 on lysines 4, 36, and 79 has been linked with gene activation, methylation of H3 on lysines 9 and 27 and histone H4 on lysine 20 is associated with heterochromatin and some repressed genes within euchromatin. Here, we show that H3K9 di- and trimethylation occur in the transcribed region of active genes in mammalian chromatin. This modification is dynamic, as it increases during activation of transcription and is rapidly removed upon gene repression. Heterochromatin Protein 1gamma (HP1gamma), a protein containing a chromo-domain that recognizes H3K9 methylation, is also present in the transcribed region of all active genes examined. Both the presence of HP1gamma and H3K9 methylation are dependent upon elongation by RNA polymerase II. These findings demonstrate novel roles for H3K9 methylation and HP1gamma in transcription activation.
Collapse
Affiliation(s)
- Christopher R Vakoc
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
18
|
Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16:93-105. [PMID: 15469825 DOI: 10.1016/j.molcel.2004.08.031] [Citation(s) in RCA: 689] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 08/11/2004] [Accepted: 08/13/2004] [Indexed: 11/30/2022]
Abstract
We characterized human SirT1, one of the human homologs of the budding yeast Sir2p, an NAD+-dependent histone deacetylase involved in establishing repressive chromatin and increased life span. SirT1 deacetylates histone polypeptides with a preference for histone H4 lysine 16 (H4-K16Ac) and H3 lysine 9 (H3-K9Ac) in vitro. RNAi-mediated decreased expression of SirT1 in human cells causes hyperacetylation of H4-K16 and H3-K9 in vivo. SirT1 interacts with and deacetylates histone H1 at lysine 26. Using an inducible system directing expression of SirT1 fused to the Gal4-DNA binding domain and a Gal4-reporter integrated in euchromatin, Gal4-SirT1 expression resulted in the deacetylation of H4-K16 and H3-K9, recruitment of H1 within the promoter vicinity, drastically reduced reporter expression, and loss of H3-K79 methylation, a mark restricting silenced chromatin. We propose a model for SirT1-mediated heterochromatin formation that includes deacetylation of histone tails, recruitment and deacetylation of histone H1, and spreading of hypomethylated H3-K79 with resultant silencing.
Collapse
Affiliation(s)
- Alejandro Vaquero
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
19
|
Rougeulle C, Chaumeil J, Sarma K, Allis CD, Reinberg D, Avner P, Heard E. Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol Cell Biol 2004; 24:5475-84. [PMID: 15169908 PMCID: PMC419884 DOI: 10.1128/mcb.24.12.5475-5484.2004] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H3 tail modifications are among the earliest chromatin changes in the X-chromosome inactivation process. In this study we investigated the relative profiles of two important repressive marks on the X chromosome: methylation of H3 lysine 9 (K9) and 27 (K27). We found that both H3K9 dimethylation and K27 trimethylation characterize the inactive X in somatic cells and that their relative kinetics of enrichment on the X chromosome as it undergoes inactivation are similar. However, dynamic changes of H3K9 and H3K27 methylation on the inactivating X chromosome compared to the rest of the genome are distinct, suggesting that these two modifications play complementary and perhaps nonredundant roles in the establishment and/or maintenance of X inactivation. Furthermore, we show that a hotspot of H3K9 dimethylation 5' to Xist also displays high levels of H3 tri-meK27. However, analysis of this region in G9a mutant embryonic stem cells shows that these two methyl marks are dependent on different histone methyltransferases.
Collapse
Affiliation(s)
- Claire Rougeulle
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
- Corresponding author. Mailing address for Claire Rougeulle: CNRS URA 2578, Unité de Génétique Moléculaire Murine, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, France. Phone: 33-1-45-68-86-53. Fax: 33-1-45-68-86-56. E-mail: . Mailing address for Edith Heard: CNRS UMR 218, Institut Curie, 26 rue d'Ulm, Paris 75005, France. Phone: 33-1-42-34-66-91. Fax: 33-1-46-33-30-16. E-mail:
| | - Julie Chaumeil
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
| | - Kavitha Sarma
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
| | - C. David Allis
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
| | - Danny Reinberg
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
| | - Philip Avner
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
| | - Edith Heard
- Pasteur Institute, Paris 75015, Curie Institute, Paris 75005, France, Howard Hughes Medical Institute, Piscataway, New Jersey 08854, Rockefeller University, New York, New York 10021
- Corresponding author. Mailing address for Claire Rougeulle: CNRS URA 2578, Unité de Génétique Moléculaire Murine, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, France. Phone: 33-1-45-68-86-53. Fax: 33-1-45-68-86-56. E-mail: . Mailing address for Edith Heard: CNRS UMR 218, Institut Curie, 26 rue d'Ulm, Paris 75005, France. Phone: 33-1-42-34-66-91. Fax: 33-1-46-33-30-16. E-mail:
| |
Collapse
|
20
|
Peters AHFM, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AAHA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JHA, Jenuwein T. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 2004; 12:1577-89. [PMID: 14690609 DOI: 10.1016/s1097-2765(03)00477-5] [Citation(s) in RCA: 872] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Methylation of position-specific lysine residues in histone N termini is a central modification for regulating epigenetic transitions in chromatin. Each methylatable lysine residue can exist in a mono-, di-, or trimethylated state, thereby extending the indexing potential of this particular modification. Here, we examine all possible methylation states for histone H3 lysine 9 (H3-K9) and lysine 27 (H3-K27) in mammalian chromatin. Using highly specific antibodies together with quantitative mass spectrometry, we demonstrate that pericentric heterochromatin is selectively enriched for H3-K27 monomethylation and H3-K9 trimethylation. This heterochromatic methylation profile is dependent on the Suv39h histone methyltransferases (HMTases) but independent of the euchromatic G9a HMTase. In Suv39h double null cells, pericentric heterochromatin is converted to alternative methylation imprints and accumulates H3-K27 trimethylation and H3-K9 monomethylation. Our data underscore the selective presence of distinct histone lysine methylation states in partitioning chromosomal subdomains but also reveal a surprising plasticity in propagating methylation patterns in eukaryotic chromatin.
Collapse
Affiliation(s)
- Antoine H F M Peters
- Research Institute of Molecular Pathology, The Vienna Biocenter, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|