1
|
Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J Control Release 2023; 353:196-215. [PMID: 36423871 DOI: 10.1016/j.jconrel.2022.11.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy is a revolutionary approach approved by the FDA and EMA to treat B cell malignancies and multiple myeloma. The production of these T cells has been done through viral vectors, which come with safety concerns, high cost and production challenges, and more recently also through electroporation, which can be extremely cytotoxic. In this context, nanosystems can constitute an alternative to overcome the challenges associated with current methods, resulting in a safe and cost-effective platform. However, the barriers associated with T cells transfection show that the design and engineering of novel approaches in this field are highly imperative. Here, we present an overview from CAR constitution to transfection technologies used in T cells, highlighting the lipid- and polymer-based nanoparticles as a potential delivery platform. Specifically, we provide examples, strengths and weaknesses of nanosystem formulations, and advances in nanoparticle design to improve transfection of T cells. This review will guide the researchers in the design and development of novel nanosystems for next-generation CAR T therapeutics.
Collapse
Affiliation(s)
- Inês S Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Agra do Castro, 3810-193 Aveiro, Portugal
| | - Rosemeyre A Cordeiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal.
| |
Collapse
|
2
|
Di Paolo D, Pastorino F, Brignole C, Marimpietri D, Loi M, Ponzoni M, Pagnan G. Drug Delivery Systems: Application of Liposomal Anti-Tumor Agents to Neuroectodermal Cancer Treatment. TUMORI JOURNAL 2018; 94:246-53. [DOI: 10.1177/030089160809400217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Disseminated neuroectoderma-derived tumors, mainly neuroblastoma in childhood and melanoma in the adulthood, are refractory to most current therapeutic regimens and hence the prognosis remains very poor. Preclinical research studies have indicated several agents that show promising therapeutic potential for these neoplasms. However, there appears to be a limitation to their in vivo applicability, mainly due to unfavorable pharmacokinetic properties that lead to insufficient drug delivery to the tumor or metastatic sites or to high systemic or organ-specific toxicity. In this scenario, the focus is on targeted cancer therapy. Encapsulating anticancer drugs in liposomes enables targeted drug delivery to tumor tissue and prevents damage to the normal surrounding tissue. Indeed, sterically stabilized liposomes have been shown to enhance the selective localization of entrapped drugs to solid tumors, with improvements in therapeutic indices. The identification of tumor-associated antigens and/or genes and the relative ease of manipulating the physicochemical features of liposome hold promise for the development of novel therapeutic strategies that selectively target tumor cells. Combined targeting is still investigated, especially the availability to simultaneously target and kill both the cancer cells and the tumor vasculature. Animal models make it possible to link molecular genetics and biochemistry information to the physiological basis of disease and are important predictive tools that offer a frontline testing system for studying the involvement of specific genes and the efficacy of novel therapeutics approaches. Relevant experimental models of human neuroblastoma and melanoma, which better reflect the tumor behavior in patients, are required to evaluate the effectiveness of the various targeted liposomal formulations and their possible systemic and organ-specific toxicity. The most multifunctional targeted liposomes are herein described, with primary attention on testing their efficacy in clinically relevant animal models for the treatment of neuroblastoma and melanoma.
Collapse
Affiliation(s)
- Daniela Di Paolo
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Fabio Pastorino
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Chiara Brignole
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Danilo Marimpietri
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Monica Loi
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Mirco Ponzoni
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Gabriella Pagnan
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| |
Collapse
|
3
|
Wyrozumska P, Meissner J, Toporkiewicz M, Szarawarska M, Kuliczkowski K, Ugorski M, Walasek MA, Sikorski AF. Liposome-coated lipoplex-based carrier for antisense oligonucleotides. Cancer Biol Ther 2015; 16:66-76. [PMID: 25482931 PMCID: PMC4329851 DOI: 10.4161/15384047.2014.987009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The chemical nature of genetic drugs (e.g. antisense oligonucleotides, siRNA, vectors) requires a suitable carrier system to protect them from enzymatic degradation without changing their properties and enable efficient delivery into target cells. Lipid vectors for nucleic acid delivery that have been widely investigated for years can be very effective. As the majority of attempts made in the field of cancer gene therapy have focused on solid tumors, while blood cancer cells have attracted less attention, the latter became the subject of our investigation. The lipid carrier proposed here is based on liposomes constructed by others but the lipid composition is original. A liposome-coated lipoplex (L-cL) consists of a core arising from complexation of positively charged lipid and negatively charged oligodeoxynucleotide (ODN) or plasmid DNA coated by a neutral or anionic lipid bilayer. Moreover, our lipid vector demonstrates size stability and is able to retain a high content of enclosed plasmid DNA or antisense oligodeoxynucleotides (asODNs). Observed transfection efficacies of the tested preparation using a plasmid coding for fluorescent protein were up to 60-85% of examined leukemia cells (Jurkat T and HL-60 lines) in the absence or the presence of serum. When BCL‑2 asODN was encapsulated in the L-cL, specific silencing of this gene product at both the mRNA and protein level and also a markedly decreased cell survival rate were observed in vitro. Moreover, biodistribution analysis in mice indicates prolonged circulation characteristic for PEG-modified liposomal carriers. Experiments on tumor-engrafted animals indicate substantial inhibition of tumor growth.
Collapse
Key Words
- AML, acute myeloid leukemia
- BCL-2 gene
- Bcl-2, B-cell lymphoma 2 protein
- CCL, coated cationic liposomes
- DC-CHOL, 3β-(N-[dimethylaminoethane]carbamoyl)cholesterol) DiD-1,1′, dioctadecyl-3,3,3′, 3′-tetramethylindodicarbocyanine
- DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine)
- DOTAP, 1, 2-dioleoyl-3-trimethylammonium-propane)
- DSPE, PEG-(1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000] (ammonium salt)
- GFP, green fluorescent protein
- HPC, hydrogenated egg phosphatidylcholine)
- L-cL, liposome-coated lipoplex
- PE/PC, phosphatidylethanolamine and phosphatidylcholine liposomes
- acute leukemia
- antisense deoxynucleotides
- asODN, antisense oligodeoxynucleotide
- cationic lipids
- gene therapy
- lipid carrier
- lipoplex
- liposome coated lipoplex
- pDNA, plasmid DNA
- siRNA, small interferingRNA TGI, tumor growth inhibition
Collapse
Affiliation(s)
- Paulina Wyrozumska
- a Laboratory of Cytobiochemistry; Biotechnology Faculty ; University of Wrocław ; Wrocław , Poland
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Impact of atomization technique on the stability and transport efficiency of nebulized liposomes harboring different surface characteristics. Eur J Pharm Biopharm 2014; 88:1076-85. [DOI: 10.1016/j.ejpb.2014.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 01/02/2023]
|
5
|
Wang Z, Li J, Xu X, Duan X, Cao G. Urea immunoliposome inhibits human vascular endothelial cell proliferation for hemangioma treatment. World J Surg Oncol 2013; 11:300. [PMID: 24266957 PMCID: PMC4222881 DOI: 10.1186/1477-7819-11-300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Urea injection has been used in hemangioma treatment as sclerotherapy. It shrinks vascular endothelial cells and induces degeneration, necrosis, and fibrosis. However, this treatment still has disadvantages, such as lacking targeting and difficulty in controlling the urea dosage. Thus, we designed a urea immunoliposome to improve the efficiency of treatment. METHODS The urea liposome was prepared by reverse phase evaporation. Furthermore, the urea immunoliposome was generated by coupling the urea liposome with a vascular endothelial growth factor receptor (VEGFR) monoclonal antibody using the glutaraldehyde cross-linking method. The influence of the urea immunoliposome on cultured human hemangioma vascular endothelial cells was observed preliminarily. RESULTS Urea immunoliposomes showed typical liposome morphology under a transmission electron microscope, with an encapsulation percentage of 54.4% and a coupling rate of 36.84% for anti-VEGFR. Treatment with the urea immunoliposome significantly inhibited the proliferation of hemangioma vascular endothelial cells (HVECs) in a time- and dose-dependent manner. CONCLUSIONS The urea immunoliposome that we developed distinctly and persistently inhibited the proliferation of HVECs and is expected to be used in clinical hemangioma treatment.
Collapse
Affiliation(s)
- Zhiliang Wang
- Department of General Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, China.
| | | | | | | | | |
Collapse
|
6
|
Mendonça LS, Firmino F, Moreira JN, Pedroso de Lima MC, Simões S. Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for chronic myeloid leukemia treatment. Bioconjug Chem 2010; 21:157-68. [PMID: 20000596 DOI: 10.1021/bc9004365] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present work aimed at the development and application of transferrin receptor (TrfR)-targeted sterically stabilized liposomes encapsulating anti-BCR-ABL siRNA or asODN. Transferrin was coupled to the surface of liposomes encapsulating siRNA or asODN through the postinsertion method. Cell association and internalization were assessed by flow cytometry and confocal microscopy, respectively. BCR-ABL mRNA and Bcr-Abl protein levels were evaluated by qRT-PCR and Western blot, respectively. Cell viability was assessed using the resazurin reduction method. The amount of coupled transferrin and the size and stability over time of the liposomes were very satisfactory and reproducible. The siRNA encapsulation yield was dependent on the concentration of the encapsulation buffer used (20 or 300 mM), as opposed to asODN encapsulation yield which was high for both concentrations tested. Cell association and internalization studies were performed in leukemia cell lines treated with liposomes coupled to Trf (Trf-liposomes) or albumin (BSA-liposomes) or with nontargeted liposomes (NT-liposomes) encapsulating fluorescently labeled siRNA (Cy3-siRNA). These experiments clearly indicated that BSA- and NT-liposomes have no ability to promote the delivery of the encapsulated nucleic acids and that the Trf-liposomes deliver the nucleic acids by a Trf receptor-dependent mechanism. The Trf-liposomes encapsulating siRNA or asODN promote sequence-specific down-regulation of the BCR-ABL mRNA, although a certain extent of nonspecific sequence effects at the protein and cell viability level were observed. Overall, our results indicate that Trf-liposomes encapsulating gene silencing tools allow combining molecular and cellular targeting, which is a valuable approach for cancer treatment.
Collapse
|
7
|
Kuruba R, Wilson A, Gao X, Li S. Targeted delivery of nucleic-acid-based therapeutics to the pulmonary circulation. AAPS JOURNAL 2009; 11:23-30. [PMID: 19132538 DOI: 10.1208/s12248-008-9073-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/25/2008] [Indexed: 02/07/2023]
Abstract
Targeted delivery of functional nucleic acids (genes and oligonucleotides) to pulmonary endothelium may become a novel therapy for the treatment of various types of lung diseases. It may also provide a new research tool to study the functions and regulation of novel genes in pulmonary endothelium. Its success is largely dependent on the development of a vehicle that is capable of efficient pulmonary delivery with minimal toxicity. This review summarizes the recent progress that has been made in our laboratory along these research directions. Factors that affect pulmonary nucleic acids delivery are also discussed.
Collapse
Affiliation(s)
- Ramalinga Kuruba
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
8
|
|
9
|
Pastorino F, Mumbengegwi DR, Ribatti D, Ponzoni M, Allen TM. Increase of therapeutic effects by treating melanoma with targeted combinations of c-myc antisense and doxorubicin. J Control Release 2007; 126:85-94. [PMID: 18166243 DOI: 10.1016/j.jconrel.2007.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/13/2007] [Indexed: 11/26/2022]
Abstract
Patients with advanced or metastatic melanoma have a very poor prognosis, due to the resistance of melanoma cells to conventional chemotherapy. We previously reported that coated cationic liposomes targeted with a monoclonal antibody against the disialoganglioside GD(2) and containing c-myc antisense oligodeoxynucleotides (alpha GD(2)-CCL[c-myc-as]) induced partial tumor growth arrest in melanoma xenografts. Here we addressed the role of c-myc-asODN treatment in the susceptibility to doxorubicin (DXR) in human melanoma cells. Cytotoxicity studies revealed that growth of melanoma cells was inhibited to a greater extent by alpha GD(2)-CCL[c-myc-as] than by the corresponding non-targeted formulations or by free c-myc-as. Targeted c-myc-as sensitized cells to DXR, reducing the IC(50) by approximately 10-fold. Scrambled ODNs had no effect on the IC(50) of DXR. Compared to either treatment alone, combination of targeted c-myc-as and DXR resulted in earlier apoptosis and in cell death after 2 days of treatment. In vivo experiments revealed that liposomal formulations of c-myc-as and DXR, both targeted via GD(2), led to the most pronounced delay in tumor growth when administered in a sequential manner. As a result, their combination translates into a statistically significant suppression of blood vessel density and an enhanced apoptosis, compared to all treatments given separately. Our data indicate the increasing cell sensitivity to DXR by c-myc-asODNs as a promising basis for developing novel anti-tumor strategy against advanced melanoma.
Collapse
Affiliation(s)
- Fabio Pastorino
- Differentiation Therapy Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, 16148-Genoa, Italy.
| | | | | | | | | |
Collapse
|
10
|
Wang S, Cheng L, Yu F, Pan W, Zhang J. Delivery of different length poly(L-lysine)-conjugated ODN to HepG2 cells using N-stearyllactobionamide-modified liposomes and their enhanced cellular biological effects. Int J Pharm 2006; 311:82-8. [PMID: 16427225 DOI: 10.1016/j.ijpharm.2005.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/22/2005] [Accepted: 12/10/2005] [Indexed: 10/25/2022]
Abstract
Short (14-20-mer range) synthetic oligodeoxynucleotides (ODNs) allow specific modulation of cellular gene expression at various stages, thus providing a versatile tool for fundamental studies and a rational approach to anticancer chemotherapy. However, several problems, such as metabolic stability, efficient cell internalization of ODNs and their efficient entrapment into liposomes continue to markedly limit this approach. To improve the target specificity and biological activity of ODN, three different length of poly(L-lysine) (PLL) were conjugated to ODN and these conjugates were encapsulated in N-stearyllactobionamide (N-SLBA)-modified liposomes, N-SLBA is a ligand for the asialoglycoprotein receptor. Then, we investigated their effects on cell cycle and survivin protein levels of HepG2 cells. The results showed that the encapsulation efficiency was improved because the polycationic charges of PLL neutralized the polyanionic charges of ODN. Among them, PLL (M(W) 2000 and 10,000)-conjugated ODN encapsulated in N-SLBA liposomes induced apoptosis of HepG2 cells and highly inhibited survivin gene expression.
Collapse
Affiliation(s)
- Siling Wang
- Department of Pharmaceutics and Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | | | | | | | | |
Collapse
|
11
|
Bartsch M, Weeke-Klimp AH, Meijer DKF, Scherphof GL, Kamps JAAM. Cell-specific targeting of lipid-based carriers for ODN and DNA. J Liposome Res 2005; 15:59-92. [PMID: 16194928 DOI: 10.1081/lpr-64961] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is well recognized that there is an urgent need for non-toxic systemically applicable vectors for biologically active nucleotides to fully exploit the current potential of molecular medicine in gene therapy. Cell-specific targeting of non-viral lipid-based carriers for ODN and DNA is a prerequisite to attain the concentration of nucleic acids required for therapeutic efficacy in the target tissue. In this review we will address the most promising approaches to selective targeting of liposomal nucleic acid carriers in vivo. In addition, the routes of entry and intracellular processing of these carrier systems are discussed as well as physiological factors potentially interfering with the biological and/or therapeutic activity of their nucleotide pay-load.
Collapse
Affiliation(s)
- Martin Bartsch
- Department of Cell Biology, Section Liposome Research, Groningen University Institute for Drug Exploration (GUIDE), Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Bartsch M, Weeke-Klimp AH, Hoenselaar EPD, Stuart MCA, Meijer DKF, Scherphof GL, Kamps JAAM. Stabilized lipid coated lipoplexes for the delivery of antisense oligonucleotides to liver endothelial cells in vitro and in vivo. J Drug Target 2005; 12:613-21. [PMID: 15621687 DOI: 10.1080/10611860400013519] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report on the preparation and in vivo/in vitro disposition of antisense ODN encapsulating coated cationic lipoplexes (CCLs), prepared by a procedure essentially developed by Stuart and Allen (Stuart, D.D. and Allen, T.M. (2000) "A new liposomal formulation for antisense oligodeoxynucleotides with small size, high incorporation efficiency and good stability", Biochim. Biophys. Acta 1463, pp. 219-229). The behavior of untargeted CCLs was compared with CCLs that were targeted to scavenger receptors on liver endothelial cells by covalent coupling of the poly-anion aconitylated human serum albumin (Aco-HSA) to the particle surface. By means of cryo transmission electron microscopy (cryo-TEM) particles of high electron density could be distinguished from electron-translucent particles, representing high and low ODN encapsulation, respectively. The two populations were separated by sucrose density gradient centrifugation. Upon injection into rats, the untargeted particles showed long circulating properties with a half-life of >10 h. These untargeted CCLs barely bound to liver endothelial cells in vitro while Aco-HSA CCLs massively and specifically interacted with scavenger receptors on these cells. With J774 cells, a macrophage cell line expressing scavenger receptors, downregulation of ICAM-1 mRNA levels was achieved when the ODN was specifically delivered by Aco-HSA targeted CCLs.
Collapse
Affiliation(s)
- Martin Bartsch
- Department of Cell Biology, Groningen University Institute for Drug Exploration (GUIDE), University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Wilson A, He F, Li J, Ma Z, Pitt B, Li S. Targeted delivery of therapeutic oligonucleotides to pulmonary circulation. ADVANCES IN GENETICS 2005; 54:21-41. [PMID: 16096006 DOI: 10.1016/s0065-2660(05)54002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Functional oligodeoxynucleotides (ODN) such as antisense ODN (AS-ODN) show promise as new therapeutics for the treatment of a number of pulmonary diseases. They also hold potential to serve as a research tool for the study of gene function related to lung physiology. The success of their application is largely dependent on the development of an efficient delivery vehicle. This chapter summarizes work toward the development of lipidic vectors for targeted ODN delivery to pulmonary circulation. Recent advancements in the development of novel ODN are also discussed briefly.
Collapse
Affiliation(s)
- Annette Wilson
- Department of Environmental and Occupational Health Graduate School of Public Health, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|