1
|
Wan L, Xie B, Shuda M, Delgoffe G, Chang Y, Moore PS. Engineered protein destabilization reverses intrinsic immune evasion for candidate vaccine pan-strain KSHV and SARS-CoV-2 antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619692. [PMID: 39484438 PMCID: PMC11526888 DOI: 10.1101/2024.10.22.619692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Both Kaposi sarcoma herpesvirus LANA and SARS coronavirus 2 RdRp/nsp12 are highly conserved replication proteins that evade immune processing. By deleting the LANA central repeat 1 domain (LANA ΔCR1 ) or by dividing RdRp into two separated fragments (RdRp Frag ) to maximize nascent protein mis-folding, cis peptide presentation was increased. Native LANA or RdRp SIINFEKL fusion proteins expressed in MC38 cancer cells were not recognized by activated OT-1 CD8 + cells against SIINFEKL but cytotoxic recognition was restored by expression of the corresponding modified proteins. Immunocompetent syngeneic mice injected with LANA- or RdRp-SIINFEKL MC38 cells developed rapidly-growing tumors with short median survival times. Mice injected with LANA ΔCR1 - or RdRp Frag -SIINFEKL had partial tumor regression, slower tumor growth, longer median survival, as well as increased effector-specific tumor-infiltrating lymphocytes. These mice developed robust T cell responses lasting at least 90 days post-injection that recognized native viral protein epitopes. Engineered vaccine candidate antigens can unmask virus-specific CTL responses that are typically suppressed during native viral infection.
Collapse
|
2
|
Froehlich T, Jenner A, Cavarischia-Rega C, Fagbadebo FO, Lurz Y, Frecot DI, Kaiser PD, Nueske S, Scholz AM, Schäffer E, Garcia-Saez AJ, Macek B, Rothbauer U. Nanobodies as novel tools to monitor the mitochondrial fission factor Drp1. Life Sci Alliance 2024; 7:e202402608. [PMID: 38816213 PMCID: PMC11140114 DOI: 10.26508/lsa.202402608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
In cells, mitochondria undergo constant fusion and fission. An essential factor for fission is the mammalian dynamin-related protein 1 (Drp1). Dysregulation of Drp1 is associated with neurodegenerative diseases including Parkinson's, cardiovascular diseases and cancer, making Drp1 a pivotal biomarker for monitoring mitochondrial status and potential pathophysiological conditions. Here, we developed nanobodies (Nbs) as versatile binding molecules for proteomics, advanced microscopy and live cell imaging of Drp1. To specifically enrich endogenous Drp1 with interacting proteins for proteomics, we functionalized high-affinity Nbs into advanced capture matrices. Furthermore, we detected Drp1 by bivalent Nbs combined with site-directed fluorophore labelling in super-resolution STORM microscopy. For real-time imaging of Drp1, we intracellularly expressed fluorescently labelled Nbs, so-called chromobodies (Cbs). To improve the signal-to-noise ratio, we further converted Cbs into a "turnover-accelerated" format. With these imaging probes, we visualized the dynamics of endogenous Drp1 upon compound-induced mitochondrial fission in living cells. Considering the wide range of research applications, the presented Nb toolset will open up new possibilities for advanced functional studies of Drp1 in disease-relevant models.
Collapse
Affiliation(s)
- Theresa Froehlich
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Jenner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claudia Cavarischia-Rega
- Quantitative Proteomics, Department of Biology, Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Yannic Lurz
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Desiree I Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Stefan Nueske
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Armin M Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Erik Schäffer
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Boris Macek
- Quantitative Proteomics, Department of Biology, Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Tao Y, Ding X, Jia C, Wang C, Li C. Using protein turnover assay to explore the drug mechanism of Carfilzomib. Acta Biochim Biophys Sin (Shanghai) 2024; 57:209-222. [PMID: 38978505 PMCID: PMC11877146 DOI: 10.3724/abbs.2024104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024] Open
Abstract
Carfilzomib (CFZ) is the second-generation proteasome inhibitor that is approved by Food and Drug Administration (FDA) of USA for the treatment of relapsed and refractory multiple myeloma. Although the preclinical and clinical efficacy of CFZ is obvious, the mechanism by which CFZ leads to cell death has not been fully elucidated. Since CFZ primarily functions as a proteasome inhibitor, profiling CFZ-induced changes in protein turnover at the systematic level is sufficient and necessary. In this study, we characterize the effects of CFZ on the stability of 15,000 human proteins using Protein Turnover Assay (ProTA). CFZ affects fundamental cellular glycolysis, nitric oxide production and proteasome subunit homeostasis in multiple myeloma cells. In addition, LY294002 or KU-0063794 has synergistic effects with CFZ in multiple myeloma treatment. A profound understanding of how cells respond to chemotherapeutic agents provides insights into the basic mechanism of drug function and the rationale for CFZ combination therapy.
Collapse
Affiliation(s)
- Yonghui Tao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationKey Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina)the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xinyu Ding
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghai200433China
| | - Caiwei Jia
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | | | - Chuanyin Li
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationKey Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina)the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
4
|
Le Boulch M, Jacquet E, Nhiri N, Shmulevitz M, Jaïs PH. Rational design of an artificial tethered enzyme for non-templated post-transcriptional mRNA polyadenylation by the second generation of the C3P3 system. Sci Rep 2024; 14:5156. [PMID: 38431749 PMCID: PMC10908868 DOI: 10.1038/s41598-024-55947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
We have previously introduced the first generation of C3P3, an artificial system that allows the autonomous in-vivo production of mRNA with m7GpppN-cap. While C3P3-G1 synthesized much larger amounts of capped mRNA in human cells than conventional nuclear expression systems, it produced a proportionately much smaller amount of the corresponding proteins, indicating a clear defect of mRNA translatability. A possible mechanism for this poor translatability could be the rudimentary polyadenylation of the mRNA produced by the C3P3-G1 system. We therefore sought to develop the C3P3-G2 system using an artificial enzyme to post-transcriptionally lengthen the poly(A) tail. This system is based on the mutant mouse poly(A) polymerase alpha fused at its N terminus with an N peptide from the λ virus, which binds to BoxBr sequences placed in the 3'UTR region of the mRNA of interest. The resulting system selectively brings mPAPαm7 to the target mRNA to elongate its poly(A)-tail to a length of few hundred adenosine. Such elongation of the poly(A) tail leads to an increase in protein expression levels of about 2.5-3 times in cultured human cells compared to the C3P3-G1 system. Finally, the coding sequence of the tethered mutant poly(A) polymerase can be efficiently fused to that of the C3P3-G1 enzyme via an F2A sequence, thus constituting the single-ORF C3P3-G2 enzyme. These technical developments constitute an important milestone in improving the performance of the C3P3 system, paving the way for its applications in bioproduction and non-viral human gene therapy.
Collapse
Affiliation(s)
- Marine Le Boulch
- Eukarÿs SAS, Pépinière Genopole, 4 rue Pierre Fontaine, Genopole Entreprises Campus 3, 4 Rue Pierre Fontaine, 91000, Evry-Courcouronnes, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-Sur-Yvette, France
| | - Naïma Nhiri
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-Sur-Yvette, France
| | - Maya Shmulevitz
- Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, 6-142J Katz Group Centre for Pharmacy and Health Research, 114 Street NW, Edmonton, AB, T6G 2E1, Canada
| | - Philippe H Jaïs
- Eukarÿs SAS, Pépinière Genopole, 4 rue Pierre Fontaine, Genopole Entreprises Campus 3, 4 Rue Pierre Fontaine, 91000, Evry-Courcouronnes, France.
| |
Collapse
|
5
|
Moghadasi SA, Moraes SN, Harris RS. Cellular Assays for Dynamic Quantification of Deubiquitinase Activity and Inhibition. J Mol Biol 2023; 435:168316. [PMID: 37858708 DOI: 10.1016/j.jmb.2023.168316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Deubiquitinases (DUBs) are proteolytic enzymes that catalyze the removal of ubiquitin from protein substrates. The critical role of DUBs in regulating protein ubiquitination makes them attractive drug targets in oncology, neurodegenerative disease, and antiviral development. Biochemical assays for quantifying DUB activity have enabled characterization of substrate preferences and discovery of small molecule inhibitors. However, assessing the efficacy of these inhibitors in cellular contexts to support clinical drug development has been limited by a lack of tractable cell-based assays. To address this gap, we developed a two-color flow cytometry-based assay that allows for sensitive quantification of DUB activity and inhibition in living cells. The utility of this system was demonstrated by quantifying the potency of GRL0617 against the viral DUB SARS-CoV-2 PLpro, identifying potential GRL0617 resistance mutations, and performing structure-function analysis of the vOTU domain from the recently emerged Yezo virus. In addition, the system was optimized for cellular DUBs by modifying a GFP-targeting nanobody to recruit USP7 and USP28 to benchmark a panel of reported inhibitors and assess inhibition kinetics. Together, these results demonstrate the utility of these assays for studying DUB biology in a cellular context with potential to aid in inhibitor discovery and development.
Collapse
Affiliation(s)
- Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Sofia N Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
6
|
Eldeeb MA, Zhou W, Esmaili M, Elgohary AM, Wei H, Fahlman RP. N-degron-mediated degradation of the proteolytically activated form of PKC-theta kinase attenuates its pro-apoptotic function. Cell Signal 2023; 110:110830. [PMID: 37516395 DOI: 10.1016/j.cellsig.2023.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Cellular signalling cues lead to the initiation of apoptotic pathways and often result in the activation of caspases which in turn cause the generation of proteolytically generated protein fragments with new or altered functions. Mounting number of studies reveal that the activity of these proteolytically activated protein fragments can be counteracted via their selective degradation by the N-degron degradation pathways. Here, we investigate the proteolytically generated fragment of the PKC theta kinase, where we demonstrate the first report on the stability of this pro-apoptotic protein fragment. We have determined that the pro-apoptotic cleaved fragment of PKC-theta is unstable in cells because its N-terminal lysine targets it for proteasomal degradation via the N-degron degradation pathway and this degradation is inhibited by mutating the destabilizing N-termini, knockdown of the UBR1 and UBR2 E3 ligases. Tellingly, we demonstrate that the metabolic stabilization of the cleaved fragment of PKC-theta or inhibition of the N-degron degradation augments the apoptosis-inducing effect of staurosporine in Jurkat cells. Notably, we have unveiled that the cleaved fragment of PKC theta, per se, can induce apoptotic cell death in Jurkat T-cell leukemia. Our results expand the functional scope of mammalian N-degron degradation pathways, and support the notion that targeting N-degron degradation machinery may have promising therapeutic implications in cancer cells.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Wenbin Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alaa M Elgohary
- Biophysics department, Faculty of science, Cairo University, Egypt
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Zubrycka A, Dambire C, Dalle Carbonare L, Sharma G, Boeckx T, Swarup K, Sturrock CJ, Atkinson BS, Swarup R, Corbineau F, Oldham NJ, Holdsworth MJ. ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana. Nat Commun 2023; 14:4665. [PMID: 37537157 PMCID: PMC10400637 DOI: 10.1038/s41467-023-40366-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates remain untested or unknown. We demonstrate that ERFVIIs show non-autonomous activation of root hypoxia tolerance and are essential for root development and survival under oxygen limiting conditions in soil. We determine the combined effects of ERFVIIs in controlling gene expression and define genetic and environmental components required for proteasome-dependent oxygen-regulated stability of ERFVIIs through the PCO N-degron pathway. Using a plant extract, unexpected amino-terminal cysteine sulphonic acid oxidation level of ERFVIIs was observed, suggesting a requirement for additional enzymatic activity within the pathway. Our results provide a holistic understanding of the properties, functions and readouts of this oxygen-sensing mechanism defined through its role in modulating ERFVII stability.
Collapse
Affiliation(s)
- Agata Zubrycka
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Charlene Dambire
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Laura Dalle Carbonare
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
- Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
| | - Gunjan Sharma
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Tinne Boeckx
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Kamal Swarup
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Craig J Sturrock
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Brian S Atkinson
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Ranjan Swarup
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Françoise Corbineau
- UMR 7622 CNRS-UPMC, Biologie du développement, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Neil J Oldham
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
8
|
Kwon SC, Lee J, Kwon YT, Heo AJ. Monitoring the interactions between N-degrons and N-recognins of the Arg/N-degron pathway. Methods Enzymol 2023; 686:165-203. [PMID: 37532399 DOI: 10.1016/bs.mie.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
As defined by the N-degron pathway, single N-terminal (Nt) amino acids can function as N-degrons that induce the degradation of proteins and other biological materials. Central to this pathway is the selective recognition of N-degrons by cognate N-recognins that direct the substrates to either the ubiquitin (Ub)-proteasome system (UPS) or autophagy-lysosome pathway (ALP). Eukaryotic cells have developed diverse pathways to utilize all 20 amino acids in the genetic code as pro-N-degrons or N-degrons which can be generated through endoproteolytic cleavage or post-translational modifications. Amongst these, the arginine (Arg) N-degron plays a key role in both cis- and trans-degradation of a large spectrum of cellular materials by the proteasome or lysosome. In mammals, Arg/N-degrons can be generated through endoproteolytic cleavage or post-translational conjugation of the amino acid L-Arg by ATE1-encoded R-transferases (EC 2.3.2.8), which requires Arg-tRNAArg as a cofactor. Arg/N-degrons of short-lived substrates are recognized by a family of N-recognins characterized by the UBR box for polyubiquitination and proteasomal degradation. Under stresses, however, the same degrons can be recognized for autophagic degradation by the ZZ domain of the N-recognin p62/SQSTSM-1/Sequestosome-1 or KCMF1. Biochemical tools were developed to monitor the interaction of Arg/N-degrons with its cognate N-recognins. These assays were employed to identify new N-recognins and to characterize their biochemical properties and physiological functions. The principles of these assays may be applied for other types of N-degron pathways. Below, we describe the methods that analyze the interaction of Arg/N-degrons and their chemical mimics to N-recognins.
Collapse
Affiliation(s)
- Soon Chul Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jihoon Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea; AUTOTAC Bio Inc., Seoul, South Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea; AUTOTAC Bio Inc., Seoul, South Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, South Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, South Korea.
| | - Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
9
|
Smith E, Keeley TP. Monitoring ADO dependent proteolysis in cells using fluorescent reporter proteins. Methods Enzymol 2023. [PMID: 37532403 DOI: 10.1016/bs.mie.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
2-Aminoethanethiol dioxygenase (ADO) is the mammalian orthologue of the plant cysteine oxidases and together these enzymes are responsible for catalysing dioxygenation of N-terminal cysteine residues of certain proteins. This modification creates an N-degron motif that permits arginylation and subsequent proteasomal degradation of such proteins via the Arg-branch of the N-degron pathway. In humans 4 proteins have been identified as substrates of ADO; regulators of G-protein signalling (RGS) 4, 5 and 16, and interleukin-32 (IL-32). Nt-cysteine dioxygenation of these proteins occurs rapidly under normoxic conditions, but ADO activity is very sensitive to O2 availability and as such the stability of substrate proteins is inversely proportional to cellular O2 levels. Much is still to understand about the biochemistry and physiology of this pathway in vitro and in vivo, and Cys N-degron targeted fluorescent proteins can provide a simple and effective tool to study this at both subcellular and high-throughput scales. This chapter describes the design, production and implementation of a fluorescent fusion protein proteolytically regulated by ADO and the N-degron pathway.
Collapse
|
10
|
Kashina AS. Assaying ATE1 Activity in Yeast by β-Gal Degradation. Methods Mol Biol 2023; 2620:63-70. [PMID: 37010749 DOI: 10.1007/978-1-0716-2942-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
In the 1980s, it was found that addition of N-terminal Arg to proteins induces their ubiquitination and degradation by the N-end rule pathway. While this mechanism applies only to the proteins which also have other features of the N-degron (including a closely adjacent Lys that is accessible for ubiquitination), several test substrates have been found to follow this mechanism very efficiently after ATE1-dependent arginylation. Such property enabled researchers to test ATE1 activity in cells indirectly by assaying for the degradation of such arginylation-dependent substrates. The most commonly used substrate for this assay is E. coli beta-galactosidase (beta-Gal) because its level can be easily measured using standardized colorimetric assays. Here, we describe this method, which has served as a quick and easy way to characterize ATE1 activity during identification of arginyltransferases in different species.
Collapse
Affiliation(s)
- Anna S Kashina
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Böhm J, Winter N, Kozlic A, Telser T, Nehlin L, Bachmair A. Analysis of higher plant N-degron pathway components and substrates via expression in S. cerevisiae. Methods Enzymol 2023. [PMID: 37532401 DOI: 10.1016/bs.mie.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Heterologous expression of enzymes can generate a background-free environment that facilitates investigation of enzyme properties, for instance to focus on particular isoforms in case of gene families, or on individual splicing variants. If a proper host can be found, in vivo assays are often simpler than overexpression and purification, followed by in vitro measurements, would be. We expressed plant ubiquitin ligase PRT6 in the budding yeast Saccharomyces cerevisiae for studies on activity and substrate preferences. Expression of this large enzyme profits from the eukaryotic folding catalysis provided by budding yeast, and from the presence of endogenous ubiquitin activating enzyme. While yeast encodes a ubiquitin ligase, Ubr1, that is functionally related to PRT6, a strain with deletion of the UBR1 gene offers a background-free host. Two different substrates were analyzed. One was a model substate, and the other one a natural substrate fused to a reporter. Two different methods were compared for assessment of protein stability. A method based on internal standardization via tandem fluorescent timer measurement turned out to be complementary to standardization based on cell culture density.
Collapse
|
12
|
Spinner SAM, Barnes ZH, Puinean AM, Gray P, Dafa’alla T, Phillips CE, Nascimento de Souza C, Frazon TF, Ercit K, Collado A, Naish N, Sulston E, Ll. Phillips GC, Greene KK, Poletto M, Sperry BD, Warner SA, Rose NR, Frandsen GK, Verza NC, Gorman KJ, Matzen KJ. New self-sexing Aedes aegypti strain eliminates barriers to scalable and sustainable vector control for governments and communities in dengue-prone environments. Front Bioeng Biotechnol 2022; 10:975786. [PMID: 36394032 PMCID: PMC9650594 DOI: 10.3389/fbioe.2022.975786] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/22/2022] [Indexed: 10/20/2023] Open
Abstract
For more than 60 years, efforts to develop mating-based mosquito control technologies have largely failed to produce solutions that are both effective and scalable, keeping them out of reach of most governments and communities in disease-impacted regions globally. High pest suppression levels in trials have yet to fully translate into broad and effective Aedes aegypti control solutions. Two primary challenges to date-the need for complex sex-sorting to prevent female releases, and cumbersome processes for rearing and releasing male adult mosquitoes-present significant barriers for existing methods. As the host range of Aedes aegypti continues to advance into new geographies due to increasing globalisation and climate change, traditional chemical-based approaches are under mounting pressure from both more stringent regulatory processes and the ongoing development of insecticide resistance. It is no exaggeration to state that new tools, which are equal parts effective and scalable, are needed now more than ever. This paper describes the development and field evaluation of a new self-sexing strain of Aedes aegypti that has been designed to combine targeted vector suppression, operational simplicity, and cost-effectiveness for use in disease-prone regions. This conditional, self-limiting trait uses the sex-determination gene doublesex linked to the tetracycline-off genetic switch to cause complete female lethality in early larval development. With no female progeny survival, sex sorting is no longer required, eliminating the need for large-scale mosquito production facilities or physical sex-separation. In deployment operations, this translates to the ability to generate multiple generations of suppression for each mosquito released, while being entirely self-limiting. To evaluate these potential benefits, a field trial was carried out in densely-populated urban, dengue-prone neighbourhoods in Brazil, wherein the strain was able to suppress wild mosquito populations by up to 96%, demonstrating the utility of this self-sexing approach for biological vector control. In doing so, it has shown that such strains offer the critical components necessary to make these tools highly accessible, and thus they harbour the potential to transition mating-based approaches to effective and sustainable vector control tools that are within reach of governments and at-risk communities who may have only limited resources.
Collapse
Affiliation(s)
| | | | | | - Pam Gray
- Oxitec Ltd., Abingdon, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Natalia C. Verza
- Oxitec Ltd., Abingdon, United Kingdom
- Oxitec do Brasil, Campinas, Brazil
| | | | | |
Collapse
|
13
|
Bolgi O, Silva‐Garcia M, Ross B, Pilla E, Kari V, Killisch M, Spitzner M, Stark N, Lenz C, Weiss K, Donzelli L, Gorrell MD, Grade M, Riemer J, Urlaub H, Dobbelstein M, Huber R, Geiss‐Friedlander R. Dipeptidyl peptidase 9 triggers BRCA2 degradation and promotes DNA damage repair. EMBO Rep 2022; 23:e54136. [PMID: 35912982 PMCID: PMC9535758 DOI: 10.15252/embr.202154136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/30/2022] Open
Abstract
N-terminal sequences are important sites for post-translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N-terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor-suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N-terminal Met1-Pro2 of a BRCA21-40 peptide captured in its active site. Intriguingly, DPP9-depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double-strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N-terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9-deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine-tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9's role in cancer.
Collapse
Affiliation(s)
- Oguz Bolgi
- Institute of Molecular Medicine and Cell Research, Medical FacultyUniversity of FreiburgFreiburgGermany
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Maria Silva‐Garcia
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Breyan Ross
- Max Planck Institut für BiochemieMartinsriedGermany
- Proteros Biostructures GmbHMartinsriedGermany
| | - Esther Pilla
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Vijayalakshmi Kari
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGöttingenGermany
| | - Markus Killisch
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Melanie Spitzner
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGöttingenGermany
| | - Nadine Stark
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB)University Medical Center GöttingenGöttingenGermany
| | - Christof Lenz
- Bioanalytics, Institute of Clinical ChemistryUniversity Medical CenterGöttingenGermany
- Bioanalytical Mass Spectrometry GroupMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Konstantin Weiss
- Institute of Biochemistry, Redox Biochemistry, and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Laura Donzelli
- Institute of Molecular Medicine and Cell Research, Medical FacultyUniversity of FreiburgFreiburgGermany
| | - Mark D Gorrell
- Centenary InstituteThe University of Sydney Faculty of Medicine and HealthSydneyNSWAustralia
| | - Marian Grade
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GöttingenGöttingenGermany
| | - Jan Riemer
- Institute of Biochemistry, Redox Biochemistry, and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Henning Urlaub
- Bioanalytics, Institute of Clinical ChemistryUniversity Medical CenterGöttingenGermany
- Bioanalytical Mass Spectrometry GroupMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB)University Medical Center GöttingenGöttingenGermany
| | - Robert Huber
- Max Planck Institut für BiochemieMartinsriedGermany
- Zentrum für Medizinische BiotechnologieUniversität Duisburg‐EssenEssenGermany
- Fakultät für ChemieTechnische Universität MünchenGarchingGermany
| | - Ruth Geiss‐Friedlander
- Institute of Molecular Medicine and Cell Research, Medical FacultyUniversity of FreiburgFreiburgGermany
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
14
|
Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates. Proc Natl Acad Sci U S A 2022; 119:e2209597119. [PMID: 35878037 PMCID: PMC9351520 DOI: 10.1073/pnas.2209597119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
N-degron pathways are proteolytic systems that target proteins bearing N-terminal (Nt) degradation signals (degrons) called N-degrons. Nt-Arg of a protein is among Nt-residues that can be recognized as destabilizing ones by the Arg/N-degron pathway. A proteolytic cleavage of a protein can generate Arg at the N terminus of a resulting C-terminal (Ct) fragment either directly or after Nt-arginylation of that Ct-fragment by the Ate1 arginyl-tRNA-protein transferase (R-transferase), which uses Arg-tRNAArg as a cosubstrate. Ate1 can Nt-arginylate Nt-Asp, Nt-Glu, and oxidized Nt-Cys* (Cys-sulfinate or Cys-sulfonate) of proteins or short peptides. Ate1 genes of fungi, animals, and plants have been cloned decades ago, but a three-dimensional structure of Ate1 remained unknown. A detailed mechanism of arginylation is unknown as well. We describe here the crystal structure of the Ate1 R-transferase from the budding yeast Kluyveromyces lactis. The 58-kDa R-transferase comprises two domains that recognize, together, an acidic Nt-residue of an acceptor substrate, the Arg residue of Arg-tRNAArg, and a 3'-proximal segment of the tRNAArg moiety. The enzyme's active site is located, at least in part, between the two domains. In vitro and in vivo arginylation assays with site-directed Ate1 mutants that were suggested by structural results yielded inferences about specific binding sites of Ate1. We also analyzed the inhibition of Nt-arginylation activity of Ate1 by hemin (Fe3+-heme), and found that hemin induced the previously undescribed disulfide-mediated oligomerization of Ate1. Together, these results advance the understanding of R-transferase and the Arg/N-degron pathway.
Collapse
|
15
|
Smalley S, Hellmann H. Review: Exploring possible approaches using ubiquitylation and sumoylation pathways in modifying plant stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111275. [PMID: 35487671 DOI: 10.1016/j.plantsci.2022.111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin and similar proteins, such as SUMO, are utilized by plants to modify target proteins to rapidly change their stability and activity in cells. This review will provide an overview of these crucial protein interactions with a focus on ubiquitylation and sumoylation in plants and how they contribute to stress tolerance. The work will also explore possibilities to use these highly conserved pathways for novel approaches to generate more robust crop plants better fit to cope with abiotic and biotic stress situations.
Collapse
Affiliation(s)
- Samuel Smalley
- Washington State University, Pullman, WA 99164, United States
| | - Hanjo Hellmann
- Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
16
|
BAG6 prevents the aggregation of neurodegeneration-associated fragments of TDP43. iScience 2022; 25:104273. [PMID: 35542047 PMCID: PMC9079172 DOI: 10.1016/j.isci.2022.104273] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/23/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Neurodegeneration is associated with the aggregation of proteins bearing solvent-exposed hydrophobicity as a result of their misfolding and/or proteolytic cleavage. An understanding of the cellular protein quality control mechanisms which prevent protein aggregation is fundamental to understanding the etiology of neurodegeneration. By examining the metabolism of disease-linked C-terminal fragments of the TAR DNA-binding protein 43 (TDP43), we found that the Bcl-2 associated athanogene 6 (BAG6) functions as a sensor of proteolytic fragments bearing exposed hydrophobicity and prevents their intracellular aggregation. In addition, BAG6 facilitates the ubiquitylation of TDP43 fragments by recruiting the Ub-ligase, Ring finger protein 126 (RNF126). Authenticating its role in preventing aggregation, we found that TDP43 fragments form intracellular aggregates in the absence of BAG6. Finally, we found that BAG6 could interact with and solubilize additional neurodegeneration-associated proteolytic fragments. Therefore, BAG6 plays a general role in preventing intracellular aggregation associated with neurodegeneration. Proteolytic cleavage generates protein fragments bearing exposed hydrophobicity BAG6 maintains the solubility and directs the degradation of protein fragments BAG6 prevents intracellular aggregation associated with neurodegeneration
Collapse
|
17
|
Reavey CE, Walker AS, Joyce SP, Broom L, Willse A, Ercit K, Poletto M, Barnes ZH, Marubbi T, Troczka BJ, Treanor D, Beadle K, Granville B, de Mello V, Teal J, Sulston E, Ashton A, Akilan L, Naish N, Stevens O, Humphreys-Jones N, Warner SAJ, Spinner SAM, Rose NR, Head G, Morrison NI, Matzen KJ. Self-limiting fall armyworm: a new approach in development for sustainable crop protection and resistance management. BMC Biotechnol 2022; 22:5. [PMID: 35086540 PMCID: PMC8793274 DOI: 10.1186/s12896-022-00735-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The fall armyworm, Spodoptera frugiperda, is a significant and widespread pest of maize, sorghum, rice, and other economically important crops. Successful management of this caterpillar pest has historically relied upon application of synthetic insecticides and through cultivation of genetically engineered crops expressing insecticidal proteins (Bt crops). Fall armyworm has, however, developed resistance to both synthetic insecticides and Bt crops, which risks undermining the benefits delivered by these important crop protection tools. Previous modelling and empirical studies have demonstrated that releases of insecticide- or Bt-susceptible insects genetically modified to express conditional female mortality can both dilute insecticide resistance and suppress pest populations. RESULTS Here, we describe the first germline transformation of the fall armyworm and the development of a genetically engineered male-selecting self-limiting strain, OX5382G, which exhibits complete female mortality in the absence of an additive in the larval diet. Laboratory experiments showed that males of this strain are competitive against wild-type males for copulations with wild-type females, and that the OX5382G self-limiting transgene declines rapidly to extinction in closed populations following the cessation of OX5382G male releases. Population models simulating the release of OX5382G males in tandem with Bt crops and non-Bt 'refuge' crops show that OX5382G releases can suppress fall armyworm populations and delay the spread of resistance to insecticidal proteins. CONCLUSIONS This article describes the development of self-limiting fall armyworm designed to control this pest by suppressing pest populations, and population models that demonstrate its potential as a highly effective method of managing resistance to Bt crops in pest fall armyworm populations. Our results provide early promise for a potentially valuable future addition to integrated pest management strategies for fall armyworm and other pests for which resistance to existing crop protection measures results in damage to crops and impedes sustainable agriculture.
Collapse
Affiliation(s)
| | - Adam S Walker
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Stephen P Joyce
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Lucy Broom
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford, OX3 7DQ, UK
| | - Alan Willse
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Kyla Ercit
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Mattia Poletto
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Zoe H Barnes
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Thea Marubbi
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | | | - David Treanor
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Katherine Beadle
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Ben Granville
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Vanessa de Mello
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Joss Teal
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Edward Sulston
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Anna Ashton
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Luxziyah Akilan
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Neil Naish
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Oliver Stevens
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | | | - Simon A J Warner
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
- Oxford University Innovation, Buxton Court, 3 West Way, Oxford, OX2 0JB, UK
| | - Sian A M Spinner
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Nathan R Rose
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK.
| | - Graham Head
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Neil I Morrison
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Kelly J Matzen
- Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK.
| |
Collapse
|
18
|
Zou L, Li S, Li N, Ruan SL, Chen J, Wu J, Yan D, Chao HJ. The Protocatechuate 3,4-Dioxygenase Solubility (PCDS) Tag Enhances the Expression and Solubility of Heterogenous Proteins in Escherichia coli. Front Microbiol 2021; 12:779541. [PMID: 34912319 PMCID: PMC8667622 DOI: 10.3389/fmicb.2021.779541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has been developed as the most common host for recombinant protein expression. Unfortunately, there are still some proteins that are resistant to high levels of heterologous soluble expression in E. coli. Protein and peptide fusion tags are one of the most important methods for increasing target protein expression and seem to influence the expression efficiency and solubility as well. In this study, we identify a short 15-residue enhancing solubility peptide, the PCDS (protocatechuate 3,4-dioxygenase solubility) tag, which enhances heterologous protein expression in E. coli. This PCDS tag is a 45-bp long sequence encoding a peptide tag involved in the soluble expression of protocatechuate 3,4-dioxygenase, encoded by the pcaHG98 genes of Pseudomonas putida NCIMB 9866. The 45-bp sequence was also beneficial for pcaHG98 gene amplification. This tag was shown to be necessary for the heterologous soluble expression of PcaHG98 in E. coli. Purified His6-PcaHG98e04-PCDS exhibited an activity of 205.63±14.23U/mg against protocatechuate as a substrate, and this activity was not affected by a PCDS tag. This PCDS tag has been fused to the mammalian yellow fluorescent protein (YFP) to construct YFP-PCDS without its termination codons and YFPt-PCDS with. The total protein expressions of YFP-PCDS and YFPt-PCDS were significantly amplified up to 1.6-fold and 2-fold, respectively, compared to YFP alone. Accordingly, His6-YFP-PCDS and His6-YFPt-PCDS had 1.6-fold and 3-fold higher soluble protein yields, respectively, than His6-YFP expressed under the same conditions. His6-YFP, His6-YFP-PCDS, and His6-YFPt-PCDS also showed consistent fluorescence emission spectra, with a peak at 530nm over a scanning range from 400 to 700nm. These results indicated that the use of the PCDS tag is an effective way to improve heterologous protein expression in E. coli.
Collapse
Affiliation(s)
- Lei Zou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Sha Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Nan Li
- Daye Public Inspection and Test Centre, Huangshi, China
| | - Shi-Long Ruan
- Daye Public Inspection and Test Centre, Huangshi, China
| | - Jing Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jing Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Dazhong Yan
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Hong-Jun Chao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
19
|
Chrustowicz J, Sherpa D, Teyra J, Loke MS, Popowicz GM, Basquin J, Sattler M, Prabu JR, Sidhu SS, Schulman BA. Multifaceted N-Degron Recognition and Ubiquitylation by GID/CTLH E3 Ligases. J Mol Biol 2021; 434:167347. [PMID: 34767800 DOI: 10.1016/j.jmb.2021.167347] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
N-degron E3 ubiquitin ligases recognize specific residues at the N-termini of substrates. Although molecular details of N-degron recognition are known for several E3 ligases, the range of N-terminal motifs that can bind a given E3 substrate binding domain remains unclear. Here, we discovered capacity of Gid4 and Gid10 substrate receptor subunits of yeast "GID"/human "CTLH" multiprotein E3 ligases to tightly bind a wide range of N-terminal residues whose recognition is determined in part by the downstream sequence context. Screening of phage displaying peptide libraries with exposed N-termini identified novel consensus motifs with non-Pro N-terminal residues binding Gid4 or Gid10 with high affinity. Structural data reveal that conformations of flexible loops in Gid4 and Gid10 complement sequences and folds of interacting peptides. Together with analysis of endogenous substrate degrons, the data show that degron identity, substrate domains harboring targeted lysines, and varying E3 ligase higher-order assemblies combinatorially determine efficiency of ubiquitylation and degradation.
Collapse
Affiliation(s)
- Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. https://twitter.com/chrustowicz_j
| | - Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. https://twitter.com/dawafutisherpa
| | - Joan Teyra
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mun Siong Loke
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Grzegorz M Popowicz
- Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Germany
| | - Jerome Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Michael Sattler
- Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. https://twitter.com/rajanprabu
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
20
|
Portillo-Nava C, Guerrero-Esperanza M, Guerrero-Rangel A, Guevara-Domínguez P, Martínez-Gallardo N, Nava-Sandoval C, Ordaz-Ortiz J, Sánchez-Segura L, Délano-Frier J. Natural or light-induced pigment accumulation in grain amaranths coincides with enhanced resistance against insect herbivory. PLANTA 2021; 254:101. [PMID: 34669050 DOI: 10.1007/s00425-021-03757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION Increased resistance to insect herbivory in grain amaranth plants is associated with increased betalain pigmentation, either naturally acquired or accumulated in response to blue-red light irradiation. Betalains are water-soluble pigments characteristic of plants of the Caryophyllales order. Their abiotic stress-induced accumulation is believed to protect against oxidative damage, while their defensive function against biotic aggressors is scarce. A previous observation of induced betalain-biosynthetic gene expression in stressed grain amaranth plants led to the proposal that these pigments play a defensive role against insect herbivory. This study provided further support for this premise. First, a comparison of "green" and "red" Amaranthus cruentus phenotypes showed that the latter suffered less insect herbivory damage. Coincidentally, growth and vitality of Manduca sexta larvae were more severely affected when fed on red-leafed A. cruentus plants or on an artificial diet supplemented with red-leaf pigment extracts. Second, the exposure of A. cruentus and A. caudatus plants, having contrasting pigmentation phenotypes, to light enriched in the blue and red wavelength spectra led to pigment accumulation throughout the plant and to increased resistance to insect herbivory. These events were accompanied by the induced expression of known betalain-biosynthetic genes, including uncharacterized DODA genes believed to participate in this biosynthetic pathway in a still undefined way. Finally, transient co-expression of different combinations of betalain-biosynthetic genes in Nicotiana benthamiana led to detectable accumulation of betalamic acid and betanidin. This outcome supported the participation of certain AhDODA and other genes in the grain amaranth betalain-biosynthetic pathway.
Collapse
Affiliation(s)
- Claudia Portillo-Nava
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Moisés Guerrero-Esperanza
- Metabolomics Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Armando Guerrero-Rangel
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Paulina Guevara-Domínguez
- Metabolomics Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Norma Martínez-Gallardo
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Cecilia Nava-Sandoval
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala S/N,Col. Santo Tomás, CDMX, CP, 11340, Alcaldía Miguel Hidalgo, México
| | - José Ordaz-Ortiz
- Metabolomics Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad de Genómica Avanzada, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - Lino Sánchez-Segura
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México
| | - John Délano-Frier
- Department of Biotechnology and Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Kilómetro 9.6 Libramiento Norte Carretera Irapuato-León, CP, 36821, Irapuato, Guanajuato, México.
| |
Collapse
|
21
|
Stevens LM, Kim G, Koromila T, Steele JW, McGehee J, Stathopoulos A, Stein DS. Light-dependent N-end rule-mediated disruption of protein function in Saccharomyces cerevisiae and Drosophila melanogaster. PLoS Genet 2021; 17:e1009544. [PMID: 33999957 PMCID: PMC8158876 DOI: 10.1371/journal.pgen.1009544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/27/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Here we describe the development and characterization of the photo-N-degron, a peptide tag that can be used in optogenetic studies of protein function in vivo. The photo-N-degron can be expressed as a genetic fusion to the amino termini of other proteins, where it undergoes a blue light-dependent conformational change that exposes a signal for the class of ubiquitin ligases, the N-recognins, which mediate the N-end rule mechanism of proteasomal degradation. We demonstrate that the photo-N-degron can be used to direct light-mediated degradation of proteins in Saccharomyces cerevisiae and Drosophila melanogaster with fine temporal control. In addition, we compare the effectiveness of the photo-N-degron with that of two other light-dependent degrons that have been developed in their abilities to mediate the loss of function of Cactus, a component of the dorsal-ventral patterning system in the Drosophila embryo. We find that like the photo-N-degron, the blue light-inducible degradation (B-LID) domain, a light-activated degron that must be placed at the carboxy terminus of targeted proteins, is also effective in eliciting light-dependent loss of Cactus function, as determined by embryonic dorsal-ventral patterning phenotypes. In contrast, another previously described photosensitive degron (psd), which also must be located at the carboxy terminus of associated proteins, has little effect on Cactus-dependent phenotypes in response to illumination of developing embryos. These and other observations indicate that care must be taken in the selection and application of light-dependent and other inducible degrons for use in studies of protein function in vivo, but importantly demonstrate that N- and C-terminal fusions to the photo-N-degron and the B-LID domain, respectively, support light-dependent degradation in vivo. Much of what we know about biological processes has come from the analysis of mutants whose loss-of-function phenotypes provide insight into their normal functions. However, for genes that are required for viability and which have multiple functions in the life of a cell or organism one can only observe mutant phenotypes produced up to the time of death. Normal functions performed in wild-type individuals later than the time of death of mutants cannot be observed. In one approach to overcoming this limitation, a class of peptide degradation signals (degrons) have been developed, which when fused to proteins-of-interest, can target those proteins for degradation in response to various stimuli (temperature, chemical agents, co-expressed proteins, or light). Here we describe a new inducible degron (the photo-N-degron or PND), which when fused to the N-terminus of a protein, can induce N-end rule-mediated degradation in response to blue-light illumination and have validated its use in both yeast and Drosophila embryos. Moreover, using the Drosophila embryonic patterning protein Cactus, we show that like the PND, the previously-described B-LID domain, but not the previously-described photosensitive degron (psd), can produce detectable light-inducible phenotypes in Drosophila embryos that are consistent with the role of Cactus in dorsal-ventral patterning.
Collapse
Affiliation(s)
- Leslie M. Stevens
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Goheun Kim
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Theodora Koromila
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - John W. Steele
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - James McGehee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AS); (DSS)
| | - David S. Stein
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (AS); (DSS)
| |
Collapse
|
22
|
Soetens E, Ballegeer M, Saelens X. An Inside Job: Applications of Intracellular Single Domain Antibodies. Biomolecules 2020; 10:biom10121663. [PMID: 33322697 PMCID: PMC7764588 DOI: 10.3390/biom10121663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Sera of camelid species contain a special kind of antibody that consists only of heavy chains. The variable antigen binding domain of these heavy chain antibodies can be expressed as a separate entity, called a single domain antibody that is characterized by its small size, high solubility and oftentimes exceptional stability. Because of this, most single domain antibodies fold correctly when expressed in the reducing environment of the cytoplasm, and thereby retain their antigen binding specificity. Single domain antibodies can thus be used to target a broad range of intracellular proteins. Such intracellular single domain antibodies are also known as intrabodies, and have proven to be highly useful tools for basic research by allowing visualization, disruption and even targeted degradation of intracellular proteins. Furthermore, intrabodies can be used to uncover prospective new therapeutic targets and have the potential to be applied in therapeutic settings in the future. In this review we provide a brief overview of recent advances in the field of intracellular single domain antibodies, focusing on their use as research tools and potential therapeutic applications. Special attention is given to the available methods that allow delivery of single domain antibodies into cells.
Collapse
Affiliation(s)
- Eline Soetens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
23
|
Traenkle B, Segan S, Fagbadebo FO, Kaiser PD, Rothbauer U. A novel epitope tagging system to visualize and monitor antigens in live cells with chromobodies. Sci Rep 2020; 10:14267. [PMID: 32868807 PMCID: PMC7459311 DOI: 10.1038/s41598-020-71091-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 11/09/2022] Open
Abstract
Epitope tagging is a versatile approach to study different proteins using a well-defined and established methodology. To date, most epitope tags such as myc, HA, V5 and FLAG tags are recognized by antibodies, which limits their use to fixed cells, tissues or protein samples. Here we introduce a broadly applicable tagging strategy utilizing a short peptide tag (PepTag) which is specifically recognized by a nanobody (PepNB). We demonstrated that the PepNB can be easily functionalized for immunoprecipitation or direct immunofluorescence staining of Pep-tagged proteins in vitro. For in cellulo studies we converted the PepNB into a fluorescently labeled Pep-chromobody (PepCB) which is functionally expressed in living cells. The addition of the small PepTag does not interfere with the examined structures in different cellular compartments and its detection with the PepCB enables optical antigen tracing in real time. By employing the phenomenon of antigen-mediated chromobody stabilization (AMCBS) using a turnover-accelerated PepCB we demonstrated that the system is suitable to visualize and quantify changes in Pep-tagged antigen concentration by quantitative live-cell imaging. We expect that this novel tagging strategy offers new opportunities to study the dynamic regulation of proteins, e.g. during cellular signaling, cell differentiation, or upon drug action.
Collapse
Affiliation(s)
- Bjoern Traenkle
- Pharmaceutical Biotechnology, Eberhard Karls University, Tuebingen, Germany.,Natural and Medical Sciences Institute, University of Tuebingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Sören Segan
- Natural and Medical Sciences Institute, University of Tuebingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | | | - Philipp D Kaiser
- Natural and Medical Sciences Institute, University of Tuebingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University, Tuebingen, Germany. .,Natural and Medical Sciences Institute, University of Tuebingen, Markwiesenstr. 55, 72770, Reutlingen, Germany.
| |
Collapse
|
24
|
Vu TTM, Varshavsky A. The ATF3 Transcription Factor Is a Short-Lived Substrate of the Arg/N-Degron Pathway. Biochemistry 2020; 59:2796-2812. [PMID: 32692156 DOI: 10.1021/acs.biochem.0c00514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Arg/N-degron pathway targets proteins for degradation by recognizing their specific N-terminal residues or, alternatively, their non-N-terminal degrons. In mammals, this pathway is mediated by the UBR1, UBR2, UBR4, and UBR5 E3 ubiquitin ligases, and by the p62 regulator of autophagy. UBR1 and UBR2 are sequelogous, functionally overlapping, and dominate the targeting of Arg/N-degron substrates in examined cell lines. We constructed, here, mouse strains in which the double mutant [UBR1-/- UBR2-/-] genotype can be induced conditionally, in adult mice. We also constructed human [UBR1-/- UBR2-/-] HEK293T cell lines that unconditionally lack UBR1/UBR2. ATF3 is a basic leucine zipper transcription factor that regulates hundreds of genes and can act as either a repressor or an activator of transcription. Using the above double-mutant mice and human cells, we found that the levels of endogenous, untagged ATF3 were significantly higher in both of these [UBR1-/- UBR2-/-] settings than in wild-type cells. We also show, through chase-degradation assays with [UBR1-/- UBR2-/-] and wild-type human cells, that the Arg/N-degron pathway mediates a large fraction of ATF3 degradation. Furthermore, we used split-ubiquitin and another protein interaction assay to detect the binding of ATF3 to both UBR1 and UBR2, in agreement with the UBR1/UBR2-mediated degradation of endogenous ATF3. Full-length 24 kDa ATF3 binds to ∼100 kDa fragments of 200 kDa UBR1 and UBR2 but does not bind (in the setting of interaction assays) to full-length UBR1/UBR2. These and other binding patterns, whose mechanics remain to be understood, may signify a conditional (regulated) degradation of ATF3 by the Arg/N-degron pathway.
Collapse
Affiliation(s)
- Tri T M Vu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
25
|
Dong C, Chen SJ, Melnykov A, Weirich S, Sun K, Jeltsch A, Varshavsky A, Min J. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2020; 117:14158-14167. [PMID: 32513738 PMCID: PMC7322002 DOI: 10.1073/pnas.2007085117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic N-degron pathways are proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal (Nt) degradation signals called N-degrons, and to target these proteins for degradation by the 26S proteasome or autophagy. GID4, a subunit of the GID ubiquitin ligase, is the main recognition component of the proline (Pro)/N-degron pathway. GID4 targets proteins through their Nt-Pro residue or a Pro at position 2, in the presence of specific downstream sequence motifs. Here we show that human GID4 can also recognize hydrophobic Nt-residues other than Pro. One example is the sequence Nt-IGLW, bearing Nt-Ile. Nt-IGLW binds to wild-type human GID4 with a Kd of 16 μM, whereas the otherwise identical Nt-Pro-bearing sequence PGLW binds to GID4 more tightly, with a Kd of 1.9 μM. Despite this difference in affinities of GID4 for Nt-IGLW vs. Nt-PGLW, we found that the GID4-mediated Pro/N-degron pathway of the yeast Saccharomyces cerevisiae can target an Nt-IGLW-bearing protein for rapid degradation. We solved crystal structures of human GID4 bound to a peptide bearing Nt-Ile or Nt-Val. We also altered specific residues of human GID4 and measured the affinities of resulting mutant GID4s for Nt-IGLW and Nt-PGLW, thereby determining relative contributions of specific GID4 residues to the GID4-mediated recognition of Nt-Pro vs. Nt-residues other than Pro. These and related results advance the understanding of targeting by the Pro/N-degron pathway and greatly expand the substrate recognition range of the GID ubiquitin ligase in both human and yeast cells.
Collapse
Affiliation(s)
- Cheng Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Kelly Sun
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
| | - Jinrong Min
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, People's Republic of China
| |
Collapse
|
26
|
Leboeuf D, Pyatkov M, Zatsepin TS, Piatkov K. The Arg/N-Degron Pathway-A Potential Running Back in Fine-Tuning the Inflammatory Response? Biomolecules 2020; 10:biom10060903. [PMID: 32545869 PMCID: PMC7356051 DOI: 10.3390/biom10060903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Recognition of danger signals by a cell initiates a powerful cascade of events generally leading to inflammation. Inflammatory caspases and several other proteases become activated and subsequently cleave their target proinflammatory mediators. The irreversible nature of this process implies that the newly generated proinflammatory fragments need to be sequestered, inhibited, or degraded in order to cancel the proinflammatory program or prevent chronic inflammation. The Arg/N-degron pathway is a ubiquitin-dependent proteolytic pathway that specifically degrades protein fragments bearing N-degrons, or destabilizing residues, which are recognized by the E3 ligases of the pathway. Here, we report that the Arg/N-degron pathway selectively degrades a number of proinflammatory fragments, including some activated inflammatory caspases, contributing in tuning inflammatory processes. Partial ablation of the Arg/N-degron pathway greatly increases IL-1β secretion, indicating the importance of this ubiquitous pathway in the initiation and resolution of inflammation. Thus, we propose a model wherein the Arg/N-degron pathway participates in the control of inflammation in two ways: in the generation of inflammatory signals by the degradation of inhibitory anti-inflammatory domains and as an “off switch” for inflammatory responses through the selective degradation of proinflammatory fragments.
Collapse
Affiliation(s)
- Dominique Leboeuf
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (D.L.); (T.S.Z.)
| | - Maxim Pyatkov
- Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia;
| | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (D.L.); (T.S.Z.)
| | - Konstantin Piatkov
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (D.L.); (T.S.Z.)
- Correspondence:
| |
Collapse
|
27
|
Chen RP, Gaynor AS, Chen W. Synthetic biology approaches for targeted protein degradation. Biotechnol Adv 2019; 37:107446. [DOI: 10.1016/j.biotechadv.2019.107446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
|
28
|
Rageul J, Park JJ, Jo U, Weinheimer AS, Vu TTM, Kim H. Conditional degradation of SDE2 by the Arg/N-End rule pathway regulates stress response at replication forks. Nucleic Acids Res 2019; 47:3996-4010. [PMID: 30698750 PMCID: PMC6486553 DOI: 10.1093/nar/gkz054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple pathways counteract DNA replication stress to prevent genomic instability and tumorigenesis. The recently identified human SDE2 is a genome surveillance protein regulated by PCNA, a DNA clamp and processivity factor at replication forks. Here, we show that SDE2 cleavage after its ubiquitin-like domain generates Lys-SDE2Ct, the C-terminal SDE2 fragment bearing an N-terminal Lys residue. Lys-SDE2Ct constitutes a short-lived physiological substrate of the Arg/N-end rule proteolytic pathway, in which UBR1 and UBR2 ubiquitin ligases mediate the degradation. The Arg/N-end rule and VCP/p97UFD1-NPL4 segregase cooperate to promote phosphorylation-dependent, chromatin-associated Lys-SDE2Ct degradation upon UVC damage. Conversely, cells expressing the degradation-refractory K78V mutant, Val-SDE2Ct, fail to induce RPA phosphorylation and single-stranded DNA formation, leading to defects in PCNA-dependent DNA damage bypass and stalled fork recovery. Together, our study elucidates a previously unappreciated axis connecting the Arg/N-end rule and the p97-mediated proteolysis with the replication stress response, working together to preserve replication fork integrity.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jennifer J Park
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ukhyun Jo
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alexandra S Weinheimer
- Biochemistry and Structural Biology graduate program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tri T M Vu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.,Stony Brook Cancer Center, Stony Brook School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
29
|
Kim K, Dauphin A, Komurlu S, McCauley SM, Yurkovetskiy L, Carbone C, Diehl WE, Strambio-De-Castillia C, Campbell EM, Luban J. Cyclophilin A protects HIV-1 from restriction by human TRIM5α. Nat Microbiol 2019; 4:2044-2051. [PMID: 31636416 PMCID: PMC6879858 DOI: 10.1038/s41564-019-0592-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022]
Abstract
The HIV-1 capsid (CA) protein lattice encases viral genomic RNA and regulates steps essential to target cell invasion1. Cyclophilin A (CypA) has interacted with the CA of lentiviruses related to HIV-1 for millions of years2–7. Disruption of the CA-CypA interaction decreases HIV-1 infectivity in human cells8–12, but stimulates infectivity in non-human primate cells13–15. Genetic and biochemical data suggest that CypA protects HIV-1 from a CA-specific restriction factor in human cells16–20. Discovery of the CA-specific restriction factor tripartite-containing motif 5α (TRIM5α)21, and of multiple, independently-derived, TRIM5-CypA fusion genes4,5,15,22–26, pointed to human TRIM5α as the CypA-sensitive restriction factor. However, HIV-1 restriction by human TRIM5α in tumor cell lines is minimal21, and inhibition of such activity by CypA has not been detected27. Here, exploiting reverse genetic tools optimized for primary human blood cells, we demonstrate that disruption of the CA-CypA interaction renders HIV-1 susceptible to potent restriction by human TRIM5α, with the block occurring before reverse transcription. Endogenous TRIM5α associated with virion cores as they entered the cytoplasm, but only when the CA-CypA interaction was disrupted. These experiments resolve the long-standing mystery of the role of CypA in HIV-1 replication by demonstrating that this ubiquitous cellular protein shields HIV-1 from previously inapparent restriction by human TRIM5α.
Collapse
Affiliation(s)
- Kyusik Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sevnur Komurlu
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Sean M McCauley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - William E Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Infectious Disease and Immunology Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
30
|
Eldeeb MA, Siva-Piragasam R, Ragheb MA, Esmaili M, Salla M, Fahlman RP. A molecular toolbox for studying protein degradation in mammalian cells. J Neurochem 2019; 151:520-533. [PMID: 31357232 DOI: 10.1111/jnc.14838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022]
Abstract
Protein degradation is a crucial regulatory process in maintaining cellular proteostasis. The selective degradation of intracellular proteins controls diverse cellular and biochemical processes in all kingdoms of life. Targeted protein degradation is implicated in controlling the levels of regulatory proteins as well as eliminating misfolded and any otherwise abnormal proteins. Deregulation of protein degradation is concomitant with the progression of various neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Thus, methods of measuring metabolic half-lives of proteins greatly influence our understanding of the diverse functions of proteins in mammalian cells including neuronal cells. Historically, protein degradation rates have been studied via exploiting methods that estimate overall protein degradation or focus on few individual proteins. Notably, with the recent technical advances and developments in proteomic and imaging techniques, it is now possible to measure degradation rates of a large repertoire of defined proteins and analyze the degradation profile in a detailed spatio-temporal manner, with the aim of determining proteome-wide protein stabilities upon different physiological conditions. Herein, we discuss some of the classical and novel methods for determining protein degradation rates highlighting the crucial role of some state of art approaches in deciphering the global impact of dynamic nature of targeted degradation of cellular proteins. This article is part of the Special Issue "Proteomics".
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mohamed Salla
- Department of Biological Sciences, Lebanese International University, Bekaa, Lebanon
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Ji CH, Kim HY, Heo AJ, Lee SH, Lee MJ, Kim SB, Srinivasrao G, Mun SR, Cha-Molstad H, Ciechanover A, Choi CY, Lee HG, Kim BY, Kwon YT. The N-Degron Pathway Mediates ER-phagy. Mol Cell 2019; 75:1058-1072.e9. [PMID: 31375263 DOI: 10.1016/j.molcel.2019.06.028] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/04/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022]
Abstract
The endoplasmic reticulum (ER) is susceptible to wear-and-tear and proteotoxic stress, necessitating its turnover. Here, we show that the N-degron pathway mediates ER-phagy. This autophagic degradation initiates when the transmembrane E3 ligase TRIM13 (also known as RFP2) is ubiquitinated via the lysine 63 (K63) linkage. K63-ubiquitinated TRIM13 recruits p62 (also known as sequestosome-1), whose complex undergoes oligomerization. The oligomerization is induced when the ZZ domain of p62 is bound by the N-terminal arginine (Nt-Arg) of arginylated substrates. Upon activation by the Nt-Arg, oligomerized TRIM13-p62 complexes are separated along with the ER compartments and targeted to autophagosomes, leading to lysosomal degradation. When protein aggregates accumulate within the ER lumen, degradation-resistant autophagic cargoes are co-segregated by ER membranes for lysosomal degradation. We developed synthetic ligands to the p62 ZZ domain that enhance ER-phagy for ER protein quality control and alleviate ER stresses. Our results elucidate the biochemical mechanisms and pharmaceutical means that regulate ER homeostasis.
Collapse
Affiliation(s)
- Chang Hoon Ji
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Hee Yeon Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea; AUTOTAC, Changkkyunggung-ro 254, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Ah Jung Heo
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Su Hyun Lee
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Min Ju Lee
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Su Bin Kim
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Ganipisetti Srinivasrao
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea; AUTOTAC, Changkkyunggung-ro 254, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Su Ran Mun
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Hyunjoo Cha-Molstad
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea
| | - Aaron Ciechanover
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea; Technion Integrated Cancer Center, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
| | - Bo Yeon Kim
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon 28116, Republic of Korea.
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea; Protech, Yongeon 103 Daehangno, Jongno-gu, Seoul 110-799, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea.
| |
Collapse
|
32
|
Abstract
The ubiquitin proteasome system (UPS) degrades individual proteins in a highly regulated fashion and is responsible for the degradation of misfolded, damaged, or unneeded cellular proteins. During the past 20 years, investigators have established a critical role for the UPS in essentially every cellular process, including cell cycle progression, transcriptional regulation, genome integrity, apoptosis, immune responses, and neuronal plasticity. At the center of the UPS is the proteasome, a large and complex molecular machine containing a multicatalytic protease complex. When the efficiency of this proteostasis system is perturbed, misfolded and damaged protein aggregates can accumulate to toxic levels and cause neuronal dysfunction, which may underlie many neurodegenerative diseases. In addition, many cancers rely on robust proteasome activity for degrading tumor suppressors and cell cycle checkpoint inhibitors necessary for rapid cell division. Thus, proteasome inhibitors have proven clinically useful to treat some types of cancer, especially multiple myeloma. Numerous cellular processes rely on finely tuned proteasome function, making it a crucial target for future therapeutic intervention in many diseases, including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes, and cancer. In this review, we discuss the structure and function of the proteasome, the mechanisms of action of different proteasome inhibitors, various techniques to evaluate proteasome function in vitro and in vivo, proteasome inhibitors in preclinical and clinical development, and the feasibility for pharmacological activation of the proteasome to potentially treat neurodegenerative disease.
Collapse
Affiliation(s)
- Tiffany A Thibaudeau
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - David M Smith
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
33
|
Abstract
This perspective is partly review and partly proposal. N-degrons and C-degrons are degradation signals whose main determinants are, respectively, the N-terminal and C-terminal residues of cellular proteins. N-degrons and C-degrons include, to varying extents, adjoining sequence motifs, and also internal lysine residues that function as polyubiquitylation sites. Discovered in 1986, N-degrons were the first degradation signals in short-lived proteins. A particularly large set of C-degrons was discovered in 2018. We describe multifunctional proteolytic systems that target N-degrons and C-degrons. We also propose to denote these systems as "N-degron pathways" and "C-degron pathways." The former notation replaces the earlier name "N-end rule pathways." The term "N-end rule" was introduced 33 years ago, when only some N-terminal residues were thought to be destabilizing. However, studies over the last three decades have shown that all 20 amino acids of the genetic code can act, in cognate sequence contexts, as destabilizing N-terminal residues. Advantages of the proposed terms include their brevity and semantic uniformity for N-degrons and C-degrons. In addition to being topologically analogous, N-degrons and C-degrons are related functionally. A proteolytic cleavage of a subunit in a multisubunit complex can create, at the same time, an N-degron (in a C-terminal fragment) and a spatially adjacent C-degron (in an N-terminal fragment). Consequently, both fragments of a subunit can be selectively destroyed through attacks by the N-degron and C-degron pathways.
Collapse
|
34
|
A Strategy to Optimize the Generation of Stable Chromobody Cell Lines for Visualization and Quantification of Endogenous Proteins in Living Cells. Antibodies (Basel) 2019; 8:antib8010010. [PMID: 31544816 PMCID: PMC6640688 DOI: 10.3390/antib8010010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Single-domain antibodies have emerged as highly versatile nanoprobes for advanced cellular imaging. For real-time visualization of endogenous antigens, fluorescently labelled nanobodies (chromobodies, CBs) are introduced as DNA-encoded expression constructs in living cells. Commonly, CB expression is driven from strong, constitutively active promoters. However, high expression levels are sometimes accompanied by misfolding and aggregation of those intracellular nanoprobes. Moreover, stable cell lines derived from random genomic insertion of CB-encoding transgenes bear the risk of disturbed cellular processes and inhomogeneous CB signal intensities due to gene positioning effects and epigenetic silencing. In this study we propose a strategy to generate optimized CB expressing cell lines. We demonstrate that expression as ubiquitin fusion increases the fraction of intracellularly functional CBs and identified the elongation factor 1α (EF1-α) promoter as highly suited for constitutive CB expression upon long-term cell line cultivation. Finally, we applied a CRISPR/Cas9-based gene editing approach for targeted insertion of CB expression constructs into the adeno-associated virus integration site 1 (AAVS1) safe harbour locus of human cells. Our results indicate that this combinatorial approach facilitates the generation of fully functional and stable CB cell lines for quantitative live-cell imaging of endogenous antigens.
Collapse
|
35
|
Tian M, Zeng T, Liu M, Han S, Lin H, Lin Q, Li L, Jiang T, Li G, Lin H, Zhang T, Kang Q, Deng X, Wang HR. A cell-based high-throughput screening method based on a ubiquitin-reference technique for identifying modulators of E3 ligases. J Biol Chem 2018; 294:2880-2891. [PMID: 30587574 DOI: 10.1074/jbc.ra118.003822] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/11/2018] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that a wide range of E3 ubiquitin ligases are involved in the development of many human diseases. Searching for small-molecule modulators of these E3 ubiquitin ligases is emerging as a promising drug discovery strategy. Here, we report the development of a cell-based high-throughput screening method to identify modulators of E3 ubiquitin ligases by integrating the ubiquitin-reference technique (URT), based on a fusion protein of ubiquitin located between a protein of interest and a reference protein moiety, with a Dual-Luciferase system. Using this method, we screened for small-molecule modulators of SMAD ubiquitin regulatory factor 1 (SMURF1), which belongs to the NEDD4 family of E3 ubiquitin ligases and is an attractive therapeutic target because of its roles in tumorigenesis. Using RAS homolog family member B (RHOB) as a SMURF1 substrate in this screen, we identified a potent SMURF1 inhibitor and confirmed that it also blocks SMURF1-dependent degradation of SMAD family member 1 (SMAD1) and RHOA. An in vitro auto-ubiquitination assay indicated that this compound inhibits both SMURF1 and SMURF2 activities, indicating that it may be an antagonist of the catalytic activity of the HECT domain in SMURF1/2. Moreover, cell functional assays revealed that this compound effectively inhibits protrusive activity in HEK293T cells and blocks transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) in MDCK cells, similar to the effects on these processes caused by SMURF1 loss. In summary, the screening approach presented here may have great practical potential for identifying modulators of E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Maoyuan Tian
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Taoling Zeng
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Mingdong Liu
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Shang Han
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Huayue Lin
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Qi Lin
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Li Li
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Tingting Jiang
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Gao Li
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Hong Lin
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Ting Zhang
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Qiaofeng Kang
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Xianming Deng
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Hong-Rui Wang
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| |
Collapse
|
36
|
Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Where in the Cell Is our Cargo? Methods Currently Used To Study Intracellular Cytosolic Localisation. Chembiochem 2018; 20:488-498. [PMID: 30178574 DOI: 10.1002/cbic.201800390] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Indexed: 12/14/2022]
Abstract
The internalisation and delivery of active substances into cells is a field of growing interest for chemical biology and therapeutics. As we move from small-molecule-based drugs towards bigger cargos, such as antibodies, enzymes, nucleases or nucleic acids, the development of efficient delivery systems becomes critical for their practical application. Different strategies and synthetic carriers have been developed; these include cationic lipids, gold nanoparticles, polymers, cell-penetrating peptides (CPPs), protein surface modification etc. However, all of these methodologies still present limitations relating to the precise targeting of the different intracellular compartments and, in particular, difficulties in access to the cellular cytosol. Additionally, the precise quantification of the cellular uptake of a compound is not enough to demonstrate delivery and/or functional activity. Therefore, methods to determine cellular distributions of cargos and carriers are of critical importance for identifying the barriers that are blocking the activity. Herein we survey the different techniques that can currently be used to track and to monitor the subcellular localisation of the synthetic compounds that we deliver inside cells.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
37
|
Keller BM, Maier J, Secker KA, Egetemaier SM, Parfyonova Y, Rothbauer U, Traenkle B. Chromobodies to Quantify Changes of Endogenous Protein Concentration in Living Cells. Mol Cell Proteomics 2018; 17:2518-2533. [PMID: 30228193 DOI: 10.1074/mcp.tir118.000914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/04/2018] [Indexed: 11/06/2022] Open
Abstract
Understanding cellular processes requires the determination of dynamic changes in the concentration of genetically nonmodified, endogenous proteins, which, to date, is commonly accomplished by end-point assays in vitro Molecular probes such as fluorescently labeled nanobodies (chromobodies, CBs) are powerful tools to visualize the dynamic subcellular localization of endogenous proteins in living cells. Here, we employed the dependence of intracellular levels of chromobodies on the amount of their endogenous antigens, a phenomenon, which we termed antigen-mediated CB stabilization (AMCBS), for simultaneous monitoring of time-resolved changes in the concentration and localization of native proteins. To improve the dynamic range of AMCBS we generated turnover-accelerated CBs and demonstrated their application in visualization and quantification of fast reversible changes in antigen concentration upon compound treatment by quantitative live-cell imaging. We expect that this broadly applicable strategy will enable unprecedented insights into the dynamic regulation of proteins, e.g. during cellular signaling, cell differentiation, or upon drug action.
Collapse
Affiliation(s)
| | - Julia Maier
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Germany
| | - Kathy-Ann Secker
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Germany
| | | | - Yana Parfyonova
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Germany; Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany.
| | - Bjoern Traenkle
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Germany.
| |
Collapse
|
38
|
The N Termini of TAR DNA-Binding Protein 43 (TDP43) C-Terminal Fragments Influence Degradation, Aggregation Propensity, and Morphology. Mol Cell Biol 2018; 38:MCB.00243-18. [PMID: 29987190 PMCID: PMC6146831 DOI: 10.1128/mcb.00243-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023] Open
Abstract
Fragments of the TAR DNA-binding protein 43 (TDP43) are major components of intracellular aggregates associated with amyotrophic lateral sclerosis and frontotemporal dementia. A variety of C-terminal fragments (CTFs) exist, with distinct N termini; however, little is known regarding their differences in metabolism and aggregation dynamics. Fragments of the TAR DNA-binding protein 43 (TDP43) are major components of intracellular aggregates associated with amyotrophic lateral sclerosis and frontotemporal dementia. A variety of C-terminal fragments (CTFs) exist, with distinct N termini; however, little is known regarding their differences in metabolism and aggregation dynamics. Previously, we found that specific CTFs accumulate in the absence of the Arg/N-end rule pathway of the ubiquitin proteasome system (UPS) and that their degradation requires arginyl-tRNA protein transferase 1 (ATE1). Here, we examined two specific CTFs of TDP43 (TDP43219 and TDP43247), which are ∼85% identical and differ at their N termini by 28 amino acids. We found that TDP43247 is degraded primarily by the Arg/N-end rule pathway, whereas degradation of TDP43219 continues in the absence of ATE1. These fragments also differ in their aggregation propensities and form morphologically distinct aggregates. This work reveals that the N termini of otherwise similar CTFs have profound effects on fragment behavior and may influence clinical outcomes in neurodegeneration associated with aggregation.
Collapse
|
39
|
Paliga D, Raudzus F, Leppla SH, Heumann R, Neumann S. Lethal Factor Domain-Mediated Delivery of Nurr1 Transcription Factor Enhances Tyrosine Hydroxylase Activity and Protects from Neurotoxin-Induced Degeneration of Dopaminergic Cells. Mol Neurobiol 2018; 56:3393-3403. [PMID: 30121937 PMCID: PMC6476859 DOI: 10.1007/s12035-018-1311-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022]
Abstract
The orphan transcription factor nuclear receptor-related 1 protein (Nurr1, also known as NR4A2) plays a key role in embryonic development and maintenance of mesencephalic dopaminergic neurons in the substantia nigra. Nurr1 deficiency is associated with Parkinson’s disease where dopaminergic neurons degenerate suggesting that counter-regulation of Nurr1 activity may have therapeutic effects. Here, we bacterially expressed and isolated a human Nurr1 fusion protein containing a N-terminal cell delivery domain derived from detoxified anthrax lethal factor followed by wild type ubiquitin with deubiquitinating enzyme recognition site for intracellular cleavage. Addition of the Nurr1 fusion protein to dopaminergic SH-SY5Y cells generated a cleaved, cytosolic Nurr1-containing fragment which was associated with increased levels of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Promoter-activity assays confirmed that exposure of cells to full-length Nurr1 fusion protein activated not only its cognate human tyrosine hydroxylase promoter but also the corresponding mouse sequence, although at a reduced efficiency. Using 6-hydroxydopamine as a dopaminergic cell specific neurotoxin, we demonstrate that full-length Nurr1 fusion protein promotes a concentration-dependent protection from this toxic insult. Altogether, the enhancement of tyrosine hydroxylase in naïve dopaminergic cells and the protective effects in a cellular model of Parkinson’s disease suggest that full-length Nurr1 fusion protein may contribute to the development of a novel concept of protein-based therapy.
Collapse
Affiliation(s)
- Dennis Paliga
- Department of Biochemistry II - Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Fabian Raudzus
- Department of Biochemistry II - Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rolf Heumann
- Department of Biochemistry II - Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany.
| | - Sebastian Neumann
- Department of Biochemistry II - Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany
| |
Collapse
|
40
|
Matreyek KA, Stephany JJ, Fowler DM. A platform for functional assessment of large variant libraries in mammalian cells. Nucleic Acids Res 2017; 45:e102. [PMID: 28335006 PMCID: PMC5499817 DOI: 10.1093/nar/gkx183] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
Sequencing-based, massively parallel genetic assays have revolutionized our ability to quantify the relationship between many genotypes and a phenotype of interest. Unfortunately, variant library expression platforms in mammalian cells are far from ideal, hindering the study of human gene variants in their physiologically relevant cellular contexts. Here, we describe a platform for phenotyping variant libraries in transfectable mammalian cell lines in two steps. First, a landing pad cell line with a genomically integrated, Tet-inducible cassette containing a Bxb1 recombination site is created. Second, a single variant from a library of transfected, promoter-less plasmids is recombined into the landing pad in each cell. Thus, every cell in the recombined pool expresses a single variant, allowing for parallel, sequencing-based assessment of variant effect. We describe a method for incorporating a single landing pad into a defined site of a cell line of interest, and show that our approach can be used generate more than 20 000 recombinant cells in a single experiment. Finally, we use our platform in combination with a sequencing-based assay to explore the N-end rule by simultaneously measuring the effects of all possible N-terminal amino acids on protein expression.
Collapse
Affiliation(s)
- Kenneth A Matreyek
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jason J Stephany
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
41
|
Abstract
Determination of the general capacity of proteolytic activity of a certain cell or tissue type can be crucial for an assessment of various features of an organism's growth and development and also for the optimization of biotechnological applications. Here, we describe the use of chimeric protein stability reporters that can be detected by standard laboratory techniques such as histological staining, selection using selective media or fluorescence microscopy. Dependent on the expression of the reporters due to the promoters applied, cell- and tissue-specific questions can be addressed. Here, we concentrate on methods which can be used for large-scale screening for protein stability changes rather than for detailed protein stability studies.
Collapse
Affiliation(s)
- Pavel Reichman
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB) and Science Campus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB) and Science Campus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany.
| |
Collapse
|
42
|
Gao J, Li M, Qin S, Zhang T, Jiang S, Hu Y, Deng Y, Zhang C, You D, Li H, Mu D, Zhang Z, Jiang C. Cytosolic PINK1 promotes the targeting of ubiquitinated proteins to the aggresome-autophagy pathway during proteasomal stress. Autophagy 2016; 12:632-47. [PMID: 27050454 DOI: 10.1080/15548627.2016.1147667] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During proteasomal stress, cells can alleviate the accumulation of polyubiquitinated proteins by targeting them to perinuclear aggresomes for autophagic degradation, but the mechanism underlying the activation of this compensatory pathway remains unclear. Here we report that PINK1-s, a short form of Parkinson disease (PD)-related protein kinase PINK1 (PTEN induced putative kinase 1), is a major regulator of aggresome formation. PINK1-s is extremely unstable due to its recognition by the N-end rule pathway, and tends to accumulate in the cytosol during proteasomal stress. Overexpression of PINK1-s induces aggresome formation in cells with normal proteasomal activities, while loss of PINK1-s function leads to a significant decrease in the efficiency of aggresome formation induced by proteasomal inhibition. PINK1-s exerts its effect through phosphorylation of the ubiquitin-binding protein SQSTM1 (sequestosome 1) and increasing its ability to sequester polyubiquitinated proteins into aggresomes. These findings pinpoint PINK1-s as a sensor of proteasomal activities that transduces the proteasomal impairment signal to the aggresome formation machinery.
Collapse
Affiliation(s)
- Ju Gao
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,c Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative Biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong , China
| | - Mengen Li
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Siyue Qin
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China
| | - Ting Zhang
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Sicong Jiang
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Yuan Hu
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Yongkang Deng
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China
| | - Chenliang Zhang
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China
| | - Dujuan You
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Hongchang Li
- c Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative Biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong , China
| | - Dezhi Mu
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China
| | - Zhuohua Zhang
- e State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University , Changsha , Hunan , China
| | - Changan Jiang
- a Department of Pediatrics , West China 2nd University Hospital, Sichuan University , Chengdu , Sichuan , China.,b Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University , Chengdu , Sichuan , China.,c Shenzhen Key Laboratory for Molecular Biology of Neural Development, Laboratory of Developmental and Regenerative Biology, Institute of Biomedicine & Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong , China.,d State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| |
Collapse
|
43
|
Singh SK, Sahu I, Mali SM, Hemantha HP, Kleifeld O, Glickman MH, Brik A. Synthetic Uncleavable Ubiquitinated Proteins Dissect Proteasome Deubiquitination and Degradation, and Highlight Distinctive Fate of Tetraubiquitin. J Am Chem Soc 2016; 138:16004-16015. [PMID: 27960333 DOI: 10.1021/jacs.6b09611] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various hypotheses have been proposed regarding how chain length, linkage type, position on substrate, and susceptibility to deubiquitinases (DUBs) affect processing of different substrates by proteasome. Here we report a new strategy for the chemical synthesis of ubiquitinated proteins to generate a set of well-defined conjugates bearing an oxime bond between the chain and the substrate. We confirmed that this isopeptide replacement is resistant to DUBs and to shaving by proteasome. Analyzing products generated by proteasomes ranked how chain length governed degradation outcome. Our results support that (1) the cleavage of the proximal isopeptide bond is not a prerequisite for proteasomal degradation, (2) by overcoming trimming at the proteasome, tetraUb is a fundamentally different signal than shorter chains, and (3) the tetra-ubiquitin chain can be degraded with the substrate. Together these results highlight the usefulness of chemistry to dissect the contribution of proteasome-associated DUBs and the complexity of the degradation process.
Collapse
Affiliation(s)
- Sumeet K Singh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Indrajit Sahu
- Department of Biology Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Sachitanand M Mali
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Hosahalli P Hemantha
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Oded Kleifeld
- Department of Biology Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Michael H Glickman
- Department of Biology Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , 3200008 Haifa, Israel
| |
Collapse
|
44
|
Ashton-Beaucage D, Lemieux C, Udell CM, Sahmi M, Rochette S, Therrien M. The Deubiquitinase USP47 Stabilizes MAPK by Counteracting the Function of the N-end Rule ligase POE/UBR4 in Drosophila. PLoS Biol 2016; 14:e1002539. [PMID: 27552662 PMCID: PMC4994957 DOI: 10.1371/journal.pbio.1002539] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023] Open
Abstract
RAS-induced MAPK signaling is a central driver of the cell proliferation apparatus. Disruption of this pathway is widely observed in cancer and other pathologies. Consequently, considerable effort has been devoted to understanding the mechanistic aspects of RAS-MAPK signal transmission and regulation. While much information has been garnered on the steps leading up to the activation and inactivation of core pathway components, comparatively little is known on the mechanisms controlling their expression and turnover. We recently identified several factors that dictate Drosophila MAPK levels. Here, we describe the function of one of these, the deubiquitinase (DUB) USP47. We found that USP47 acts post-translationally to counteract a proteasome-mediated event that reduces MAPK half-life and thereby dampens signaling output. Using an RNAi-based genetic interaction screening strategy, we identified UBC6, POE/UBR4, and UFD4, respectively, as E2 and E3 enzymes that oppose USP47 activity. Further characterization of POE-associated factors uncovered KCMF1 as another key component modulating MAPK levels. Together, these results identify a novel protein degradation module that governs MAPK levels. Given the role of UBR4 as an N-recognin ubiquitin ligase, our findings suggest that RAS-MAPK signaling in Drosophila is controlled by the N-end rule pathway and that USP47 counteracts its activity.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Lemieux
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
| | - Christian M. Udell
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
| | - Samuel Rochette
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montreal, Quebec, Canada
- Département de pathologie et de biologie cellulaire, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
45
|
Wadas B, Piatkov KI, Brower CS, Varshavsky A. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays. J Biol Chem 2016; 291:20976-20992. [PMID: 27510035 DOI: 10.1074/jbc.m116.747956] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 01/29/2023] Open
Abstract
Nα-terminal arginylation (Nt-arginylation) of proteins is mediated by the Ate1 arginyltransferase (R-transferase), a component of the Arg/N-end rule pathway. This proteolytic system recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. The definitively identified ("canonical") residues that are Nt-arginylated by R-transferase are N-terminal Asp, Glu, and (oxidized) Cys. Over the last decade, several publications have suggested (i) that Ate1 can also arginylate non-canonical N-terminal residues; (ii) that Ate1 is capable of arginylating not only α-amino groups of N-terminal residues but also γ-carboxyl groups of internal (non-N-terminal) Asp and Glu; and (iii) that some isoforms of Ate1 are specific for substrates bearing N-terminal Cys residues. In the present study, we employed arrays of immobilized 11-residue peptides and pulse-chase assays to examine the substrate specificity of mouse R-transferase. We show that amino acid sequences immediately downstream of a substrate's canonical (Nt-arginylatable) N-terminal residue, particularly a residue at position 2, can affect the rate of Nt-arginylation by R-transferase and thereby the rate of degradation of a substrate protein. We also show that the four major isoforms of mouse R-transferase have similar Nt-arginylation specificities in vitro, contrary to the claim about the specificity of some Ate1 isoforms for N-terminal Cys. In addition, we found no evidence for a significant activity of the Ate1 R-transferase toward previously invoked non-canonical N-terminal or internal amino acid residues. Together, our results raise technical concerns about earlier studies that invoked non-canonical arginylation specificities of Ate1.
Collapse
Affiliation(s)
- Brandon Wadas
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Konstantin I Piatkov
- the Center for Biotechnology and Biomedicine, Skolkovo Institute of Science and Technology, Moscow 143026, Russia, and
| | | | - Alexander Varshavsky
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125,
| |
Collapse
|
46
|
Piatkov KI, Vu TTM, Hwang CS, Varshavsky A. Formyl-methionine as a degradation signal at the N-termini of bacterial proteins. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 2:376-393. [PMID: 26866044 PMCID: PMC4745127 DOI: 10.15698/mic2015.10.231] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/17/2015] [Indexed: 02/04/2023]
Abstract
In bacteria, all nascent proteins bear the pretranslationally formed N-terminal formyl-methionine (fMet) residue. The fMet residue is cotranslationally deformylated by a ribosome-associated deformylase. The formylation of N-terminal Met in bacterial proteins is not strictly essential for either translation or cell viability. Moreover, protein synthesis by the cytosolic ribosomes of eukaryotes does not involve the formylation of N-terminal Met. What, then, is the main biological function of this metabolically costly, transient, and not strictly essential modification of N-terminal Met, and why has Met formylation not been eliminated during bacterial evolution? One possibility is that the similarity of the formyl and acetyl groups, their identical locations in N-terminally formylated (Nt-formylated) and Nt-acetylated proteins, and the recently discovered proteolytic function of Nt-acetylation in eukaryotes might also signify a proteolytic role of Nt-formylation in bacteria. We addressed this hypothesis about fMet-based degradation signals, termed fMet/N-degrons, using specific E. coli mutants, pulse-chase degradation assays, and protein reporters whose deformylation was altered, through site-directed mutagenesis, to be either rapid or relatively slow. Our findings strongly suggest that the formylated N-terminal fMet can act as a degradation signal, largely a cotranslational one. One likely function of fMet/N-degrons is the control of protein quality. In bacteria, the rate of polypeptide chain elongation is nearly an order of magnitude higher than in eukaryotes. We suggest that the faster emergence of nascent proteins from bacterial ribosomes is one mechanistic and evolutionary reason for the pretranslational design of bacterial fMet/N-degrons, in contrast to the cotranslational design of analogous Ac/N-degrons in eukaryotes.
Collapse
Affiliation(s)
- Konstantin I. Piatkov
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
- Center for Biotechnology and Biomedicine, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Tri T. M. Vu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 790-784, South Korea
| | - Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
47
|
Liu YJ, Liu C, Chang Z, Wadas B, Brower CS, Song ZH, Xu ZL, Shang YL, Liu WX, Wang LN, Dong W, Varshavsky A, Hu RG, Li W. Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway. J Biol Chem 2016; 291:7426-38. [PMID: 26858254 DOI: 10.1074/jbc.m116.714964] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Indexed: 02/05/2023] Open
Abstract
The Ate1 arginyltransferase (R-transferase) is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. Ate1 arginylates N-terminal Asp, Glu, or (oxidized) Cys. The resulting N-terminal Arg is recognized by ubiquitin ligases of the N-end rule pathway. In the yeastSaccharomyces cerevisiae, the separase-mediated cleavage of the Scc1/Rad21/Mcd1 cohesin subunit generates a C-terminal fragment that bears N-terminal Arg and is destroyed by the N-end rule pathway without a requirement for arginylation. In contrast, the separase-mediated cleavage of Rec8, the mammalian meiotic cohesin subunit, yields a fragment bearing N-terminal Glu, a substrate of the Ate1 R-transferase. Here we constructed and used a germ cell-confinedAte1(-/-)mouse strain to analyze the separase-generated C-terminal fragment of Rec8. We show that this fragment is a short-lived N-end rule substrate, that its degradation requires N-terminal arginylation, and that maleAte1(-/-)mice are nearly infertile, due to massive apoptotic death ofAte1(-/-)spermatocytes during the metaphase of meiosis I. These effects ofAte1ablation are inferred to be caused, at least in part, by the failure to destroy the C-terminal fragment of Rec8 in the absence of N-terminal arginylation.
Collapse
Affiliation(s)
- Yu-Jiao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the College of Marine Life, Ocean University of China, Qingdao 266003, China, and
| | - Chao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - ZeNan Chang
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brandon Wadas
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Christopher S Brower
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Zhen-Hua Song
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Liang Xu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Shang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Xiao Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Na Wang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Dong
- the College of Marine Life, Ocean University of China, Qingdao 266003, China, and
| | - Alexander Varshavsky
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Rong-Gui Hu
- the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
48
|
Naumann C, Mot AC, Dissmeyer N. Generation of Artificial N-end Rule Substrate Proteins In Vivo and In Vitro. Methods Mol Biol 2016; 1450:55-83. [PMID: 27424746 DOI: 10.1007/978-1-4939-3759-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to determine the stability of a protein or protein fragment dependent on its N-terminal amino acid, and therefore relate its half-life to the N-end rule pathway of targeted protein degradation (NERD), non-Methionine (Met) amino acids need to be exposed at their amino terminal in most cases. Per definition, at this position, destabilizing residues are generally unlikely to occur without further posttranslational modification of immature (pre-)proproteins. Moreover, almost exclusively, stabilizing, or not per se destabilizing residues are N-terminally exposed upon Met excision by Met aminopeptidases. To date, there exist two prominent protocols to study the impact of destabilizing residues at the N-terminal of a given protein by selectively exposing the amino acid residue to be tested. Such proteins can be used to study NERD substrate candidates and analyze NERD enzymatic components. Namely, the well-established ubiquitin fusion technique (UFT) is used in vivo or in cell-free transcription/translation systems in vitro to produce a desired N-terminal residue in a protein of interest, whereas the proteolytic cleavage of recombinant fusion proteins by tobacco etch virus (TEV) protease is used in vitro to purify proteins with distinct N-termini. Here, we discuss how to accomplish in vivo and in vitro expression and modification of NERD substrate proteins that may be used as stability tester or activity reporter proteins and to characterize potential NERD substrates.The methods to generate artificial substrates via UFT or TEV cleavage are described here and can be used either in vivo in the context of stably transformed plants and cell culture expressing chimeric constructs or in vitro in cell-free systems such as rabbit reticulocyte lysate as well as after expression and purification of recombinant proteins from various hosts.
Collapse
Affiliation(s)
- Christin Naumann
- Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany.,ScienceCampus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany
| | - Augustin C Mot
- Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany.,ScienceCampus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany.,Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Nico Dissmeyer
- Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany. .,ScienceCampus Halle - Plant-Based Bioeconomy, Halle (Saale), Germany.
| |
Collapse
|
49
|
Rabideau AE, Pentelute BL. A d-Amino Acid at the N-Terminus of a Protein Abrogates Its Degradation by the N-End Rule Pathway. ACS CENTRAL SCIENCE 2015; 1:423-430. [PMID: 26807441 PMCID: PMC4711398 DOI: 10.1021/acscentsci.5b00308] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Eukaryotes have evolved the ubiquitin (Ub)/proteasome system to degrade polypeptides. The Ub/proteasome system is one way that cells regulate cytosolic protein and amino acids levels through the recognition and ubiquitination of a protein's N-terminus via E1, E2, and E3 enzymes. The process by which the N-terminus stimulates intracellular protein degradation is referred to as the N-end rule. Characterization of the N-end rule has been limited to only the natural l-amino acids. Using a cytosolic delivery platform derived from anthrax lethal toxin, we probed the stability of mixed chirality proteins, containing one d-amino acid on the N-terminus of otherwise all l-proteins. In all cases, we observed that one N-terminal d-amino acid stabilized the cargo protein to proteasomal degradation with respect to the N-end rule. We found that since the mixed chirality proteins were not polyubiquitinated, they evaded N-end-mediated proteasomal degradation. Evidently, a subtle change on the N-terminus of a natural protein can enhance its intracellular lifetime.
Collapse
|
50
|
van der Velden YU, Kleibeuker W, Harwig A, Klaver B, Siteur-van Rijnstra E, Frankin E, Berkhout B, Das AT. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements. Virology 2015; 488:96-107. [PMID: 26615334 DOI: 10.1016/j.virol.2015.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/14/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022]
Abstract
Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication.
Collapse
Affiliation(s)
- Yme U van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Wendy Kleibeuker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bep Klaver
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Siteur-van Rijnstra
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esmay Frankin
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|